Abstract

Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Therefore, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. Here we present the design and fabrication of compact silicon photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. Additionally, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen
Opt. Express 14(2) 664-669 (2006)

Integrated silicon photonic wavelength-selective switch using wavefront control waveguides

Fumi Nakamura, Kyosuke Muramatsu, Keijiro Suzuki, Ken Tanizawa, Minoru Ohtsuka, Nobuyuki Yokoyama, Kazuyuki Matsumaro, Miyoshi Seki, Keiji Koshino, Kazuhiro Ikeda, Shu Namiki, Hitoshi Kawashima, and Hiroyuki Tsuda
Opt. Express 26(10) 13573-13589 (2018)

Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology

Jing Wang, Zhen Sheng, Le Li, Albert Pang, Aimin Wu, Wei Li, Xi Wang, Shichang Zou, Minghao Qi, and Fuwan Gan
Opt. Express 22(8) 9395-9403 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. T. Cundiff and A. M. Weiner., “Optical arbitrary waveform generation,” Nat. Photonics 4, 760–766 (2010).
    [Crossref]
  2. W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brock, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49, 1996 (2001).
    [Crossref]
  3. C. R. Doerr and K. Okamoto, “Advances in silica planar lightwave circuits,” J. Lightwave Technol. 24, 4763–4789 (2006).
    [Crossref]
  4. T. Goh, S. Suzuki, and A. Sugita, “Estimation of waveguide phase error in silica-based waveguides,” J. Lightwave Technol. 15, 2107–2113 (1997).
    [Crossref]
  5. H. Yamada, K. Takada, Y. Inoue, Y. Hibino, and M. Horiguchi, “10 GHz-spaced arrayed-waveguide grating multiplexer with phase-error-compensating thin-film heaters,” Electron. Lett. 31, 360 (1995).
    [Crossref]
  6. H. Yamada, K. Takada, Y. Inoue, Y. Ohmori, and S. Mitachi, “Statically-phase-compensated 10 GHz-spaced arrayed-waveguide grating,” Electron. Lett. 32, 1580 (1996).
    [Crossref]
  7. K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-adjustment-free crosstalk reduction in 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36, 60 (2000).
    [Crossref]
  8. K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel arrayed-waveguide grating for a wavelength reference standard in DWDM network systems,” J. Lightwave Technol. 20, 850–853 (2002).
    [Crossref]
  9. S. Cheung, T. Su, K. Okamoto, and S. J. B. Yoo, “Ultra-compact silicon photonic 512 × 512 25 GHz arrayed waveguide grating router,” IEEE J. Sel. Top. Quantum Electron. 20, 8202207 (2014).
    [Crossref]
  10. F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Beak, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photonics J. 3, 975 (2011).
    [Crossref]
  11. E. D. Moore, “Advances in swept-wavelength interferometry for precision measurements,” Ph.D. dissertation, Electrical, Computer & Energy Engineering, University of Colorado, Boulder, CO (2011).
  12. J. H. Baek, F. M. Soares, S. W. Seo, W. Jiang, N. K. Fontaine, R. G. Broeke, J. Cao, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “10-GHz and 20-GHz channel spacing high-resolution AWGs on InP,” IEEE Photonic Tech. L. 21, 298–300 (2009).
    [Crossref]
  13. W. Jiang, K. Okamoto, F. M. Soares, F. Olsson, S. Lourdudoss, and S. J. Yoo, “5 GHz channel spacing InP-based 32-channel arrayed-waveguide grating,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWO2.
    [Crossref]
  14. M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett. 38, 733 (2013).
    [Crossref] [PubMed]
  15. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237 (1972).

