Abstract

We propose and demonstrate a novel one-dimensional nanobeam bandedge laser constituted by self-aligned nanoisland quantum-well (QW) structures. The formation of self-aligned InGaAsP nanoislands sandwiched between two InP claddings is the result of selective removal of QW through wet-etching processes. By controlling wet-etching time, we show a good spatial and spectral overlap between the dielectric mode and the self-aligned nanoisland structures leads to the realization of nanobeam bandedge lasers with low-threshold operations and high slope efficiencies. Optical characterization results indicate a strong correlation between the size of individual nanoisland and the threshold power of our nanobeam bandedge lasers. We obtain an approximately 81% reduction in the absorbed threshold power as we optimize the size of the nanoislands.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanobeam photonic bandedge lasers

Sejeong Kim, Byeong-Hyeon Ahn, Ju-Young Kim, Kwang-Yong Jeong, Ki Soo Kim, and Yong-Hee Lee
Opt. Express 19(24) 24055-24060 (2011)

Monolithic integration of self-aligned nanoisland laser with shifted-air-hole waveguide

Hwi-Min Kim, Hoon Jang, Putu Pramudita, Myung-Ki Kim, and Yong-Hee Lee
Opt. Express 26(10) 12569-12578 (2018)

A printed nanobeam laser on a SiO2/Si substrate for low-threshold continuous-wave operation

Indra Karnadi, Jaehyeon Son, Ju-Young Kim, Hoon Jang, Seungwoo Lee, Ki Soo Kim, Bumki Min, and Yong-Hee Lee
Opt. Express 22(10) 12115-12121 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
    [Crossref] [PubMed]
  2. K.-Y. Jeong, Y.-S. No, Y. Hwang, K. S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
    [Crossref]
  3. H. Jang, I. Karnadi, P. Pramudita, J.-H. Song, K. Soo Kim, and Y.-H. Lee, “Sub-microWatt threshold nanoisland lasers,” Nat. Commun. 6, 8276 (2015).
    [Crossref] [PubMed]
  4. S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
    [Crossref]
  5. Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, and J. Vuckovic, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express 18(9), 8781–8789 (2010).
    [Crossref] [PubMed]
  6. S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
    [Crossref] [PubMed]
  7. H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80(19), 3476–3478 (2002).
    [Crossref]
  8. M. Nomura, S. Iwamoto, A. Tandaechanurat, Y. Ota, N. Kumagai, and Y. Arakawa, “Photonic band-edge micro lasers with quantum dot gain,” Opt. Express 17(2), 640–648 (2009).
    [Crossref] [PubMed]
  9. S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal band edge laser for biochemical sensor applications,” Appl. Phys. Lett. 94(13), 133503 (2009).
    [Crossref]
  10. H. Cha, J. Lee, L. R. Jordan, S. H. Lee, S.-H. Oh, H. J. Kim, J. Park, S. Hong, and H. Jeon, “Surface passivation of a photonic crystal band-edge laser by atomic layer deposition of SiO2 and its application for biosensing,” Nanoscale 7(8), 3565–3571 (2015).
    [Crossref] [PubMed]
  11. S. Kim, H.-M. Kim, and Y.-H. Lee, “Single nanobeam optical sensor with a high Q-factor and high sensitivity,” Opt. Lett. 40(22), 5351–5354 (2015).
    [Crossref] [PubMed]
  12. D. Yang, C. Wang, and Y. Ji, “Silicon on-chip one-dimensional photonic crystal nanobeam bandgap filter integrated with nanobeam cavity for accurate refractive index sensing,” IEEE Photonics J. 8(2), 4500608 (2016).
  13. T. Li, D. Gao, D. Zhang, and E. Cassan, “High-Q and high-sensitivity one-dimensional photonic crystal slot nanobeam cavity sensors,” IEEE Photonics Technol. Lett. 28(6), 689–692 (2016).
    [Crossref]
  14. Y. Liu and H. W. M. Salemink, “Photonic crystal-based all-optical on-chip sensor,” Opt. Express 20(18), 19912–19920 (2012).
    [Crossref] [PubMed]
  15. S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express 19(18), 17683–17690 (2011).
    [Crossref] [PubMed]
  16. T. Baba, “Biosensing using photonic crystal nanolasers,” MRS Commun. 5(4), 555–564 (2015).
    [Crossref]
  17. S. Han and Y. Shi, “Systematic analysis of optical gradient force in photonic crystal nanobeam cavities,” Opt. Express 24(1), 452–458 (2016).
    [Crossref] [PubMed]
  18. S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
    [Crossref] [PubMed]
  19. A. Krishnan, N. Huang, S. H. Wu, L. J. Martínez, and M. L. Povinelli, “Enhanced and selective optical trapping in a slot-graphite photonic crystal,” Opt. Express 24(20), 23271–23279 (2016).
    [Crossref] [PubMed]
  20. S.-H. Kwon, H.-Y. Ryu, G.-H. Kim, Y.-H. Lee, and S.-B. Kim, “Photonic bandedge lasers in two-dimensional square-lattice photonic crystal slabs,” Appl. Phys. Lett. 83(19), 3870–3872 (2003).
    [Crossref]
  21. K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
    [Crossref]
  22. S. Kim, B.-H. Ahn, J.-Y. Kim, K.-Y. Jeong, K. S. Kim, and Y.-H. Lee, “Nanobeam photonic bandedge lasers,” Opt. Express 19(24), 24055–24060 (2011).
    [Crossref] [PubMed]
  23. S. Kim, S. Ahn, K. Min, S. Kim, H. Jeon, P. Regreny, and C. Seassal, “Nano stepping-stone laser,” Appl. Phys. Express 6(4), 042703 (2013).
    [Crossref]
  24. T. T. Wu, H. W. Chen, Y. P. Lan, T. C. Lu, and S. C. Wang, “Suspended GaN-based band-edge type photonic crystal nanobeam cavities,” Opt. Express 22(3), 2317–2323 (2014).
    [Crossref] [PubMed]
  25. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
    [Crossref]
  26. X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
    [Crossref] [PubMed]
  27. D. Y. Oh, S.-H. Kim, J. Huang, A. Scofield, D. Huffaker, and A. Scherer, “Self-aligned active quantum nanostructures in photonic crystals via selective wet-chemical etching,” Nanotechnology 24(26), 265201 (2013).
    [Crossref] [PubMed]
  28. I. Karnadi, J.-Y. Kim, B.-H. Ahn, H.-J. Lim, and Y.-H. Lee, “Efficient photon collection from reconfigurable photonic crystal slab resonator operating at short wavelengths,” J. Opt. Soc. Am. B 29(10), 2669–2674 (2012).
    [Crossref]
  29. K. Bayat, S. K. Chaudhuri, and S. Safavi-Naeini, “Polarization and thickness dependent guiding in the photonic crystal slab waveguide,” Opt. Express 15(13), 8391–8400 (2007).
    [Crossref] [PubMed]
  30. R. Patil, S. Lan, and A. V. Gopal, “Fabrication of large-area two-dimensional array of air holes with different hole shapes for optical and terahertz wavelength regions,” J. Nanophotonics 8(1), 083896 (2014).
    [Crossref]
  31. H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
    [Crossref]
  32. S. A. Merritt and M. Dagenais, “Etch characteristics of succinic acid/ammonia/hydrogen peroxide versus Aluminium mole fraction in AlGaAs,” J. Electrochem. Soc. 140(9), L138–L139 (1993).
    [Crossref]
  33. G. C. DeSalvo, W. F. Tseng, and J. Comas, “Etch rates and selectivities of citric acid/hydrogen peroxide on GaAs, Al0.3Ga0.7As, In0.2Ga0.8As, In0.53Ga0.47As, In0.52Al0.48As, and InP,” J. Electrochem. Soc. 139(3), 831–835 (1992).
    [Crossref]

