Abstract

Single-shot digital holographic microscopy (SS-DHM) with a modified lateral-shearing interferometer (MLSI) based on computational telecentricity is proposed. The proposed system is composed of three-step processes such as optical recording, digital compensation and numerical reconstruction processes. In the 1st step, the object beam is optically recorded with the MLSI, where a tube lens is set to be located at the slightly shorter distance than its focal length from the objective lens. Then, another phase factor due to the deviated locating of the tube lens from its focal length is additionally generated, which is called an additional quadratic phase factor (AQPF). However, in the 2nd step, this AQPF can be balanced out with the computer-generated version of the AQPF. In the 3rd step, the three-dimensional (3-D) object can be finally reconstructed from this AQPF-compensated hologram. Thus, by combined use of the optical recording and digital compensation processes of the AQPF, the proposed system can be made virtually operate in a so-called computational telecentricity, which enables us to implement a MLSI-based SS-DHM system. Wave-optical analysis and successful experiments with actual 3-D objects confirm the feasibility of the proposed system in the practical application fields.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Alignment-tolerant single-shot digital holographic microscopy based on computer-controlled telecentricity

Seong-Jin Park, Byung-Mok Kim, and Eun-Soo Kim
Appl. Opt. 58(12) 3260-3271 (2019)

Accurate quantitative phase digital holographic microscopy with single- and multiple-wavelength telecentric and nontelecentric configurations

Thanh Nguyen, George Nehmetallah, Christopher Raub, Scott Mathews, and Rola Aylo
Appl. Opt. 55(21) 5666-5683 (2016)

Optimal modified lateral shearing interferometer for submicro-defects measurement of transparent objects

