Abstract

We first demonstrated a continuously and widely giant-pulse duration tunable laser based on a short monolithic Nd:YAG/Cr:YAG ceramic by cavity-length control in 100 Hz operation. The tuning range of pulse duration τ was from 0.5 to 9 ns as keeping peak powers of over 0.5 MW up to 6 MW. The characteristics of the ceramic laser was discussed in detail such as cavity-length dependent beam pattern and divergence, pulse shape, pulse energy due to the transverse and longitudinal modes, and an elliptical polarization status. Laser induced breakdown in laboratory air was investigated as a function of τ in sub-nanosecond region using the developed laser. Air-breakdown threshold intensity Ith was measured using three different focusing conditions. We confirmed that 1) the measured Ith was almost constant at the longer τ than τCI named as limit-pulse-duration of cascade ionization (CI), 2) Ith had ~τ−2 scaling for τ < τCI, 3) the increase of Ith is not connected to a specific intensity level, and 4) τCI was not constant and depended on focusing conditions. These phenomena were discussed with considering temporal-spatial intensity of laser.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser-induced breakdown versus self-focusing for focused picosecond pulses in water

Q. Feng, J. V. Moloney, A. C. Newell, and E. M. Wright
Opt. Lett. 20(19) 1958-1960 (1995)

Laser-induced breakdown in large transparent water droplets

Richard K. Chang, Johannes H. Eickmans, Wen-Feng Hsieh, Carol F. Wood, Jian-Zhi Zhang, and Jia-biao Zheng
Appl. Opt. 27(12) 2377-2385 (1988)

Effect of laser intensity on temporal and spectral features of laser generated acoustic shock waves: ns versus ps laser pulses

E. Manikanta, L. Vinoth Kumar, Ch. Leela, and P. Prem Kiran
Appl. Opt. 56(24) 6902-6910 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. Morgan, L. R. Evans, and C. G. Morgan, “Laser beam induced breakdown in helium and argon,” J. Phys. D Appl. Phys. 4(2), 225–235 (1971).
    [Crossref]
  2. C. L. M. Ireland and C. G. Morgan, “Gas breakdown by a short laser pulse,” J. Phys. D Appl. Phys. 6(6), 720–729 (1973).
    [Crossref]
  3. C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38(5), 621–665 (1975).
    [Crossref]
  4. S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
    [Crossref]
  5. C. C. Wang and L. I. Davis., “New observation of dielectric breakdown in air induced by a focused Nd3+-glass laser with various pulse widths,” Phys. Rev. Lett. 26(14), 822–825 (1971).
    [Crossref]
  6. W. E. Williams, M. J. Soileau, and E. W. Van Stryland, “Picosecond air breakdown studies at 0.53 μm,” Appl. Phys. Lett. 43(4), 352–354 (1983).
    [Crossref]
  7. E. W. Van Stryland, M. J. Soileau, A. L. Smirl, and W. E. Williams, “Pulse-width and focal-volume dependence of laser-induced breakdown,” Phys. Rev. B 23(5), 2144–2151 (1981).
    [Crossref]
  8. T. Taira, “Domain-controlled laser ceramics toward giant micro-photonics,” Opt. Mater. Express 1(5), 1040–1050 (2011).
    [Crossref]
  9. T. Taira, S. Morishima, K. Kanehara, N. Taguchi, A. Sugiura, and M. Tsunekane, “World first laser ignited gasoline engine vehicle,” presented at the First Laser Ignition Conference (LIC) (2013).
  10. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
    [Crossref]
  11. N. Pavel, M. Tsunekane, and T. Taira, “All-poly-crystalline ceramics Nd:YAG/Cr4+:YAG monolithic micro-lasers with multiple-beam output,” in Laser Systems for Applications, K. Jakubczak ed. (InTech, 2011), pp. 59–82.
  12. N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(1), 1253–1259 (2001).
    [Crossref]
  13. J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
    [Crossref]
  14. H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
    [Crossref] [PubMed]
  15. A. Kausas and T. Taira, “Giant-pulse Nd:YVO4 microchip laser with MW-level peak power by emission cross-sectional control,” Opt. Express 24(4), 3137–3149 (2016).
    [Crossref] [PubMed]
  16. D. E. Lencioni, “The effect of dust on 10.6-μm laser-induced air breakdown,” Appl. Phys. Lett. 23(1), 12–14 (1973).
    [Crossref]
  17. G. H. Canavan and P. E. Nielsen, “Focal spot size dependence of gas breakdown induced by particulate ionization,” Appl. Phys. Lett. 22(8), 409–410 (1973).
    [Crossref]
  18. C. H. Chan, C. D. Moody, and W. B. McKnight, “Significant loss mechanisms in gas breakdown at 10.6 μ,” J. Appl. Phys. 44(3), 1179–1188 (1973).
    [Crossref]
  19. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
    [Crossref]
  20. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
    [Crossref] [PubMed]
  21. M. D. Perry, O. L. Landen, A. Szöke, and E. M. Campbell, “Multiphoton ionization of the noble gases by an intense 1014-W/cm2 dye laser,” Phys. Rev. A Gen. Phys. 37(3), 747–760 (1988).
    [Crossref] [PubMed]
  22. B. Chang, P. R. Bolton, and D. N. Fittinghoff, “Closed-form solutions for the production of ions in the collisionless ionization of gases by intense lasers,” Phys. Rev. A 47(5), 4193–4203 (1993).
    [Crossref] [PubMed]