2016 (4)

D. Yang, C. Wang, and Y. Ji, “Silicon on-chip one-dimensional photonic crystal nanobeam bandgap filter integrated with nanobeam cavity for accurate refractive index sensing,” IEEE Photonics J. 8(2), 4500608 (2016).

T. Li, D. Gao, D. Zhang, and E. Cassan, “High-Q and high-sensitivity one-dimensional photonic crystal slot nanobeam cavity sensors,” IEEE Photonics Technol. Lett. 28(6), 689–692 (2016).
[Crossref]

S. Han and Y. Shi, “Systematic analysis of optical gradient force in photonic crystal nanobeam cavities,” Opt. Express 24(1), 452–458 (2016).
[Crossref] [PubMed]

A. Krishnan, N. Huang, S. H. Wu, L. J. Martínez, and M. L. Povinelli, “Enhanced and selective optical trapping in a slot-graphite photonic crystal,” Opt. Express 24(20), 23271–23279 (2016).
[Crossref] [PubMed]

2015 (4)

T. Baba, “Biosensing using photonic crystal nanolasers,” MRS Commun. 5(4), 555–564 (2015).
[Crossref]

H. Cha, J. Lee, L. R. Jordan, S. H. Lee, S.-H. Oh, H. J. Kim, J. Park, S. Hong, and H. Jeon, “Surface passivation of a photonic crystal band-edge laser by atomic layer deposition of SiO2 and its application for biosensing,” Nanoscale 7(8), 3565–3571 (2015).
[Crossref] [PubMed]

S. Kim, H.-M. Kim, and Y.-H. Lee, “Single nanobeam optical sensor with a high Q-factor and high sensitivity,” Opt. Lett. 40(22), 5351–5354 (2015).
[Crossref] [PubMed]

H. Jang, I. Karnadi, P. Pramudita, J.-H. Song, K. Soo Kim, and Y.-H. Lee, “Sub-microWatt threshold nanoisland lasers,” Nat. Commun. 6, 8276 (2015).
[Crossref] [PubMed]

2014 (4)

T. T. Wu, H. W. Chen, Y. P. Lan, T. C. Lu, and S. C. Wang, “Suspended GaN-based band-edge type photonic crystal nanobeam cavities,” Opt. Express 22(3), 2317–2323 (2014).
[Crossref] [PubMed]

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

R. Patil, S. Lan, and A. V. Gopal, “Fabrication of large-area two-dimensional array of air holes with different hole shapes for optical and terahertz wavelength regions,” J. Nanophotonics 8(1), 083896 (2014).
[Crossref]