Kwang-Beom Seo and Seung-Ho Shin
Appl. Opt. 56(27) 7504-7511 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. Zernike, “Phase-contrast, a new method for microscopic observation of transparent objects,” Physica 9(7), 686–698 (1942).
    [Crossref]
  2. G. Nomarski, “Microinterférométrie differential et ondes polarizés,” J. Phys. Radium 16, 9–135 (1955).
  3. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
    [Crossref]
  4. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994).
    [Crossref] [PubMed]
  5. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Express 9(6), 294–302 (2001).
    [Crossref] [PubMed]
  6. C. J.Mann, L. F. Yu, and M. K. Kim, “Movies of cellular and sub-cellularmotion by digital holographic microscopy,” Biomed. Eng. Online 5:21, 10 (2006).
  7. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999).
    [Crossref] [PubMed]
  8. J. Kühn, F. Charriere, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008).
    [Crossref]
  9. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42(11), 1938–1946 (2003).
    [Crossref] [PubMed]
  10. W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, and C. K. Rhodes, “Fourier-transform holographic microscope,” Appl. Opt. 31(24), 4973–4978 (1992).
    [Crossref] [PubMed]
  11. M. Gustafsson, M. Sebesta, B. Bengtsson, S. G. Pettersson, P. Egelberg, and T. Lenart, “High-resolution digital transmissionmicroscopy – a Fourier holography approach,” Opt. Lasers Eng. 41(3), 553–563 (2004).
    [Crossref]
  12. M. K. Kim, “Full color natural light holographic camera,” Opt. Express 21(8), 9636–9642 (2013).
    [Crossref] [PubMed]
  13. S. G. Kim, B. Lee, and E. S. Kim, “Removal of bias and the conjugate image in incoherent on-axis triangular holography and real-time reconstruction of the complex hologram,” Appl. Opt. 36(20), 4784–4791 (1997).
    [Crossref] [PubMed]
  14. J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32(8), 912–914 (2007).
    [Crossref] [PubMed]
  15. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
    [Crossref] [PubMed]
  16. L. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. Chen, “Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery,” Opt. Express 17(14), 12031–12038 (2009).
    [Crossref] [PubMed]
  17. A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20(21), 23617–23622 (2012).
    [Crossref] [PubMed]
  18. A. Anand, V. K. Chhaniwal, N. R. Patel, and B. Javidi, “Automatic identification of malaria-infected RBC with digital holographic microscopy using correlation algorithms,” IEEE Photonics J. 4(5), 1456–1464 (2012).
    [Crossref]
  19. A. Doblas, E. Roche, F. J. Ampudia-Blasco, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Diabetes screening by telecentric digital holographic microscopy,” J. Microsc. 261(3), 285–290 (2016).
    [Crossref] [PubMed]
  20. L. Xu, X. Peng, J. Miao, and A. K. Asundi, “Studies of digital microscopic holography with applications to microstructure testing,” Appl. Opt. 40(28), 5046–5051 (2001).
    [Crossref] [PubMed]
  21. J. Kuhn, E. Cuche, Y. Emery, T. Colomb, F. Charriere, F. Montfrot, M. Botkine, N. Aspert, and C. Depeursinge, “Measurements of corner cubes microstructures by high-magnification digital holographic microscopy,” Proc. SPIE 6188, 618804 (2006).
    [Crossref]
  22. M. A. Schulze, M. A. Hunt, E. Voelkl, J. D. Hickson, W. Usry, R. G. Smith, R. Bryant, and C. E. Thomas., “Semiconductor wafer defect detection using digital holography,” Proc. SPIE 5041, 183–193 (2003).
    [Crossref]
  23. D. Nyyssonen and J. M. Jerke, “Lens testing with a simple wavefront shearing interferometer,” Appl. Opt. 12(9), 2061–2070 (1973).
    [Crossref] [PubMed]
  24. W. Merzkirch, “Generalized analysis of shearing interferometers as applied for gas dynamic studies,” Appl. Opt. 13(2), 409–413 (1974).
    [Crossref] [PubMed]
  25. K. Matsuda, S. Watanabe, and T. Eiju, “Real-time measurement of large liquid surface deformation using a holographic shearing interferometer,” Appl. Opt. 24(24), 4443–4447 (1985).
    [Crossref] [PubMed]
  26. J. Choi, G. M. Perera, M. D. Aggarwal, R. P. Shukla, and M. V. Mantravadi, “Wedge-plate shearing interferometers for collimation testing: use of a moiré technique,” Appl. Opt. 34(19), 3628–3638 (1995).
    [Crossref] [PubMed]
  27. G. S. Sarkisov, “Shearing interferometer with an air wedge for electron density diagnostics in a dense plasma,” Instrum. Exp. Tech. 39, 727–731 (1996).
  28. C. Falldorf, R. Klattenhoff, and R. B. Bergmann, “Single shot lateral shear interferometer with variable shear,” Opt. Eng. 54(5), 054105 (2015).
    [Crossref]
  29. C. Falldorf, S. Osten, C. V. Kopylow, and W. Jüptner, “Shearing interferometer based on the birefringent properties of a spatial light modulator,” Opt. Lett. 34(18), 2727–2729 (2009).
    [Crossref] [PubMed]
  30. C. Falldorf, M. Agour, and R. B. Bergmann, “Digital holography and quantitative phase contrast imaging using computational shear interferometry,” Opt. Eng. 54(2), 024110 (2015).
    [Crossref]
  31. K. B. Seo, B.-M. Kim, and E.-S. Kim, “Digital holographic microscopy based on a modified lateral shearing interferometer for three-dimensional visual inspection of nanoscale defects on transparent objects,” Nanoscale Res. Lett. 9(1), 471 (2014).
    [Crossref] [PubMed]
  32. B. M. Kim and E. S. Kim, “Visual inspection of 3-D surface and refractive-index profiles of microscopic lenses using a single-arm off-axis holographic interferometer,” Opt. Express 24(10), 10326–10344 (2016).
    [Crossref] [PubMed]
  33. W. Qu, C. O. Choo, V. R. Singh, Y. Yingjie, and A. Asundi, “Quasi-physical phase compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 26(9), 2005–2011 (2009).
    [Crossref] [PubMed]
  34. E. Sánchez-Ortiga, P. Ferraro, M. Martínez-Corral, G. Saavedra, and A. Doblas, “Digital holographic microscopy with pure-optical spherical phase compensation,” J. Opt. Soc. Am. A 28(7), 1410–1417 (2011).
    [Crossref] [PubMed]
  35. A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
    [Crossref] [PubMed]
  36. R. P. Shukla and D. Malacara, “Some Applications of the Murty Interferometer: A Review,” Opt. Lasers Eng. 26(1), 1–42 (1997).
    [Crossref]
  37. E. S. Kim, B. M. Kim and S. J. Park, “Device for obtaining hologram image using lens assembly and apparatus for restructuring the object shape with the device,” KR patent pending, 10–2016–0117861 (2016).
  38. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30(16), 2092–2094 (2005).
    [Crossref] [PubMed]

2016 (2)

A. Doblas, E. Roche, F. J. Ampudia-Blasco, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Diabetes screening by telecentric digital holographic microscopy,” J. Microsc. 261(3), 285–290 (2016).
[Crossref] [PubMed]

B. M. Kim and E. S. Kim, “Visual inspection of 3-D surface and refractive-index profiles of microscopic lenses using a single-arm off-axis holographic interferometer,” Opt. Express 24(10), 10326–10344 (2016).
[Crossref] [PubMed]

2015 (2)

C. Falldorf, R. Klattenhoff, and R. B. Bergmann, “Single shot lateral shear interferometer with variable shear,” Opt. Eng. 54(5), 054105 (2015).
[Crossref]

C. Falldorf, M. Agour, and R. B. Bergmann, “Digital holography and quantitative phase contrast imaging using computational shear interferometry,” Opt. Eng. 54(2), 024110 (2015).
[Crossref]

2014 (2)

K. B. Seo, B.-M. Kim, and E.-S. Kim, “Digital holographic microscopy based on a modified lateral shearing interferometer for three-dimensional visual inspection of nanoscale defects on transparent objects,” Nanoscale Res. Lett. 9(1), 471 (2014).
[Crossref] [PubMed]