2016 (1)

2012 (1)

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

2011 (1)

2010 (1)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

2008 (1)

2001 (1)

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(1), 1253–1259 (2001).
[Crossref]

1996 (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

1995 (1)

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
[Crossref]

1994 (1)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

1993 (1)

B. Chang, P. R. Bolton, and D. N. Fittinghoff, “Closed-form solutions for the production of ions in the collisionless ionization of gases by intense lasers,” Phys. Rev. A 47(5), 4193–4203 (1993).
[Crossref] [PubMed]

1988 (1)

M. D. Perry, O. L. Landen, A. Szöke, and E. M. Campbell, “Multiphoton ionization of the noble gases by an intense 1014-W/cm2 dye laser,” Phys. Rev. A Gen. Phys. 37(3), 747–760 (1988).
[Crossref] [PubMed]

1983 (1)

W. E. Williams, M. J. Soileau, and E. W. Van Stryland, “Picosecond air breakdown studies at 0.53 μm,” Appl. Phys. Lett. 43(4), 352–354 (1983).
[Crossref]

1981 (1)

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, and W. E. Williams, “Pulse-width and focal-volume dependence of laser-induced breakdown,” Phys. Rev. B 23(5), 2144–2151 (1981).
[Crossref]

1975 (1)

C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38(5), 621–665 (1975).
[Crossref]

1973 (4)

D. E. Lencioni, “The effect of dust on 10.6-μm laser-induced air breakdown,” Appl. Phys. Lett. 23(1), 12–14 (1973).
[Crossref]

G. H. Canavan and P. E. Nielsen, “Focal spot size dependence of gas breakdown induced by particulate ionization,” Appl. Phys. Lett. 22(8), 409–410 (1973).
[Crossref]

C. H. Chan, C. D. Moody, and W. B. McKnight, “Significant loss mechanisms in gas breakdown at 10.6 μ,” J. Appl. Phys. 44(3), 1179–1188 (1973).
[Crossref]

C. L. M. Ireland and C. G. Morgan, “Gas breakdown by a short laser pulse,” J. Phys. D Appl. Phys. 6(6), 720–729 (1973).
[Crossref]

1971 (2)

F. Morgan, L. R. Evans, and C. G. Morgan, “Laser beam induced breakdown in helium and argon,” J. Phys. D Appl. Phys. 4(2), 225–235 (1971).
[Crossref]

C. C. Wang and L. I. Davis., “New observation of dielectric breakdown in air induced by a focused Nd3+-glass laser with various pulse widths,” Phys. Rev. Lett. 26(14), 822–825 (1971).
[Crossref]

Ando, A.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Azarm, A.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Bolton, P. R.

B. Chang, P. R. Bolton, and D. N. Fittinghoff, “Closed-form solutions for the production of ions in the collisionless ionization of gases by intense lasers,” Phys. Rev. A 47(5), 4193–4203 (1993).
[Crossref] [PubMed]

Campbell, E. M.

M. D. Perry, O. L. Landen, A. Szöke, and E. M. Campbell, “Multiphoton ionization of the noble gases by an intense 1014-W/cm2 dye laser,” Phys. Rev. A Gen. Phys. 37(3), 747–760 (1988).
[Crossref] [PubMed]

Canavan, G. H.