2013 (3)

D. Y. Oh, S.-H. Kim, J. Huang, A. Scofield, D. Huffaker, and A. Scherer, “Self-aligned active quantum nanostructures in photonic crystals via selective wet-chemical etching,” Nanotechnology 24(26), 265201 (2013).
[Crossref] [PubMed]

S. Kim, S. Ahn, K. Min, S. Kim, H. Jeon, P. Regreny, and C. Seassal, “Nano stepping-stone laser,” Appl. Phys. Express 6(4), 042703 (2013).
[Crossref]

K.-Y. Jeong, Y.-S. No, Y. Hwang, K. S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

2012 (2)

2011 (2)

2010 (3)

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref] [PubMed]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, and J. Vuckovic, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express 18(9), 8781–8789 (2010).
[Crossref] [PubMed]

2009 (2)

M. Nomura, S. Iwamoto, A. Tandaechanurat, Y. Ota, N. Kumagai, and Y. Arakawa, “Photonic band-edge micro lasers with quantum dot gain,” Opt. Express 17(2), 640–648 (2009).
[Crossref] [PubMed]

S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal band edge laser for biochemical sensor applications,” Appl. Phys. Lett. 94(13), 133503 (2009).
[Crossref]

2007 (1)

2006 (1)

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

2004 (1)

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

2003 (1)

S.-H. Kwon, H.-Y. Ryu, G.-H. Kim, Y.-H. Lee, and S.-B. Kim, “Photonic bandedge lasers in two-dimensional square-lattice photonic crystal slabs,” Appl. Phys. Lett. 83(19), 3870–3872 (2003).
[Crossref]

2002 (2)

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
[Crossref]

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80(19), 3476–3478 (2002).
[Crossref]

1994 (1)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

1993 (1)

S. A. Merritt and M. Dagenais, “Etch characteristics of succinic acid/ammonia/hydrogen peroxide versus Aluminium mole fraction in AlGaAs,” J. Electrochem. Soc. 140(9), L138–L139 (1993).
[Crossref]

1992 (1)

G. C. DeSalvo, W. F. Tseng, and J. Comas, “Etch rates and selectivities of citric acid/hydrogen peroxide on GaAs, Al0.3Ga0.7As, In0.2Ga0.8As, In0.53Ga0.47As, In0.52Al0.48As, and InP,” J. Electrochem. Soc. 139(3), 831–835 (1992).
[Crossref]

Ahn, B.-H.

Ahn, S.

S. Kim, S. Ahn, K. Min, S. Kim, H. Jeon, P. Regreny, and C. Seassal, “Nano stepping-stone laser,” Appl. Phys. Express 6(4), 042703 (2013).
[Crossref]

Andreani, L. C.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Arakawa, Y.

Baba, T.

Badolato, A.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Baek, J.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Bayat, K.

Bloemer, M. J.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Bouwmeester, D.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Bowden, C. M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Cassan, E.

T. Li, D. Gao, D. Zhang, and E. Cassan, “High-Q and high-sensitivity one-dimensional photonic crystal slot nanobeam cavity sensors,” IEEE Photonics Technol. Lett. 28(6), 689–692 (2016).
[Crossref]

Cha, H.

H. Cha, J. Lee, L. R. Jordan, S. H. Lee, S.-H. Oh, H. J. Kim, J. Park, S. Hong, and H. Jeon, “Surface passivation of a photonic crystal band-edge laser by atomic layer deposition of SiO2 and its application for biosensing,” Nanoscale 7(8), 3565–3571 (2015).
[Crossref] [PubMed]

Chaudhuri, S. K.

Chen, H. W.

Choi, Y. S.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Comas, J.

G. C. DeSalvo, W. F. Tseng, and J. Comas, “Etch rates and selectivities of citric acid/hydrogen peroxide on GaAs, Al0.3Ga0.7As, In0.2Ga0.8As, In0.53Ga0.47As, In0.52Al0.48As, and InP,” J. Electrochem. Soc. 139(3), 831–835 (1992).
[Crossref]

Dagenais, M.

S. A. Merritt and M. Dagenais, “Etch characteristics of succinic acid/ammonia/hydrogen peroxide versus Aluminium mole fraction in AlGaAs,” J. Electrochem. Soc. 140(9), L138–L139 (1993).
[Crossref]

DeSalvo, G. C.

G. C. DeSalvo, W. F. Tseng, and J. Comas, “Etch rates and selectivities of citric acid/hydrogen peroxide on GaAs, Al0.3Ga0.7As, In0.2Ga0.8As, In0.53Ga0.47As, In0.52Al0.48As, and InP,” J. Electrochem. Soc. 139(3), 831–835 (1992).
[Crossref]

Dowling, J. P.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Ellis, B.

Endo, T.

Erickson, D.

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref] [PubMed]

Fan, X.

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

Gao, D.

T. Li, D. Gao, D. Zhang, and E. Cassan, “High-Q and high-sensitivity one-dimensional photonic crystal slot nanobeam cavity sensors,” IEEE Photonics Technol. Lett. 28(6), 689–692 (2016).
[Crossref]

Gong, Y.