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (2)

A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20(21), 23617–23622 (2012).
[Crossref] [PubMed]

A. Anand, V. K. Chhaniwal, N. R. Patel, and B. Javidi, “Automatic identification of malaria-infected RBC with digital holographic microscopy using correlation algorithms,” IEEE Photonics J. 4(5), 1456–1464 (2012).
[Crossref]

2011 (1)

2009 (3)

2008 (1)

J. Kühn, F. Charriere, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008).
[Crossref]

2007 (1)

2006 (1)

J. Kuhn, E. Cuche, Y. Emery, T. Colomb, F. Charriere, F. Montfrot, M. Botkine, N. Aspert, and C. Depeursinge, “Measurements of corner cubes microstructures by high-magnification digital holographic microscopy,” Proc. SPIE 6188, 618804 (2006).
[Crossref]

2005 (1)

2004 (1)

M. Gustafsson, M. Sebesta, B. Bengtsson, S. G. Pettersson, P. Egelberg, and T. Lenart, “High-resolution digital transmissionmicroscopy – a Fourier holography approach,” Opt. Lasers Eng. 41(3), 553–563 (2004).
[Crossref]

2003 (2)

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42(11), 1938–1946 (2003).
[Crossref] [PubMed]

M. A. Schulze, M. A. Hunt, E. Voelkl, J. D. Hickson, W. Usry, R. G. Smith, R. Bryant, and C. E. Thomas., “Semiconductor wafer defect detection using digital holography,” Proc. SPIE 5041, 183–193 (2003).
[Crossref]

2001 (2)

2000 (1)

1999 (1)

1997 (2)

1996 (1)

G. S. Sarkisov, “Shearing interferometer with an air wedge for electron density diagnostics in a dense plasma,” Instrum. Exp. Tech. 39, 727–731 (1996).

1995 (1)

1994 (1)

1992 (1)

1985 (1)

1974 (1)

1973 (1)

1967 (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[Crossref]

1955 (1)

G. Nomarski, “Microinterférométrie differential et ondes polarizés,” J. Phys. Radium 16, 9–135 (1955).

1942 (1)

F. Zernike, “Phase-contrast, a new method for microscopic observation of transparent objects,” Physica 9(7), 686–698 (1942).
[Crossref]

Aggarwal, M. D.

Agour, M.

C. Falldorf, M. Agour, and R. B. Bergmann, “Digital holography and quantitative phase contrast imaging using computational shear interferometry,” Opt. Eng. 54(2), 024110 (2015).
[Crossref]

Ampudia-Blasco, F. J.

A. Doblas, E. Roche, F. J. Ampudia-Blasco, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Diabetes screening by telecentric digital holographic microscopy,” J. Microsc. 261(3), 285–290 (2016).
[Crossref] [PubMed]

Anand, A.

A. Anand, V. K. Chhaniwal, N. R. Patel, and B. Javidi, “Automatic identification of malaria-infected RBC with digital holographic microscopy using correlation algorithms,” IEEE Photonics J. 4(5), 1456–1464 (2012).
[Crossref]

A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20(21), 23617–23622 (2012).
[Crossref] [PubMed]

Aspert, N.

J. Kuhn, E. Cuche, Y. Emery, T. Colomb, F. Charriere, F. Montfrot, M. Botkine, N. Aspert, and C. Depeursinge, “Measurements of corner cubes microstructures by high-magnification digital holographic microscopy,” Proc. SPIE 6188, 618804 (2006).
[Crossref]

Asundi, A.

Asundi, A. K.

Bengtsson, B.

M. Gustafsson, M. Sebesta, B. Bengtsson, S. G. Pettersson, P. Egelberg, and T. Lenart, “High-resolution digital transmissionmicroscopy – a Fourier holography approach,” Opt. Lasers Eng. 41(3), 553–563 (2004).
[Crossref]

Bergmann, R. B.

C. Falldorf, M. Agour, and R. B. Bergmann, “Digital holography and quantitative phase contrast imaging using computational shear interferometry,” Opt. Eng. 54(2), 024110 (2015).
[Crossref]

C. Falldorf, R. Klattenhoff, and R. B. Bergmann, “Single shot lateral shear interferometer with variable shear,” Opt. Eng. 54(5), 054105 (2015).
[Crossref]

Berns, M. W.

Bevilacqua, F.

Botkine, M.

J. Kuhn, E. Cuche, Y. Emery, T. Colomb, F. Charriere, F. Montfrot, M. Botkine, N. Aspert, and C. Depeursinge, “Measurements of corner cubes microstructures by high-magnification digital holographic microscopy,” Proc. SPIE 6188, 618804 (2006).
[Crossref]

Boyer, K.

Brooker, G.

Bryant, R.

M. A. Schulze, M. A. Hunt, E. Voelkl, J. D. Hickson, W. Usry, R. G. Smith, R. Bryant, and C. E. Thomas., “Semiconductor wafer defect detection using digital holography,” Proc. SPIE 5041, 183–193 (2003).
[Crossref]

Charriere, F.