2014 (1)

S. Cheung, T. Su, K. Okamoto, and S. J. B. Yoo, “Ultra-compact silicon photonic 512 × 512 25 GHz arrayed waveguide grating router,” IEEE J. Sel. Top. Quantum Electron. 20, 8202207 (2014).
[Crossref]

2013 (1)

2011 (1)

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Beak, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photonics J. 3, 975 (2011).
[Crossref]

2010 (1)

S. T. Cundiff and A. M. Weiner., “Optical arbitrary waveform generation,” Nat. Photonics 4, 760–766 (2010).
[Crossref]

2009 (1)

J. H. Baek, F. M. Soares, S. W. Seo, W. Jiang, N. K. Fontaine, R. G. Broeke, J. Cao, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “10-GHz and 20-GHz channel spacing high-resolution AWGs on InP,” IEEE Photonic Tech. L. 21, 298–300 (2009).
[Crossref]

2006 (1)

2002 (1)

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel arrayed-waveguide grating for a wavelength reference standard in DWDM network systems,” J. Lightwave Technol. 20, 850–853 (2002).
[Crossref]

2001 (1)

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brock, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49, 1996 (2001).
[Crossref]

2000 (1)

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-adjustment-free crosstalk reduction in 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36, 60 (2000).
[Crossref]

1997 (1)

T. Goh, S. Suzuki, and A. Sugita, “Estimation of waveguide phase error in silica-based waveguides,” J. Lightwave Technol. 15, 2107–2113 (1997).
[Crossref]

1996 (1)

H. Yamada, K. Takada, Y. Inoue, Y. Ohmori, and S. Mitachi, “Statically-phase-compensated 10 GHz-spaced arrayed-waveguide grating,” Electron. Lett. 32, 1580 (1996).
[Crossref]

1995 (1)

H. Yamada, K. Takada, Y. Inoue, Y. Hibino, and M. Horiguchi, “10 GHz-spaced arrayed-waveguide grating multiplexer with phase-error-compensating thin-film heaters,” Electron. Lett. 31, 360 (1995).
[Crossref]

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237 (1972).

Abe, M.

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel arrayed-waveguide grating for a wavelength reference standard in DWDM network systems,” J. Lightwave Technol. 20, 850–853 (2002).
[Crossref]

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-adjustment-free crosstalk reduction in 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36, 60 (2000).
[Crossref]

Baek, J. H.

J. H. Baek, F. M. Soares, S. W. Seo, W. Jiang, N. K. Fontaine, R. G. Broeke, J. Cao, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “10-GHz and 20-GHz channel spacing high-resolution AWGs on InP,” IEEE Photonic Tech. L. 21, 298–300 (2009).
[Crossref]

Beak, J. H.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Beak, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photonics J. 3, 975 (2011).
[Crossref]

Brock, J. C.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brock, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49, 1996 (2001).
[Crossref]

Broeke, R. G.

J. H. Baek, F. M. Soares, S. W. Seo, W. Jiang, N. K. Fontaine, R. G. Broeke, J. Cao, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “10-GHz and 20-GHz channel spacing high-resolution AWGs on InP,” IEEE Photonic Tech. L. 21, 298–300 (2009).
[Crossref]

Cao, J.

J. H. Baek, F. M. Soares, S. W. Seo, W. Jiang, N. K. Fontaine, R. G. Broeke, J. Cao, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “10-GHz and 20-GHz channel spacing high-resolution AWGs on InP,” IEEE Photonic Tech. L. 21, 298–300 (2009).
[Crossref]

Cheung, S.

S. Cheung, T. Su, K. Okamoto, and S. J. B. Yoo, “Ultra-compact silicon photonic 512 × 512 25 GHz arrayed waveguide grating router,” IEEE J. Sel. Top. Quantum Electron. 20, 8202207 (2014).
[Crossref]

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Beak, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photonics J. 3, 975 (2011).
[Crossref]

Cundiff, S. T.

S. T. Cundiff and A. M. Weiner., “Optical arbitrary waveform generation,” Nat. Photonics 4, 760–766 (2010).
[Crossref]

Davis, R. L.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brock, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49, 1996 (2001).
[Crossref]

DeRose, C.

Doerr, C. R.

Fontaine, N. K.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Beak, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photonics J. 3, 975 (2011).
[Crossref]

J. H. Baek, F. M. Soares, S. W. Seo, W. Jiang, N. K. Fontaine, R. G. Broeke, J. Cao, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “10-GHz and 20-GHz channel spacing high-resolution AWGs on InP,” IEEE Photonic Tech. L. 21, 298–300 (2009).
[Crossref]

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237 (1972).

Goh, T.