G. H. Canavan and P. E. Nielsen, “Focal spot size dependence of gas breakdown induced by particulate ionization,” Appl. Phys. Lett. 22(8), 409–410 (1973).
[Crossref]

Chan, C. H.

C. H. Chan, C. D. Moody, and W. B. McKnight, “Significant loss mechanisms in gas breakdown at 10.6 μ,” J. Appl. Phys. 44(3), 1179–1188 (1973).
[Crossref]

Chang, B.

B. Chang, P. R. Bolton, and D. N. Fittinghoff, “Closed-form solutions for the production of ions in the collisionless ionization of gases by intense lasers,” Phys. Rev. A 47(5), 4193–4203 (1993).
[Crossref] [PubMed]

Chen, Y. P.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Chin, S. L.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Daigle, J.-F.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Davis, L. I.

C. C. Wang and L. I. Davis., “New observation of dielectric breakdown in air induced by a focused Nd3+-glass laser with various pulse widths,” Phys. Rev. Lett. 26(14), 822–825 (1971).
[Crossref]

Degnan, J. J.

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
[Crossref]

Du, D.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Evans, L. R.

F. Morgan, L. R. Evans, and C. G. Morgan, “Laser beam induced breakdown in helium and argon,” J. Phys. D Appl. Phys. 4(2), 225–235 (1971).
[Crossref]

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Fittinghoff, D. N.

B. Chang, P. R. Bolton, and D. N. Fittinghoff, “Closed-form solutions for the production of ions in the collisionless ionization of gases by intense lasers,” Phys. Rev. A 47(5), 4193–4203 (1993).
[Crossref] [PubMed]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Inohara, T.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Ireland, C. L. M.

C. L. M. Ireland and C. G. Morgan, “Gas breakdown by a short laser pulse,” J. Phys. D Appl. Phys. 6(6), 720–729 (1973).
[Crossref]

Kan, H.

Kanehara, K.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kausas, A.

Kido, N.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Korn, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Kosareva, O.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Kurimura, S.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(1), 1253–1259 (2001).
[Crossref]

Landen, O. L.

M. D. Perry, O. L. Landen, A. Szöke, and E. M. Campbell, “Multiphoton ionization of the noble gases by an intense 1014-W/cm2 dye laser,” Phys. Rev. A Gen. Phys. 37(3), 747–760 (1988).
[Crossref] [PubMed]

Lencioni, D. E.

D. E. Lencioni, “The effect of dust on 10.6-μm laser-induced air breakdown,” Appl. Phys. Lett. 23(1), 12–14 (1973).
[Crossref]

Li, R.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Liu, J. S.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Liu, W. W.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Liu, X.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Marceau, C.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

McKnight, W. B.

C. H. Chan, C. D. Moody, and W. B. McKnight, “Significant loss mechanisms in gas breakdown at 10.6 μ,” J. Appl. Phys. 44(3), 1179–1188 (1973).
[Crossref]

Moody, C. D.

C. H. Chan, C. D. Moody, and W. B. McKnight, “Significant loss mechanisms in gas breakdown at 10.6 μ,” J. Appl. Phys. 44(3), 1179–1188 (1973).
[Crossref]

Morgan, C. G.

C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38(5), 621–665 (1975).
[Crossref]

C. L. M. Ireland and C. G. Morgan, “Gas breakdown by a short laser pulse,” J. Phys. D Appl. Phys. 6(6), 720–729 (1973).
[Crossref]

F. Morgan, L. R. Evans, and C. G. Morgan, “Laser beam induced breakdown in helium and argon,” J. Phys. D Appl. Phys. 4(2), 225–235 (1971).
[Crossref]

Morgan, F.

F. Morgan, L. R. Evans, and C. G. Morgan, “Laser beam induced breakdown in helium and argon,” J. Phys. D Appl. Phys. 4(2), 225–235 (1971).
[Crossref]

Mourou, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Nielsen, P. E.