Gopal, A. V.

R. Patil, S. Lan, and A. V. Gopal, “Fabrication of large-area two-dimensional array of air holes with different hole shapes for optical and terahertz wavelength regions,” J. Nanophotonics 8(1), 083896 (2014).
[Crossref]

Hachuda, S.

Han, S.

Harris, J. S.

Hennessy, K.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Hirose, K.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Hong, S.

H. Cha, J. Lee, L. R. Jordan, S. H. Lee, S.-H. Oh, H. J. Kim, J. Park, S. Hong, and H. Jeon, “Surface passivation of a photonic crystal band-edge laser by atomic layer deposition of SiO2 and its application for biosensing,” Nanoscale 7(8), 3565–3571 (2015).
[Crossref] [PubMed]

Hu, E. L.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Huang, J.

D. Y. Oh, S.-H. Kim, J. Huang, A. Scofield, D. Huffaker, and A. Scherer, “Self-aligned active quantum nanostructures in photonic crystals via selective wet-chemical etching,” Nanotechnology 24(26), 265201 (2013).
[Crossref] [PubMed]

Huang, N.

Huffaker, D.

D. Y. Oh, S.-H. Kim, J. Huang, A. Scofield, D. Huffaker, and A. Scherer, “Self-aligned active quantum nanostructures in photonic crystals via selective wet-chemical etching,” Nanotechnology 24(26), 265201 (2013).
[Crossref] [PubMed]

Huh, J.

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
[Crossref]

Hwang, J.-K.

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
[Crossref]

Hwang, Y.

K.-Y. Jeong, Y.-S. No, Y. Hwang, K. S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

Imai, Y.

Iwamoto, S.

Jang, H.

H. Jang, I. Karnadi, P. Pramudita, J.-H. Song, K. Soo Kim, and Y.-H. Lee, “Sub-microWatt threshold nanoisland lasers,” Nat. Commun. 6, 8276 (2015).
[Crossref] [PubMed]

Jeon, H.

H. Cha, J. Lee, L. R. Jordan, S. H. Lee, S.-H. Oh, H. J. Kim, J. Park, S. Hong, and H. Jeon, “Surface passivation of a photonic crystal band-edge laser by atomic layer deposition of SiO2 and its application for biosensing,” Nanoscale 7(8), 3565–3571 (2015).
[Crossref] [PubMed]

S. Kim, S. Ahn, K. Min, S. Kim, H. Jeon, P. Regreny, and C. Seassal, “Nano stepping-stone laser,” Appl. Phys. Express 6(4), 042703 (2013).
[Crossref]

S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal band edge laser for biochemical sensor applications,” Appl. Phys. Lett. 94(13), 133503 (2009).
[Crossref]

Jeong, K.-Y.

K.-Y. Jeong, Y.-S. No, Y. Hwang, K. S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

S. Kim, B.-H. Ahn, J.-Y. Kim, K.-Y. Jeong, K. S. Kim, and Y.-H. Lee, “Nanobeam photonic bandedge lasers,” Opt. Express 19(24), 24055–24060 (2011).
[Crossref] [PubMed]

Ji, Y.

D. Yang, C. Wang, and Y. Ji, “Silicon on-chip one-dimensional photonic crystal nanobeam bandgap filter integrated with nanobeam cavity for accurate refractive index sensing,” IEEE Photonics J. 8(2), 4500608 (2016).

Jordan, L. R.

H. Cha, J. Lee, L. R. Jordan, S. H. Lee, S.-H. Oh, H. J. Kim, J. Park, S. Hong, and H. Jeon, “Surface passivation of a photonic crystal band-edge laser by atomic layer deposition of SiO2 and its application for biosensing,” Nanoscale 7(8), 3565–3571 (2015).
[Crossref] [PubMed]

Ju, Y.-G.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Kakitsuka, T.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Karnadi, I.

Kawaguchi, Y.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Kim, G.-H.

S.-H. Kwon, H.-Y. Ryu, G.-H. Kim, Y.-H. Lee, and S.-B. Kim, “Photonic bandedge lasers in two-dimensional square-lattice photonic crystal slabs,” Appl. Phys. Lett. 83(19), 3870–3872 (2003).
[Crossref]

Kim, H. J.

H. Cha, J. Lee, L. R. Jordan, S. H. Lee, S.-H. Oh, H. J. Kim, J. Park, S. Hong, and H. Jeon, “Surface passivation of a photonic crystal band-edge laser by atomic layer deposition of SiO2 and its application for biosensing,” Nanoscale 7(8), 3565–3571 (2015).
[Crossref] [PubMed]

S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal band edge laser for biochemical sensor applications,” Appl. Phys. Lett. 94(13), 133503 (2009).
[Crossref]

Kim, H.-M.

Kim, J.-S.

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80(19), 3476–3478 (2002).
[Crossref]

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
[Crossref]

Kim, J.-Y.

Kim, K. S.

K.-Y. Jeong, Y.-S. No, Y. Hwang, K. S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

S. Kim, B.-H. Ahn, J.-Y. Kim, K.-Y. Jeong, K. S. Kim, and Y.-H. Lee, “Nanobeam photonic bandedge lasers,” Opt. Express 19(24), 24055–24060 (2011).
[Crossref] [PubMed]

Kim, S.