T. Goh, S. Suzuki, and A. Sugita, “Estimation of waveguide phase error in silica-based waveguides,” J. Lightwave Technol. 15, 2107–2113 (1997).
[Crossref]

Gruezke, L. A.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Beak, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photonics J. 3, 975 (2011).
[Crossref]

Hamm, R. A.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Beak, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photonics J. 3, 975 (2011).
[Crossref]

Heritage, J. P.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Beak, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photonics J. 3, 975 (2011).
[Crossref]

Hibino, Y.

H. Yamada, K. Takada, Y. Inoue, Y. Hibino, and M. Horiguchi, “10 GHz-spaced arrayed-waveguide grating multiplexer with phase-error-compensating thin-film heaters,” Electron. Lett. 31, 360 (1995).
[Crossref]

Horiguchi, M.

H. Yamada, K. Takada, Y. Inoue, Y. Hibino, and M. Horiguchi, “10 GHz-spaced arrayed-waveguide grating multiplexer with phase-error-compensating thin-film heaters,” Electron. Lett. 31, 360 (1995).
[Crossref]

Inoue, Y.

H. Yamada, K. Takada, Y. Inoue, Y. Ohmori, and S. Mitachi, “Statically-phase-compensated 10 GHz-spaced arrayed-waveguide grating,” Electron. Lett. 32, 1580 (1996).
[Crossref]

H. Yamada, K. Takada, Y. Inoue, Y. Hibino, and M. Horiguchi, “10 GHz-spaced arrayed-waveguide grating multiplexer with phase-error-compensating thin-film heaters,” Electron. Lett. 31, 360 (1995).
[Crossref]

Ishii, M.

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-adjustment-free crosstalk reduction in 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36, 60 (2000).
[Crossref]

Jiang, W.

J. H. Baek, F. M. Soares, S. W. Seo, W. Jiang, N. K. Fontaine, R. G. Broeke, J. Cao, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “10-GHz and 20-GHz channel spacing high-resolution AWGs on InP,” IEEE Photonic Tech. L. 21, 298–300 (2009).
[Crossref]

W. Jiang, K. Okamoto, F. M. Soares, F. Olsson, S. Lourdudoss, and S. J. Yoo, “5 GHz channel spacing InP-based 32-channel arrayed-waveguide grating,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWO2.
[Crossref]

Junesand, C.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Beak, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photonics J. 3, 975 (2011).
[Crossref]

Jung, T. J.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brock, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49, 1996 (2001).
[Crossref]

Lembo, L. J.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brock, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49, 1996 (2001).
[Crossref]

Liou, K. Y.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Beak, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photonics J. 3, 975 (2011).
[Crossref]

Lodenkamper, R.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brock, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49, 1996 (2001).
[Crossref]

Lourdudoss, S.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Beak, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photonics J. 3, 975 (2011).
[Crossref]

J. H. Baek, F. M. Soares, S. W. Seo, W. Jiang, N. K. Fontaine, R. G. Broeke, J. Cao, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “10-GHz and 20-GHz channel spacing high-resolution AWGs on InP,” IEEE Photonic Tech. L. 21, 298–300 (2009).
[Crossref]

W. Jiang, K. Okamoto, F. M. Soares, F. Olsson, S. Lourdudoss, and S. J. Yoo, “5 GHz channel spacing InP-based 32-channel arrayed-waveguide grating,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWO2.
[Crossref]

Mitachi, S.

H. Yamada, K. Takada, Y. Inoue, Y. Ohmori, and S. Mitachi, “Statically-phase-compensated 10 GHz-spaced arrayed-waveguide grating,” Electron. Lett. 32, 1580 (1996).
[Crossref]

Moore, E. D.

E. D. Moore, “Advances in swept-wavelength interferometry for precision measurements,” Ph.D. dissertation, Electrical, Computer & Energy Engineering, University of Colorado, Boulder, CO (2011).

Nielson, G. N

Ohmori, Y.

H. Yamada, K. Takada, Y. Inoue, Y. Ohmori, and S. Mitachi, “Statically-phase-compensated 10 GHz-spaced arrayed-waveguide grating,” Electron. Lett. 32, 1580 (1996).
[Crossref]

Okamoto, K.