G. H. Canavan and P. E. Nielsen, “Focal spot size dependence of gas breakdown induced by particulate ionization,” Appl. Phys. Lett. 22(8), 409–410 (1973).
[Crossref]

Panov, N.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Pavel, N.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(1), 1253–1259 (2001).
[Crossref]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

M. D. Perry, O. L. Landen, A. Szöke, and E. M. Campbell, “Multiphoton ionization of the noble gases by an intense 1014-W/cm2 dye laser,” Phys. Rev. A Gen. Phys. 37(3), 747–760 (1988).
[Crossref] [PubMed]

Richardson, M.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Saikawa, J.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(1), 1253–1259 (2001).
[Crossref]

Sakai, H.

Seideman, T.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Smirl, A. L.

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, and W. E. Williams, “Pulse-width and focal-volume dependence of laser-induced breakdown,” Phys. Rev. B 23(5), 2144–2151 (1981).
[Crossref]

Soileau, M. J.

W. E. Williams, M. J. Soileau, and E. W. Van Stryland, “Picosecond air breakdown studies at 0.53 μm,” Appl. Phys. Lett. 43(4), 352–354 (1983).
[Crossref]

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, and W. E. Williams, “Pulse-width and focal-volume dependence of laser-induced breakdown,” Phys. Rev. B 23(5), 2144–2151 (1981).
[Crossref]

Squier, J.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Szöke, A.

M. D. Perry, O. L. Landen, A. Szöke, and E. M. Campbell, “Multiphoton ionization of the noble gases by an intense 1014-W/cm2 dye laser,” Phys. Rev. A Gen. Phys. 37(3), 747–760 (1988).
[Crossref] [PubMed]

Taira, T.

A. Kausas and T. Taira, “Giant-pulse Nd:YVO4 microchip laser with MW-level peak power by emission cross-sectional control,” Opt. Express 24(4), 3137–3149 (2016).
[Crossref] [PubMed]

T. Taira, “Domain-controlled laser ceramics toward giant micro-photonics,” Opt. Mater. Express 1(5), 1040–1050 (2011).
[Crossref]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
[Crossref] [PubMed]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(1), 1253–1259 (2001).
[Crossref]

Tsunekane, M.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Van Stryland, E. W.

W. E. Williams, M. J. Soileau, and E. W. Van Stryland, “Picosecond air breakdown studies at 0.53 μm,” Appl. Phys. Lett. 43(4), 352–354 (1983).
[Crossref]

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, and W. E. Williams, “Pulse-width and focal-volume dependence of laser-induced breakdown,” Phys. Rev. B 23(5), 2144–2151 (1981).
[Crossref]

Wang, C. C.

C. C. Wang and L. I. Davis., “New observation of dielectric breakdown in air induced by a focused Nd3+-glass laser with various pulse widths,” Phys. Rev. Lett. 26(14), 822–825 (1971).
[Crossref]

Wang, T.-J.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Williams, W. E.

W. E. Williams, M. J. Soileau, and E. W. Van Stryland, “Picosecond air breakdown studies at 0.53 μm,” Appl. Phys. Lett. 43(4), 352–354 (1983).
[Crossref]

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, and W. E. Williams, “Pulse-width and focal-volume dependence of laser-induced breakdown,” Phys. Rev. B 23(5), 2144–2151 (1981).
[Crossref]

Wu, J.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Xu, Z. Z.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Yuan, S.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Zeng, H. P.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Appl. Phys. Lett. (4)

W. E. Williams, M. J. Soileau, and E. W. Van Stryland, “Picosecond air breakdown studies at 0.53 μm,” Appl. Phys. Lett. 43(4), 352–354 (1983).
[Crossref]

D. E. Lencioni, “The effect of dust on 10.6-μm laser-induced air breakdown,” Appl. Phys. Lett. 23(1), 12–14 (1973).
[Crossref]

G. H. Canavan and P. E. Nielsen, “Focal spot size dependence of gas breakdown induced by particulate ionization,” Appl. Phys. Lett. 22(8), 409–410 (1973).
[Crossref]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

IEEE J. Quantum Electron. (2)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
[Crossref]

J. Appl. Phys. (1)

C. H. Chan, C. D. Moody, and W. B. McKnight, “Significant loss mechanisms in gas breakdown at 10.6 μ,” J. Appl. Phys. 44(3), 1179–1188 (1973).
[Crossref]

J. Phys. D Appl. Phys. (2)

F. Morgan, L. R. Evans, and C. G. Morgan, “Laser beam induced breakdown in helium and argon,” J. Phys. D Appl. Phys. 4(2), 225–235 (1971).
[Crossref]