S. Kim, H.-M. Kim, and Y.-H. Lee, “Single nanobeam optical sensor with a high Q-factor and high sensitivity,” Opt. Lett. 40(22), 5351–5354 (2015).
[Crossref] [PubMed]

S. Kim, S. Ahn, K. Min, S. Kim, H. Jeon, P. Regreny, and C. Seassal, “Nano stepping-stone laser,” Appl. Phys. Express 6(4), 042703 (2013).
[Crossref]

S. Kim, S. Ahn, K. Min, S. Kim, H. Jeon, P. Regreny, and C. Seassal, “Nano stepping-stone laser,” Appl. Phys. Express 6(4), 042703 (2013).
[Crossref]

S. Kim, B.-H. Ahn, J.-Y. Kim, K.-Y. Jeong, K. S. Kim, and Y.-H. Lee, “Nanobeam photonic bandedge lasers,” Opt. Express 19(24), 24055–24060 (2011).
[Crossref] [PubMed]

S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal band edge laser for biochemical sensor applications,” Appl. Phys. Lett. 94(13), 133503 (2009).
[Crossref]

Kim, S.-B.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

S.-H. Kwon, H.-Y. Ryu, G.-H. Kim, Y.-H. Lee, and S.-B. Kim, “Photonic bandedge lasers in two-dimensional square-lattice photonic crystal slabs,” Appl. Phys. Lett. 83(19), 3870–3872 (2003).
[Crossref]

Kim, S.-H.

D. Y. Oh, S.-H. Kim, J. Huang, A. Scofield, D. Huffaker, and A. Scherer, “Self-aligned active quantum nanostructures in photonic crystals via selective wet-chemical etching,” Nanotechnology 24(26), 265201 (2013).
[Crossref] [PubMed]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
[Crossref]

Kita, S.

Krishnan, A.

Kumagai, N.

Kurosaka, Y.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Kwon, S.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

S.-H. Kwon, H.-Y. Ryu, G.-H. Kim, Y.-H. Lee, and S.-B. Kim, “Photonic bandedge lasers in two-dimensional square-lattice photonic crystal slabs,” Appl. Phys. Lett. 83(19), 3870–3872 (2003).
[Crossref]

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80(19), 3476–3478 (2002).
[Crossref]

Lan, S.

R. Patil, S. Lan, and A. V. Gopal, “Fabrication of large-area two-dimensional array of air holes with different hole shapes for optical and terahertz wavelength regions,” J. Nanophotonics 8(1), 083896 (2014).
[Crossref]

Lan, Y. P.

Lee, J.

H. Cha, J. Lee, L. R. Jordan, S. H. Lee, S.-H. Oh, H. J. Kim, J. Park, S. Hong, and H. Jeon, “Surface passivation of a photonic crystal band-edge laser by atomic layer deposition of SiO2 and its application for biosensing,” Nanoscale 7(8), 3565–3571 (2015).
[Crossref] [PubMed]

S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal band edge laser for biochemical sensor applications,” Appl. Phys. Lett. 94(13), 133503 (2009).
[Crossref]

Lee, S. H.

H. Cha, J. Lee, L. R. Jordan, S. H. Lee, S.-H. Oh, H. J. Kim, J. Park, S. Hong, and H. Jeon, “Surface passivation of a photonic crystal band-edge laser by atomic layer deposition of SiO2 and its application for biosensing,” Nanoscale 7(8), 3565–3571 (2015).
[Crossref] [PubMed]

Lee, Y.-H.

H. Jang, I. Karnadi, P. Pramudita, J.-H. Song, K. Soo Kim, and Y.-H. Lee, “Sub-microWatt threshold nanoisland lasers,” Nat. Commun. 6, 8276 (2015).
[Crossref] [PubMed]

S. Kim, H.-M. Kim, and Y.-H. Lee, “Single nanobeam optical sensor with a high Q-factor and high sensitivity,” Opt. Lett. 40(22), 5351–5354 (2015).
[Crossref] [PubMed]

K.-Y. Jeong, Y.-S. No, Y. Hwang, K. S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

I. Karnadi, J.-Y. Kim, B.-H. Ahn, H.-J. Lim, and Y.-H. Lee, “Efficient photon collection from reconfigurable photonic crystal slab resonator operating at short wavelengths,” J. Opt. Soc. Am. B 29(10), 2669–2674 (2012).
[Crossref]

S. Kim, B.-H. Ahn, J.-Y. Kim, K.-Y. Jeong, K. S. Kim, and Y.-H. Lee, “Nanobeam photonic bandedge lasers,” Opt. Express 19(24), 24055–24060 (2011).
[Crossref] [PubMed]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

S.-H. Kwon, H.-Y. Ryu, G.-H. Kim, Y.-H. Lee, and S.-B. Kim, “Photonic bandedge lasers in two-dimensional square-lattice photonic crystal slabs,” Appl. Phys. Lett. 83(19), 3870–3872 (2003).
[Crossref]

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80(19), 3476–3478 (2002).
[Crossref]

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
[Crossref]

Lee, Y.-J.