J. Kühn, F. Charriere, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008).
[Crossref]

J. Kuhn, E. Cuche, Y. Emery, T. Colomb, F. Charriere, F. Montfrot, M. Botkine, N. Aspert, and C. Depeursinge, “Measurements of corner cubes microstructures by high-magnification digital holographic microscopy,” Proc. SPIE 6188, 618804 (2006).
[Crossref]

Chen, Z.

Chhaniwal, V. K.

A. Anand, V. K. Chhaniwal, N. R. Patel, and B. Javidi, “Automatic identification of malaria-infected RBC with digital holographic microscopy using correlation algorithms,” IEEE Photonics J. 4(5), 1456–1464 (2012).
[Crossref]

Choi, J.

Choo, C. O.

Colomb, T.

J. Kühn, F. Charriere, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008).
[Crossref]

J. Kuhn, E. Cuche, Y. Emery, T. Colomb, F. Charriere, F. Montfrot, M. Botkine, N. Aspert, and C. Depeursinge, “Measurements of corner cubes microstructures by high-magnification digital holographic microscopy,” Proc. SPIE 6188, 618804 (2006).
[Crossref]

Coppola, G.

Cuche, E.

J. Kühn, F. Charriere, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008).
[Crossref]

J. Kuhn, E. Cuche, Y. Emery, T. Colomb, F. Charriere, F. Montfrot, M. Botkine, N. Aspert, and C. Depeursinge, “Measurements of corner cubes microstructures by high-magnification digital holographic microscopy,” Proc. SPIE 6188, 618804 (2006).
[Crossref]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
[Crossref] [PubMed]

E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999).
[Crossref] [PubMed]

Cullen, D.

De Nicola, S.

Depeursinge, C.

J. Kühn, F. Charriere, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008).
[Crossref]

J. Kuhn, E. Cuche, Y. Emery, T. Colomb, F. Charriere, F. Montfrot, M. Botkine, N. Aspert, and C. Depeursinge, “Measurements of corner cubes microstructures by high-magnification digital holographic microscopy,” Proc. SPIE 6188, 618804 (2006).
[Crossref]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
[Crossref] [PubMed]

E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999).
[Crossref] [PubMed]

Doblas, A.

A. Doblas, E. Roche, F. J. Ampudia-Blasco, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Diabetes screening by telecentric digital holographic microscopy,” J. Microsc. 261(3), 285–290 (2016).
[Crossref] [PubMed]

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[Crossref] [PubMed]

E. Sánchez-Ortiga, P. Ferraro, M. Martínez-Corral, G. Saavedra, and A. Doblas, “Digital holographic microscopy with pure-optical spherical phase compensation,” J. Opt. Soc. Am. A 28(7), 1410–1417 (2011).
[Crossref] [PubMed]

Egelberg, P.

M. Gustafsson, M. Sebesta, B. Bengtsson, S. G. Pettersson, P. Egelberg, and T. Lenart, “High-resolution digital transmissionmicroscopy – a Fourier holography approach,” Opt. Lasers Eng. 41(3), 553–563 (2004).
[Crossref]

Eiju, T.

Emery, Y.

J. Kühn, F. Charriere, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008).
[Crossref]

J. Kuhn, E. Cuche, Y. Emery, T. Colomb, F. Charriere, F. Montfrot, M. Botkine, N. Aspert, and C. Depeursinge, “Measurements of corner cubes microstructures by high-magnification digital holographic microscopy,” Proc. SPIE 6188, 618804 (2006).
[Crossref]

Falldorf, C.

C. Falldorf, M. Agour, and R. B. Bergmann, “Digital holography and quantitative phase contrast imaging using computational shear interferometry,” Opt. Eng. 54(2), 024110 (2015).
[Crossref]

C. Falldorf, R. Klattenhoff, and R. B. Bergmann, “Single shot lateral shear interferometer with variable shear,” Opt. Eng. 54(5), 054105 (2015).
[Crossref]

C. Falldorf, S. Osten, C. V. Kopylow, and W. Jüptner, “Shearing interferometer based on the birefringent properties of a spatial light modulator,” Opt. Lett. 34(18), 2727–2729 (2009).
[Crossref] [PubMed]

Ferraro, P.

Finizio, A.

Garcia-Sucerquia, J.

A. Doblas, E. Roche, F. J. Ampudia-Blasco, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Diabetes screening by telecentric digital holographic microscopy,” J. Microsc. 261(3), 285–290 (2016).
[Crossref] [PubMed]

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[Crossref] [PubMed]

Genc, S.

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[Crossref]

Grilli, S.

Gustafsson, M.

M. Gustafsson, M. Sebesta, B. Bengtsson, S. G. Pettersson, P. Egelberg, and T. Lenart, “High-resolution digital transmissionmicroscopy – a Fourier holography approach,” Opt. Lasers Eng. 41(3), 553–563 (2004).
[Crossref]

Haddad, W. S.