C. L. M. Ireland and C. G. Morgan, “Gas breakdown by a short laser pulse,” J. Phys. D Appl. Phys. 6(6), 720–729 (1973).
[Crossref]

Jpn. J. Appl. Phys. (1)

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(1), 1253–1259 (2001).
[Crossref]

Laser Phys. (1)

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Rev. A (1)

B. Chang, P. R. Bolton, and D. N. Fittinghoff, “Closed-form solutions for the production of ions in the collisionless ionization of gases by intense lasers,” Phys. Rev. A 47(5), 4193–4203 (1993).
[Crossref] [PubMed]

Phys. Rev. A Gen. Phys. (1)

M. D. Perry, O. L. Landen, A. Szöke, and E. M. Campbell, “Multiphoton ionization of the noble gases by an intense 1014-W/cm2 dye laser,” Phys. Rev. A Gen. Phys. 37(3), 747–760 (1988).
[Crossref] [PubMed]

Phys. Rev. B (1)

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, and W. E. Williams, “Pulse-width and focal-volume dependence of laser-induced breakdown,” Phys. Rev. B 23(5), 2144–2151 (1981).
[Crossref]

Phys. Rev. B Condens. Matter (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

C. C. Wang and L. I. Davis., “New observation of dielectric breakdown in air induced by a focused Nd3+-glass laser with various pulse widths,” Phys. Rev. Lett. 26(14), 822–825 (1971).
[Crossref]

Rep. Prog. Phys. (1)

C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38(5), 621–665 (1975).
[Crossref]

Other (2)

T. Taira, S. Morishima, K. Kanehara, N. Taguchi, A. Sugiura, and M. Tsunekane, “World first laser ignited gasoline engine vehicle,” presented at the First Laser Ignition Conference (LIC) (2013).

N. Pavel, M. Tsunekane, and T. Taira, “All-poly-crystalline ceramics Nd:YAG/Cr4+:YAG monolithic micro-lasers with multiple-beam output,” in Laser Systems for Applications, K. Jakubczak ed. (InTech, 2011), pp. 59–82.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of pulse duration tunable system and a photo of monolithic Nd:YAG/Cr:YAG ceramic.
Fig. 2
Fig. 2 a) Measured pulse duration and energy as a function of optical cavity length. The measured pulse duration was compared to theoretical calculation. b) Corresponding peak powers versus optical cavity lengths.
Fig. 3
Fig. 3 a) Measured pulse shapes for short cavity cases. b) Evaluated free spectral range (FSR) by fast Fourier transform of the pulse shape with beating between longitudinal modes. Inset: typical pulse shape at lc = 174 mm.
Fig. 4
Fig. 4 a) Measured beam patterns at different optical cavity lengths. No higher order modes are observable for lc greater than 120 mm. b) Measured half angle divergence versus optical cavity length. The laser beams have small divergence of about 1 mrad for lc greater than 120 mm.
Fig. 5
Fig. 5 a) Schematic of experimental setup for air-breakdown. Three lenses were used for focusing, respectively (f = 6.24, 8, and 11 mm). b) Measured 100% breakdown spark train (top) for 320 laser pulses (bottom)
Fig. 6
Fig. 6 a) Measured air-breakdown threshold fluence as a function of pulse duration. The measurement for long pulse range was limited before pulse shape degradation such as 0.69 ns as shown in b). b) Measured typical pulse shapes in the range of 0.5-0.7 ns.
Fig. 7
Fig. 7 Measured breakdown threshold energies a) and intensities b) as a function of pulse duration in laboratory air for three focusing lenses with focal lengths of 6.24, 8, and 11 mm.
Fig. 8
Fig. 8 a) Calculated isointensity contours at Is = 0.4 × I0 for the time range from - τ /2 to τ /2 with an interval of 0.1τ. b) Calculated isointensity contours at different intensity levels (20%-80%) to I0 for a fixed time of t = 0.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I(r,z,t)=I(t) w 0 2 w 2 (z) exp[ 2 r 2 w 2 (z) ],
I(t)= I 0 exp[ 4ln2 (t t 0 ) 2 τ 2 ],
r 2 = w 2 (z) 2 ln[ I 0 / I s 1+ (z/ z 0 ) 2 4ln2 (t t 0 ) 2 τ 2 ].

Metrics