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80(19), 3476–3478 (2002).
[Crossref]

Li, T.

T. Li, D. Gao, D. Zhang, and E. Cassan, “High-Q and high-sensitivity one-dimensional photonic crystal slot nanobeam cavity sensors,” IEEE Photonics Technol. Lett. 28(6), 689–692 (2016).
[Crossref]

Liang, Y.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Lim, H.-J.

Liu, Y.

Lu, T. C.

Mandal, S.

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref] [PubMed]

Martínez, L. J.

Matsuo, S.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Merritt, S. A.

S. A. Merritt and M. Dagenais, “Etch characteristics of succinic acid/ammonia/hydrogen peroxide versus Aluminium mole fraction in AlGaAs,” J. Electrochem. Soc. 140(9), L138–L139 (1993).
[Crossref]

Min, K.

S. Kim, S. Ahn, K. Min, S. Kim, H. Jeon, P. Regreny, and C. Seassal, “Nano stepping-stone laser,” Appl. Phys. Express 6(4), 042703 (2013).
[Crossref]

Misawa, H.

Nishijima, Y.

No, Y.-S.

K.-Y. Jeong, Y.-S. No, Y. Hwang, K. S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

Noda, S.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Nomura, M.

Notomi, M.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Nozaki, K.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Oh, D. Y.

D. Y. Oh, S.-H. Kim, J. Huang, A. Scofield, D. Huffaker, and A. Scherer, “Self-aligned active quantum nanostructures in photonic crystals via selective wet-chemical etching,” Nanotechnology 24(26), 265201 (2013).
[Crossref] [PubMed]

Oh, S.-H.

H. Cha, J. Lee, L. R. Jordan, S. H. Lee, S.-H. Oh, H. J. Kim, J. Park, S. Hong, and H. Jeon, “Surface passivation of a photonic crystal band-edge laser by atomic layer deposition of SiO2 and its application for biosensing,” Nanoscale 7(8), 3565–3571 (2015).
[Crossref] [PubMed]

Ota, Y.

Otsuka, S.

Park, H.-G.

K.-Y. Jeong, Y.-S. No, Y. Hwang, K. S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
[Crossref]

Park, J.

H. Cha, J. Lee, L. R. Jordan, S. H. Lee, S.-H. Oh, H. J. Kim, J. Park, S. Hong, and H. Jeon, “Surface passivation of a photonic crystal band-edge laser by atomic layer deposition of SiO2 and its application for biosensing,” Nanoscale 7(8), 3565–3571 (2015).
[Crossref] [PubMed]

Patil, R.

R. Patil, S. Lan, and A. V. Gopal, “Fabrication of large-area two-dimensional array of air holes with different hole shapes for optical and terahertz wavelength regions,” J. Nanophotonics 8(1), 083896 (2014).
[Crossref]

Petroff, P. M.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Povinelli, M. L.

Pramudita, P.

H. Jang, I. Karnadi, P. Pramudita, J.-H. Song, K. Soo Kim, and Y.-H. Lee, “Sub-microWatt threshold nanoisland lasers,” Nat. Commun. 6, 8276 (2015).
[Crossref] [PubMed]

Rakher, M. T.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Regreny, P.

S. Kim, S. Ahn, K. Min, S. Kim, H. Jeon, P. Regreny, and C. Seassal, “Nano stepping-stone laser,” Appl. Phys. Express 6(4), 042703 (2013).
[Crossref]

Ryu, H.-Y.

S.-H. Kwon, H.-Y. Ryu, G.-H. Kim, Y.-H. Lee, and S.-B. Kim, “Photonic bandedge lasers in two-dimensional square-lattice photonic crystal slabs,” Appl. Phys. Lett. 83(19), 3870–3872 (2003).
[Crossref]

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80(19), 3476–3478 (2002).
[Crossref]

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
[Crossref]

Safavi-Naeini, S.

Salemink, H. W. M.

Sarmiento, T.

Sato, T.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Scalora, M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Scherer, A.

D. Y. Oh, S.-H. Kim, J. Huang, A. Scofield, D. Huffaker, and A. Scherer, “Self-aligned active quantum nanostructures in photonic crystals via selective wet-chemical etching,” Nanotechnology 24(26), 265201 (2013).
[Crossref] [PubMed]

Scofield, A.

D. Y. Oh, S.-H. Kim, J. Huang, A. Scofield, D. Huffaker, and A. Scherer, “Self-aligned active quantum nanostructures in photonic crystals via selective wet-chemical etching,” Nanotechnology 24(26), 265201 (2013).
[Crossref] [PubMed]

Seassal, C.

S. Kim, S. Ahn, K. Min, S. Kim, H. Jeon, P. Regreny, and C. Seassal, “Nano stepping-stone laser,” Appl. Phys. Express 6(4), 042703 (2013).
[Crossref]

Segawa, T.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Seo, M.-K.

K.-Y. Jeong, Y.-S. No, Y. Hwang, K. S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

Serey, X.

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref] [PubMed]

Shambat, G.

Shi, Y.

Shinya, A.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Song, J.-H.