S. Cheung, T. Su, K. Okamoto, and S. J. B. Yoo, “Ultra-compact silicon photonic 512 × 512 25 GHz arrayed waveguide grating router,” IEEE J. Sel. Top. Quantum Electron. 20, 8202207 (2014).
[Crossref]

C. R. Doerr and K. Okamoto, “Advances in silica planar lightwave circuits,” J. Lightwave Technol. 24, 4763–4789 (2006).
[Crossref]

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel arrayed-waveguide grating for a wavelength reference standard in DWDM network systems,” J. Lightwave Technol. 20, 850–853 (2002).
[Crossref]

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-adjustment-free crosstalk reduction in 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36, 60 (2000).
[Crossref]

W. Jiang, K. Okamoto, F. M. Soares, F. Olsson, S. Lourdudoss, and S. J. Yoo, “5 GHz channel spacing InP-based 32-channel arrayed-waveguide grating,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWO2.
[Crossref]

Olsson, F.

J. H. Baek, F. M. Soares, S. W. Seo, W. Jiang, N. K. Fontaine, R. G. Broeke, J. Cao, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “10-GHz and 20-GHz channel spacing high-resolution AWGs on InP,” IEEE Photonic Tech. L. 21, 298–300 (2009).
[Crossref]

W. Jiang, K. Okamoto, F. M. Soares, F. Olsson, S. Lourdudoss, and S. J. Yoo, “5 GHz channel spacing InP-based 32-channel arrayed-waveguide grating,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWO2.
[Crossref]

Patel, B.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Beak, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photonics J. 3, 975 (2011).
[Crossref]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237 (1972).

Scott, R. P.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Beak, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photonics J. 3, 975 (2011).
[Crossref]

Seo, S. W.

J. H. Baek, F. M. Soares, S. W. Seo, W. Jiang, N. K. Fontaine, R. G. Broeke, J. Cao, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “10-GHz and 20-GHz channel spacing high-resolution AWGs on InP,” IEEE Photonic Tech. L. 21, 298–300 (2009).
[Crossref]

Shibata, T.

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel arrayed-waveguide grating for a wavelength reference standard in DWDM network systems,” J. Lightwave Technol. 20, 850–853 (2002).
[Crossref]

Soares, F. M.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Beak, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photonics J. 3, 975 (2011).
[Crossref]

J. H. Baek, F. M. Soares, S. W. Seo, W. Jiang, N. K. Fontaine, R. G. Broeke, J. Cao, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “10-GHz and 20-GHz channel spacing high-resolution AWGs on InP,” IEEE Photonic Tech. L. 21, 298–300 (2009).
[Crossref]

W. Jiang, K. Okamoto, F. M. Soares, F. Olsson, S. Lourdudoss, and S. J. Yoo, “5 GHz channel spacing InP-based 32-channel arrayed-waveguide grating,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWO2.
[Crossref]

Su, T.

S. Cheung, T. Su, K. Okamoto, and S. J. B. Yoo, “Ultra-compact silicon photonic 512 × 512 25 GHz arrayed waveguide grating router,” IEEE J. Sel. Top. Quantum Electron. 20, 8202207 (2014).
[Crossref]

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Beak, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photonics J. 3, 975 (2011).
[Crossref]

Sugita, A.

T. Goh, S. Suzuki, and A. Sugita, “Estimation of waveguide phase error in silica-based waveguides,” J. Lightwave Technol. 15, 2107–2113 (1997).
[Crossref]

Sun, J.

Suzuki, S.

T. Goh, S. Suzuki, and A. Sugita, “Estimation of waveguide phase error in silica-based waveguides,” J. Lightwave Technol. 15, 2107–2113 (1997).
[Crossref]

Takada, K.

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel arrayed-waveguide grating for a wavelength reference standard in DWDM network systems,” J. Lightwave Technol. 20, 850–853 (2002).
[Crossref]

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-adjustment-free crosstalk reduction in 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36, 60 (2000).
[Crossref]

H. Yamada, K. Takada, Y. Inoue, Y. Ohmori, and S. Mitachi, “Statically-phase-compensated 10 GHz-spaced arrayed-waveguide grating,” Electron. Lett. 32, 1580 (1996).
[Crossref]

H. Yamada, K. Takada, Y. Inoue, Y. Hibino, and M. Horiguchi, “10 GHz-spaced arrayed-waveguide grating multiplexer with phase-error-compensating thin-film heaters,” Electron. Lett. 31, 360 (1995).
[Crossref]

Tanaka, T.