Hickson, J. D.

M. A. Schulze, M. A. Hunt, E. Voelkl, J. D. Hickson, W. Usry, R. G. Smith, R. Bryant, and C. E. Thomas., “Semiconductor wafer defect detection using digital holography,” Proc. SPIE 5041, 183–193 (2003).
[Crossref]

Hunt, M. A.

M. A. Schulze, M. A. Hunt, E. Voelkl, J. D. Hickson, W. Usry, R. G. Smith, R. Bryant, and C. E. Thomas., “Semiconductor wafer defect detection using digital holography,” Proc. SPIE 5041, 183–193 (2003).
[Crossref]

Javidi, B.

A. Anand, V. K. Chhaniwal, N. R. Patel, and B. Javidi, “Automatic identification of malaria-infected RBC with digital holographic microscopy using correlation algorithms,” IEEE Photonics J. 4(5), 1456–1464 (2012).
[Crossref]

A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20(21), 23617–23622 (2012).
[Crossref] [PubMed]

Jerke, J. M.

Jüptner, W.

Kim, B. M.

Kim, B.-M.

K. B. Seo, B.-M. Kim, and E.-S. Kim, “Digital holographic microscopy based on a modified lateral shearing interferometer for three-dimensional visual inspection of nanoscale defects on transparent objects,” Nanoscale Res. Lett. 9(1), 471 (2014).
[Crossref] [PubMed]

Kim, E. S.

Kim, E.-S.

K. B. Seo, B.-M. Kim, and E.-S. Kim, “Digital holographic microscopy based on a modified lateral shearing interferometer for three-dimensional visual inspection of nanoscale defects on transparent objects,” Nanoscale Res. Lett. 9(1), 471 (2014).
[Crossref] [PubMed]

Kim, M. K.

Kim, S. G.

Klattenhoff, R.

C. Falldorf, R. Klattenhoff, and R. B. Bergmann, “Single shot lateral shear interferometer with variable shear,” Opt. Eng. 54(5), 054105 (2015).
[Crossref]

Kopylow, C. V.

Kuhn, J.

J. Kuhn, E. Cuche, Y. Emery, T. Colomb, F. Charriere, F. Montfrot, M. Botkine, N. Aspert, and C. Depeursinge, “Measurements of corner cubes microstructures by high-magnification digital holographic microscopy,” Proc. SPIE 6188, 618804 (2006).
[Crossref]

Kühn, J.

J. Kühn, F. Charriere, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008).
[Crossref]

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[Crossref]

Lee, B.

Leitgeb, R. A.

Lenart, T.

M. Gustafsson, M. Sebesta, B. Bengtsson, S. G. Pettersson, P. Egelberg, and T. Lenart, “High-resolution digital transmissionmicroscopy – a Fourier holography approach,” Opt. Lasers Eng. 41(3), 553–563 (2004).
[Crossref]

Longworth, J. W.

Magro, C.

Malacara, D.

R. P. Shukla and D. Malacara, “Some Applications of the Murty Interferometer: A Review,” Opt. Lasers Eng. 26(1), 1–42 (1997).
[Crossref]

Mantravadi, M. V.

Marquet, P.

J. Kühn, F. Charriere, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008).
[Crossref]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
[Crossref] [PubMed]

Martínez-Corral, M.

A. Doblas, E. Roche, F. J. Ampudia-Blasco, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Diabetes screening by telecentric digital holographic microscopy,” J. Microsc. 261(3), 285–290 (2016).
[Crossref] [PubMed]

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[Crossref] [PubMed]

E. Sánchez-Ortiga, P. Ferraro, M. Martínez-Corral, G. Saavedra, and A. Doblas, “Digital holographic microscopy with pure-optical spherical phase compensation,” J. Opt. Soc. Am. A 28(7), 1410–1417 (2011).
[Crossref] [PubMed]

Matsuda, K.

McPherson, A.

Merzkirch, W.

Meucci, R.

Miao, J.

Mohanty, S.

Montfort, F.

J. Kühn, F. Charriere, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008).
[Crossref]

Montfrot, F.

J. Kuhn, E. Cuche, Y. Emery, T. Colomb, F. Charriere, F. Montfrot, M. Botkine, N. Aspert, and C. Depeursinge, “Measurements of corner cubes microstructures by high-magnification digital holographic microscopy,” Proc. SPIE 6188, 618804 (2006).
[Crossref]

Nomarski, G.

G. Nomarski, “Microinterférométrie differential et ondes polarizés,” J. Phys. Radium 16, 9–135 (1955).

Nyyssonen, D.

Osten, S.

Patel, N. R.

A. Anand, V. K. Chhaniwal, N. R. Patel, and B. Javidi, “Automatic identification of malaria-infected RBC with digital holographic microscopy using correlation algorithms,” IEEE Photonics J. 4(5), 1456–1464 (2012).
[Crossref]

Peng, X.