H. Jang, I. Karnadi, P. Pramudita, J.-H. Song, K. Soo Kim, and Y.-H. Lee, “Sub-microWatt threshold nanoisland lasers,” Nat. Commun. 6, 8276 (2015).
[Crossref] [PubMed]

Soo Kim, K.

H. Jang, I. Karnadi, P. Pramudita, J.-H. Song, K. Soo Kim, and Y.-H. Lee, “Sub-microWatt threshold nanoisland lasers,” Nat. Commun. 6, 8276 (2015).
[Crossref] [PubMed]

Strauf, S.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Sugiyama, T.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Tandaechanurat, A.

Tseng, W. F.

G. C. DeSalvo, W. F. Tseng, and J. Comas, “Etch rates and selectivities of citric acid/hydrogen peroxide on GaAs, Al0.3Ga0.7As, In0.2Ga0.8As, In0.53Ga0.47As, In0.52Al0.48As, and InP,” J. Electrochem. Soc. 139(3), 831–835 (1992).
[Crossref]

Vuckovic, J.

Wang, C.

D. Yang, C. Wang, and Y. Ji, “Silicon on-chip one-dimensional photonic crystal nanobeam bandgap filter integrated with nanobeam cavity for accurate refractive index sensing,” IEEE Photonics J. 8(2), 4500608 (2016).

Wang, S. C.

Watanabe, A.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Wu, S. H.

Wu, T. T.

Yang, D.

D. Yang, C. Wang, and Y. Ji, “Silicon on-chip one-dimensional photonic crystal nanobeam bandgap filter integrated with nanobeam cavity for accurate refractive index sensing,” IEEE Photonics J. 8(2), 4500608 (2016).

Yang, J.-K.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Yun, S. H.

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

Zhang, D.

T. Li, D. Gao, D. Zhang, and E. Cassan, “High-Q and high-sensitivity one-dimensional photonic crystal slot nanobeam cavity sensors,” IEEE Photonics Technol. Lett. 28(6), 689–692 (2016).
[Crossref]

Appl. Phys. Express (1)

S. Kim, S. Ahn, K. Min, S. Kim, H. Jeon, P. Regreny, and C. Seassal, “Nano stepping-stone laser,” Appl. Phys. Express 6(4), 042703 (2013).
[Crossref]

Appl. Phys. Lett. (3)

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80(19), 3476–3478 (2002).
[Crossref]

S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal band edge laser for biochemical sensor applications,” Appl. Phys. Lett. 94(13), 133503 (2009).
[Crossref]

S.-H. Kwon, H.-Y. Ryu, G.-H. Kim, Y.-H. Lee, and S.-B. Kim, “Photonic bandedge lasers in two-dimensional square-lattice photonic crystal slabs,” Appl. Phys. Lett. 83(19), 3870–3872 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
[Crossref]

IEEE Photonics J. (1)

D. Yang, C. Wang, and Y. Ji, “Silicon on-chip one-dimensional photonic crystal nanobeam bandgap filter integrated with nanobeam cavity for accurate refractive index sensing,” IEEE Photonics J. 8(2), 4500608 (2016).

IEEE Photonics Technol. Lett. (1)

T. Li, D. Gao, D. Zhang, and E. Cassan, “High-Q and high-sensitivity one-dimensional photonic crystal slot nanobeam cavity sensors,” IEEE Photonics Technol. Lett. 28(6), 689–692 (2016).
[Crossref]

J. Appl. Phys. (1)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

J. Electrochem. Soc. (2)

S. A. Merritt and M. Dagenais, “Etch characteristics of succinic acid/ammonia/hydrogen peroxide versus Aluminium mole fraction in AlGaAs,” J. Electrochem. Soc. 140(9), L138–L139 (1993).
[Crossref]

G. C. DeSalvo, W. F. Tseng, and J. Comas, “Etch rates and selectivities of citric acid/hydrogen peroxide on GaAs, Al0.3Ga0.7As, In0.2Ga0.8As, In0.53Ga0.47As, In0.52Al0.48As, and InP,” J. Electrochem. Soc. 139(3), 831–835 (1992).
[Crossref]

J. Nanophotonics (1)

R. Patil, S. Lan, and A. V. Gopal, “Fabrication of large-area two-dimensional array of air holes with different hole shapes for optical and terahertz wavelength regions,” J. Nanophotonics 8(1), 083896 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

MRS Commun. (1)

T. Baba, “Biosensing using photonic crystal nanolasers,” MRS Commun. 5(4), 555–564 (2015).
[Crossref]

Nano Lett. (1)

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref] [PubMed]

Nanoscale (1)

H. Cha, J. Lee, L. R. Jordan, S. H. Lee, S.-H. Oh, H. J. Kim, J. Park, S. Hong, and H. Jeon, “Surface passivation of a photonic crystal band-edge laser by atomic layer deposition of SiO2 and its application for biosensing,” Nanoscale 7(8), 3565–3571 (2015).
[Crossref] [PubMed]

Nanotechnology (1)

D. Y. Oh, S.-H. Kim, J. Huang, A. Scofield, D. Huffaker, and A. Scherer, “Self-aligned active quantum nanostructures in photonic crystals via selective wet-chemical etching,” Nanotechnology 24(26), 265201 (2013).
[Crossref] [PubMed]