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-adjustment-free crosstalk reduction in 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36, 60 (2000).
[Crossref]

Trotter, D. C.

Tsang, W. T.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Beak, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photonics J. 3, 975 (2011).
[Crossref]

Wang, W.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Beak, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photonics J. 3, 975 (2011).
[Crossref]

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brock, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49, 1996 (2001).
[Crossref]

Wang, Y.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Beak, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photonics J. 3, 975 (2011).
[Crossref]

Watts, M. R.

Weiner., A. M.

S. T. Cundiff and A. M. Weiner., “Optical arbitrary waveform generation,” Nat. Photonics 4, 760–766 (2010).
[Crossref]

Wu, M. C.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brock, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49, 1996 (2001).
[Crossref]

Yamada, H.

H. Yamada, K. Takada, Y. Inoue, Y. Ohmori, and S. Mitachi, “Statically-phase-compensated 10 GHz-spaced arrayed-waveguide grating,” Electron. Lett. 32, 1580 (1996).
[Crossref]

H. Yamada, K. Takada, Y. Inoue, Y. Hibino, and M. Horiguchi, “10 GHz-spaced arrayed-waveguide grating multiplexer with phase-error-compensating thin-film heaters,” Electron. Lett. 31, 360 (1995).
[Crossref]

Yanagisawa, T.

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-adjustment-free crosstalk reduction in 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36, 60 (2000).
[Crossref]

Yoo, S. J.

W. Jiang, K. Okamoto, F. M. Soares, F. Olsson, S. Lourdudoss, and S. J. Yoo, “5 GHz channel spacing InP-based 32-channel arrayed-waveguide grating,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWO2.
[Crossref]

Yoo, S. J. B.

S. Cheung, T. Su, K. Okamoto, and S. J. B. Yoo, “Ultra-compact silicon photonic 512 × 512 25 GHz arrayed waveguide grating router,” IEEE J. Sel. Top. Quantum Electron. 20, 8202207 (2014).
[Crossref]

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Beak, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photonics J. 3, 975 (2011).
[Crossref]

J. H. Baek, F. M. Soares, S. W. Seo, W. Jiang, N. K. Fontaine, R. G. Broeke, J. Cao, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “10-GHz and 20-GHz channel spacing high-resolution AWGs on InP,” IEEE Photonic Tech. L. 21, 298–300 (2009).
[Crossref]

Young, R. W.

Zhou, X.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Beak, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photonics J. 3, 975 (2011).
[Crossref]

Electron. Lett. (3)

H. Yamada, K. Takada, Y. Inoue, Y. Hibino, and M. Horiguchi, “10 GHz-spaced arrayed-waveguide grating multiplexer with phase-error-compensating thin-film heaters,” Electron. Lett. 31, 360 (1995).
[Crossref]

H. Yamada, K. Takada, Y. Inoue, Y. Ohmori, and S. Mitachi, “Statically-phase-compensated 10 GHz-spaced arrayed-waveguide grating,” Electron. Lett. 32, 1580 (1996).
[Crossref]

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-adjustment-free crosstalk reduction in 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36, 60 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Cheung, T. Su, K. Okamoto, and S. J. B. Yoo, “Ultra-compact silicon photonic 512 × 512 25 GHz arrayed waveguide grating router,” IEEE J. Sel. Top. Quantum Electron. 20, 8202207 (2014).
[Crossref]

IEEE Photonic Tech. L. (1)

J. H. Baek, F. M. Soares, S. W. Seo, W. Jiang, N. K. Fontaine, R. G. Broeke, J. Cao, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “10-GHz and 20-GHz channel spacing high-resolution AWGs on InP,” IEEE Photonic Tech. L. 21, 298–300 (2009).
[Crossref]

IEEE Photonics J. (1)