Perera, G. M.

Pettersson, S. G.

M. Gustafsson, M. Sebesta, B. Bengtsson, S. G. Pettersson, P. Egelberg, and T. Lenart, “High-resolution digital transmissionmicroscopy – a Fourier holography approach,” Opt. Lasers Eng. 41(3), 553–563 (2004).
[Crossref]

Pierattini, G.

Qu, W.

Rhodes, C. K.

Roche, E.

A. Doblas, E. Roche, F. J. Ampudia-Blasco, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Diabetes screening by telecentric digital holographic microscopy,” J. Microsc. 261(3), 285–290 (2016).
[Crossref] [PubMed]

Rosen, J.

Saavedra, G.

A. Doblas, E. Roche, F. J. Ampudia-Blasco, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Diabetes screening by telecentric digital holographic microscopy,” J. Microsc. 261(3), 285–290 (2016).
[Crossref] [PubMed]

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[Crossref] [PubMed]

E. Sánchez-Ortiga, P. Ferraro, M. Martínez-Corral, G. Saavedra, and A. Doblas, “Digital holographic microscopy with pure-optical spherical phase compensation,” J. Opt. Soc. Am. A 28(7), 1410–1417 (2011).
[Crossref] [PubMed]

Sánchez-Ortiga, E.

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[Crossref] [PubMed]

E. Sánchez-Ortiga, P. Ferraro, M. Martínez-Corral, G. Saavedra, and A. Doblas, “Digital holographic microscopy with pure-optical spherical phase compensation,” J. Opt. Soc. Am. A 28(7), 1410–1417 (2011).
[Crossref] [PubMed]

Sarkisov, G. S.

G. S. Sarkisov, “Shearing interferometer with an air wedge for electron density diagnostics in a dense plasma,” Instrum. Exp. Tech. 39, 727–731 (1996).

Schnars, U.

Schulze, M. A.

M. A. Schulze, M. A. Hunt, E. Voelkl, J. D. Hickson, W. Usry, R. G. Smith, R. Bryant, and C. E. Thomas., “Semiconductor wafer defect detection using digital holography,” Proc. SPIE 5041, 183–193 (2003).
[Crossref]

Sebesta, M.

M. Gustafsson, M. Sebesta, B. Bengtsson, S. G. Pettersson, P. Egelberg, and T. Lenart, “High-resolution digital transmissionmicroscopy – a Fourier holography approach,” Opt. Lasers Eng. 41(3), 553–563 (2004).
[Crossref]

Seo, K. B.

K. B. Seo, B.-M. Kim, and E.-S. Kim, “Digital holographic microscopy based on a modified lateral shearing interferometer for three-dimensional visual inspection of nanoscale defects on transparent objects,” Nanoscale Res. Lett. 9(1), 471 (2014).
[Crossref] [PubMed]

Shukla, R. P.

Singh, A. S. G.

Singh, V. R.

Smith, R. G.

M. A. Schulze, M. A. Hunt, E. Voelkl, J. D. Hickson, W. Usry, R. G. Smith, R. Bryant, and C. E. Thomas., “Semiconductor wafer defect detection using digital holography,” Proc. SPIE 5041, 183–193 (2003).
[Crossref]

Solem, J. C.

Thomas, C. E.

M. A. Schulze, M. A. Hunt, E. Voelkl, J. D. Hickson, W. Usry, R. G. Smith, R. Bryant, and C. E. Thomas., “Semiconductor wafer defect detection using digital holography,” Proc. SPIE 5041, 183–193 (2003).
[Crossref]

Usry, W.

M. A. Schulze, M. A. Hunt, E. Voelkl, J. D. Hickson, W. Usry, R. G. Smith, R. Bryant, and C. E. Thomas., “Semiconductor wafer defect detection using digital holography,” Proc. SPIE 5041, 183–193 (2003).
[Crossref]

Voelkl, E.

M. A. Schulze, M. A. Hunt, E. Voelkl, J. D. Hickson, W. Usry, R. G. Smith, R. Bryant, and C. E. Thomas., “Semiconductor wafer defect detection using digital holography,” Proc. SPIE 5041, 183–193 (2003).
[Crossref]

Watanabe, S.

Xu, L.

Yingjie, Y.

Yu, L.

Zernike, F.

F. Zernike, “Phase-contrast, a new method for microscopic observation of transparent objects,” Physica 9(7), 686–698 (1942).
[Crossref]

Zhang, J.