Nat. Commun. (2)

K.-Y. Jeong, Y.-S. No, Y. Hwang, K. S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

H. Jang, I. Karnadi, P. Pramudita, J.-H. Song, K. Soo Kim, and Y.-H. Lee, “Sub-microWatt threshold nanoisland lasers,” Nat. Commun. 6, 8276 (2015).
[Crossref] [PubMed]

Nat. Methods (1)

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Opt. Express (9)

T. T. Wu, H. W. Chen, Y. P. Lan, T. C. Lu, and S. C. Wang, “Suspended GaN-based band-edge type photonic crystal nanobeam cavities,” Opt. Express 22(3), 2317–2323 (2014).
[Crossref] [PubMed]

S. Han and Y. Shi, “Systematic analysis of optical gradient force in photonic crystal nanobeam cavities,” Opt. Express 24(1), 452–458 (2016).
[Crossref] [PubMed]

A. Krishnan, N. Huang, S. H. Wu, L. J. Martínez, and M. L. Povinelli, “Enhanced and selective optical trapping in a slot-graphite photonic crystal,” Opt. Express 24(20), 23271–23279 (2016).
[Crossref] [PubMed]

K. Bayat, S. K. Chaudhuri, and S. Safavi-Naeini, “Polarization and thickness dependent guiding in the photonic crystal slab waveguide,” Opt. Express 15(13), 8391–8400 (2007).
[Crossref] [PubMed]

M. Nomura, S. Iwamoto, A. Tandaechanurat, Y. Ota, N. Kumagai, and Y. Arakawa, “Photonic band-edge micro lasers with quantum dot gain,” Opt. Express 17(2), 640–648 (2009).
[Crossref] [PubMed]

Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, and J. Vuckovic, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express 18(9), 8781–8789 (2010).
[Crossref] [PubMed]

S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express 19(18), 17683–17690 (2011).
[Crossref] [PubMed]

S. Kim, B.-H. Ahn, J.-Y. Kim, K.-Y. Jeong, K. S. Kim, and Y.-H. Lee, “Nanobeam photonic bandedge lasers,” Opt. Express 19(24), 24055–24060 (2011).
[Crossref] [PubMed]

Y. Liu and H. W. M. Salemink, “Photonic crystal-based all-optical on-chip sensor,” Opt. Express 20(18), 19912–19920 (2012).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Science (1)

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Illustrations of a nanobeam structure with (a) horizontally uniform QW and (b) nanoislands QW, respectively (not to scale). (c) The detailed epitaxial structure of the QW wafer used in the fabrication of self-aligned nanoisland bandedge lasers.
Fig. 2
Fig. 2 Dispersion relation of (a) nanobeam with circular-holes before wet-etching of QW, (b) nanobeam with circular-holes after wet-etching of QW, and (c) nanobeam with rectangular-holes after wet-etching of QW. TE-like modes and TM-like modes are represented by the blue and red lines, while the dispersion characteristics before and after wet-etching of QW are denoted by solid and dotted lines, respectively. The insets depict the cross-sectional views of remaining QW’s sizes (black color) at the center of the slab, and the corresponding electric energy-density profiles at the lowest TE-like bandedges.
Fig. 3
Fig. 3 (a) Schematic of nanobeam structure with nanoisland QW. The geometric parameters are given as follows: a = 350 nm; t = 315 nm; L = 550 nm; w = 800 nm; d = 200 nm. (b) Calculated dispersion relation of the nanobeam with horizontally uniform QW (solid lines) and nanoisland QW (dotted lines). The inset shows the corresponding electric energy density on the nanobeam cladding at each photonics bandedge. (c) Calculated electric energy-density profile in the nanobeam with the self-aligned nanoislands at the central cross-section of each axis. Both simulation results in (b) and (c) are obtained by assuming 50 nm depth of an isotropic etching in lateral direction. (d) Calculated resonance wavelength and quality factor of the self-aligned nanoislands nanobeam device as a function of etching depth and width of nanoisland (ws). The insets show the profile of nanoislands at each etching depth.
Fig. 4
Fig. 4 SEM images of the fabricated device. (a) Top-view images of the nanobeam structure. (b)-(e) Tilted-view images of the nanobeam structure at various accumulated wet-etching time. (f) SEM image of nanobeam structure for side etching depth characterization. The image was taken after three steps wet-etching with 12 mins accumulated etching time. (g) Width of nanoisland as function of accumulated wet-etching time. The inset shows the schematic of a nanoisland, and red arrows indicate the width of nanoisland.
Fig. 5
Fig. 5 (a) Lasing spectra of self-aligned nanoislands nanobeam bandedge laser as a function of absorbed power at various total wet-etching time. The inset shows the charge-coupled device (CCD) camera image of the lasing mode. The white-dashed line in the inset shows the size and location of the nanobeam structure. (b) Comparison of laser spectra at different total wet-etching time. The blue arrow indicates the blue-shift of the lasing wavelength after selective wet-etching processes. (c) Laser output intensity as a function of incident power at different total wet-etching time. (d) Reduction of absorbed threshold-power as a function of total wet-etching time, of which measurement was repeated with several different samples.

Metrics