Appl. Opt. (10)

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994).
[Crossref] [PubMed]

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42(11), 1938–1946 (2003).
[Crossref] [PubMed]

W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, and C. K. Rhodes, “Fourier-transform holographic microscope,” Appl. Opt. 31(24), 4973–4978 (1992).
[Crossref] [PubMed]

S. G. Kim, B. Lee, and E. S. Kim, “Removal of bias and the conjugate image in incoherent on-axis triangular holography and real-time reconstruction of the complex hologram,” Appl. Opt. 36(20), 4784–4791 (1997).
[Crossref] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
[Crossref] [PubMed]

D. Nyyssonen and J. M. Jerke, “Lens testing with a simple wavefront shearing interferometer,” Appl. Opt. 12(9), 2061–2070 (1973).
[Crossref] [PubMed]

W. Merzkirch, “Generalized analysis of shearing interferometers as applied for gas dynamic studies,” Appl. Opt. 13(2), 409–413 (1974).
[Crossref] [PubMed]

K. Matsuda, S. Watanabe, and T. Eiju, “Real-time measurement of large liquid surface deformation using a holographic shearing interferometer,” Appl. Opt. 24(24), 4443–4447 (1985).
[Crossref] [PubMed]

J. Choi, G. M. Perera, M. D. Aggarwal, R. P. Shukla, and M. V. Mantravadi, “Wedge-plate shearing interferometers for collimation testing: use of a moiré technique,” Appl. Opt. 34(19), 3628–3638 (1995).
[Crossref] [PubMed]

L. Xu, X. Peng, J. Miao, and A. K. Asundi, “Studies of digital microscopic holography with applications to microstructure testing,” Appl. Opt. 40(28), 5046–5051 (2001).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[Crossref]

IEEE Photonics J. (1)

A. Anand, V. K. Chhaniwal, N. R. Patel, and B. Javidi, “Automatic identification of malaria-infected RBC with digital holographic microscopy using correlation algorithms,” IEEE Photonics J. 4(5), 1456–1464 (2012).
[Crossref]

Instrum. Exp. Tech. (1)

G. S. Sarkisov, “Shearing interferometer with an air wedge for electron density diagnostics in a dense plasma,” Instrum. Exp. Tech. 39, 727–731 (1996).

J. Biomed. Opt. (1)

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[Crossref] [PubMed]

J. Microsc. (1)

A. Doblas, E. Roche, F. J. Ampudia-Blasco, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Diabetes screening by telecentric digital holographic microscopy,” J. Microsc. 261(3), 285–290 (2016).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

J. Phys. Radium (1)

G. Nomarski, “Microinterférométrie differential et ondes polarizés,” J. Phys. Radium 16, 9–135 (1955).

Meas. Sci. Technol. (1)

J. Kühn, F. Charriere, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008).
[Crossref]

Nanoscale Res. Lett. (1)

K. B. Seo, B.-M. Kim, and E.-S. Kim, “Digital holographic microscopy based on a modified lateral shearing interferometer for three-dimensional visual inspection of nanoscale defects on transparent objects,” Nanoscale Res. Lett. 9(1), 471 (2014).
[Crossref] [PubMed]

Opt. Eng. (2)

C. Falldorf, R. Klattenhoff, and R. B. Bergmann, “Single shot lateral shear interferometer with variable shear,” Opt. Eng. 54(5), 054105 (2015).
[Crossref]

C. Falldorf, M. Agour, and R. B. Bergmann, “Digital holography and quantitative phase contrast imaging using computational shear interferometry,” Opt. Eng. 54(2), 024110 (2015).
[Crossref]

Opt. Express (5)

Opt. Lasers Eng. (2)

M. Gustafsson, M. Sebesta, B. Bengtsson, S. G. Pettersson, P. Egelberg, and T. Lenart, “High-resolution digital transmissionmicroscopy – a Fourier holography approach,” Opt. Lasers Eng. 41(3), 553–563 (2004).
[Crossref]

R. P. Shukla and D. Malacara, “Some Applications of the Murty Interferometer: A Review,” Opt. Lasers Eng. 26(1), 1–42 (1997).
[Crossref]

Opt. Lett. (4)

Physica (1)

F. Zernike, “Phase-contrast, a new method for microscopic observation of transparent objects,” Physica 9(7), 686–698 (1942).
[Crossref]

Proc. SPIE (2)

J. Kuhn, E. Cuche, Y. Emery, T. Colomb, F. Charriere, F. Montfrot, M. Botkine, N. Aspert, and C. Depeursinge, “Measurements of corner cubes microstructures by high-magnification digital holographic microscopy,” Proc. SPIE 6188, 618804 (2006).
[Crossref]

M. A. Schulze, M. A. Hunt, E. Voelkl, J. D. Hickson, W. Usry, R. G. Smith, R. Bryant, and C. E. Thomas., “Semiconductor wafer defect detection using digital holography,” Proc. SPIE 5041, 183–193 (2003).
[Crossref]

Other (2)

E. S. Kim, B. M. Kim and S. J. Park, “Device for obtaining hologram image using lens assembly and apparatus for restructuring the object shape with the device,” KR patent pending, 10–2016–0117861 (2016).

C. J.Mann, L. F. Yu, and M. K. Kim, “Movies of cellular and sub-cellularmotion by digital holographic microscopy,” Biomed. Eng. Online 5:21, 10 (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 Overall block-diagram of the proposed MLSI-based SS-DHM based on computational telecentricity
Fig. 2
Fig. 2 Optical configuration of the proposed MLSI system employing a tube lens
Fig. 3
Fig. 3 Conceptual diagram for removing the duplicated image in the conventional MLSI depending on three parameters of LSD, EIA and TIA.
Fig. 4
Fig. 4 (a) LSD dependence on the thickness of the optical window glass, (b) EIA dependence on the LSD, and (c) Allowable object location dependence on the EIA and object size under the STBI condition
Fig. 5
Fig. 5 Optical configuration of the two-beam interferometer system in a telecentric mode
Fig. 6
Fig. 6 Optical configuration of the proposed MLSI system
Fig. 7
Fig. 7 Four kinds of QPFs extracted from the hologram patterns when s is set to be (a) 90mm, (b) 80mm, (c) 70mm and (d) 60mm, respectively.
Fig. 8
Fig. 8 Surface shape of the CG-AQPF in front of the CCD camera
Fig. 9
Fig. 9 Four kinds of CG-AQPFs when the distance difference, s, are set to be (a) 90mm, (b) 80mm, (c) 70mm and (d) 60mm, respectively.
Fig. 10
Fig. 10 Four kinds of original phase information of the hologram patterns and their phase-compensated versions when the distance difference, s are set to be (a) 90mm, (b) 80mm, (c) 70mm and (d) 60mm, respectively.
Fig. 11
Fig. 11 Flowchart of the digital compensation and numerical reconstruction processes of the recorded hologram in the proposed system
Fig. 12
Fig. 12 Optical experimental setup of the proposed MLSI-based SS-DHM
Fig. 13
Fig. 13 Compensation process of the AQPF in the proposed system: (a) Recorded hologram, (b) AQPF extracted from the recorded hologram, (c) CG-AQPF, (d) Phase-compensated hologram, (e) Reconstructed plane object image in 3-D and in (f) 1-D profiles, respectively.
Fig. 14
Fig. 14 (a) Recorded hologram patterns with the proposed MLSI, and (b) Recorded object and (c) Recorded reference hologram patterns with the conventional MLSI.
Fig. 15
Fig. 15 Frequency spectrums of the recorded holograms with the (a) Proposed and (b) Conventional MLSI systems, respectively.
Fig. 16
Fig. 16 (a) Phase information of the recorded hologram, (b) CG-AQPF and (c) AQPF-compensated phase information of the recorded hologram in the proposed system. (d) Phase information of the recorded hologram, (e) AQPF and (f) Compensated phase information of the recorded hologram in the conventional system.
Fig. 17
Fig. 17 Reconstructed 3-D shapes of the test objects obtained from each of the (a) Proposed and (b) conventional systems, (c) Reconstructed 3-D shape of the single RBC from the proposed and (d) Conventional systems.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

I(x,y)= | O FS (x,y)+ O BS (x,y) | 2 = | O 1 (x,y)+ R 2 (x,y)+ O 2 (x,y)+ R 1 (x,y) | 2
I(x,y)= | O 1 (x,y)+ R 2 (x,y) | 2 = O 1 (x,y) 2 + R 2 (x,y) 2 + O 1 (x,y) * R 2 (x,y)+ O 1 (x,y) R 2 (x,y) *
d=2tcos θ i tan( sin 1 ( n 1 n 2 sin θ i ) )
θ t =arccos( d 2r )
S EIA =4π r 2 θ t rdsin θ t
QFP=exp[ i π λ ( 1 d r 1 d o )( x 2 + y 2 ) ]
O(x,y)=(1/M)exp[i(2π/λ)( f TL + f OL +s)] ×exp[ i π λR ( x 2 + y 2 ) ]×[ O'( x M , y M )P'( x λ f TL , y λ f TL ) ]
z(r)= r 2 R[ 1+ 1 ( r R ) 2 ]
I(x,y)= | U o (x,y)+ U R (x,y) | 2 = | U O | 2 + | U R | 2 + U R * U O + U R U O *
U(x,y,0)=I(x,y) U R (x,y)
U ^ ( f x , f y ,0)= U(x,y,0)exp{ j2π( f x x+ f y y) }dxdy
U ^ L ( f x , f y ,0)= n=1 L m=1 L δ( f x f x n , f y f y m ,0) U ^ ( f x , f y ,0)
U ^ L ( f x , f y ,z)= U ^ L ( f x , f y ,0)exp{ ik 1 λ 2 f x 2 λ 2 f y 2 z }
U(x,y,z)= U ^ L ( f x , f y ,z)exp{ j2π( f x x+ f y y) }d f x d f y
I(x,y,d)= | U(x,y,d) | 2
ϕ o (x,y,d)=arctan{ Im[U(x,y,d)] Re[U(x,y,d)] }
ϕ o (x,y,d)= 2π λ Δn(x,y,d)L(x,y,d)
Δϕ(x,y,z)= ϕ O (x,y,z) ϕ C (x,y,z)
L(x,y,d)= λ 2π Δϕ(x,y,d) Δn(x,y,d)

Metrics