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Beak, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photonics J. 3, 975 (2011).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brock, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49, 1996 (2001).
[Crossref]

J. Lightwave Technol. (3)

C. R. Doerr and K. Okamoto, “Advances in silica planar lightwave circuits,” J. Lightwave Technol. 24, 4763–4789 (2006).
[Crossref]

T. Goh, S. Suzuki, and A. Sugita, “Estimation of waveguide phase error in silica-based waveguides,” J. Lightwave Technol. 15, 2107–2113 (1997).
[Crossref]

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel arrayed-waveguide grating for a wavelength reference standard in DWDM network systems,” J. Lightwave Technol. 20, 850–853 (2002).
[Crossref]

Nat. Photonics (1)

S. T. Cundiff and A. M. Weiner., “Optical arbitrary waveform generation,” Nat. Photonics 4, 760–766 (2010).
[Crossref]

Opt. Lett. (1)

Optik (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237 (1972).

Other (2)

W. Jiang, K. Okamoto, F. M. Soares, F. Olsson, S. Lourdudoss, and S. J. Yoo, “5 GHz channel spacing InP-based 32-channel arrayed-waveguide grating,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWO2.
[Crossref]

E. D. Moore, “Advances in swept-wavelength interferometry for precision measurements,” Ph.D. dissertation, Electrical, Computer & Energy Engineering, University of Colorado, Boulder, CO (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Image of an AWG with 1 GHz channel spacing mounted on a copper plate. Wirebonds for control of the integrated thermal phase shifters are visible at the top and bottom of the image, and optical fibers for coupling light in and out are visible at the left and right sides. (b) Optical microscope image of one of the integrated thermal phase shifters. (c) Dark field optical microscope image of one of the starcouplers with eleven input waveguides at the bottom coupling into 35 output waveguides at the top. (d) Close up of the shortest switchback section showing the 16 bends. (e) Detailed view of the bends, with the transition from 400 nm waveguide to 1 μm waveguide visible.
Fig. 2
Fig. 2 Simulated optimization of phase error in an AWG with seven waveguides. (a) Phasor addition at the expected peak of transmission. Randomly added phase error results in less than maximum transmission. (b) Simulated transmission spectrum of the ideal device(red dashed curve) and the device with random phase errors (blue curve). (c) Following the optimization procedure describe in the text, the phases have become aligned. (d) The simulated transmission of the optimized device (blue curve) compared to the ideal device(red dashed curve).
Fig. 3
Fig. 3 Demonstration of phase error correction in an AWG with 50 GHz channel spacing, using the intensity measurement method described in the text. (a) Comparison of the device as fabricated (blue curve) and after optimization (red curve), showing improved transmission and a peak to side-lobe contrast of 19 dB. (b) Measured transmission of all eleven channels following optimization.
Fig. 4
Fig. 4 (a) Schematic of the swept-source interferometer used to measure the phase errors in fabricated AWGs. The interferometer consists of two Mach-Zehnder interferometers. One is used to accurately trigger data collection at equal frequency intervals, while the second produces an interferogram containing information on the phase errors. (b) Example of the fast Fourier transform of an interferogram collected by the swept-source interferometer. A peak is observed for each of the 35 waveguides, and the relative phase can be extracted from this.
Fig. 5
Fig. 5 Mapping used to linearize observed phase shift with applied power. The relative power scale is calculated using the square of a normalized current times an effective resistance. The resistance is assumed to vary linearly with power, so the effective resistance is also calculated in terms of the square of the normalized current. This mapping has been found to be extremely consistent between different phase shifters, both on the same chip as well as across different fabrication runs.
Fig. 6
Fig. 6 Measured calibration matrix for a device with 10 GHz channel spacing (a) and 1 GHz channel spacing (b). This matrix connects the observed phase shift in each of the 35 waveguides to the power applied to each of the 35 integrated phase shifters. The diagonal terms correspond to the direct phase shift from a phase shifter, while the off-diagonal terms show thermal cross-talk. The 1 GHz device shows much greater thermal cross-talk due to the increased optical path lengths. The applied power has been normalized to a scale of 0 to 1, so the vertical scale represents the maximum phase shift possible with the available power. All phases are measured relative to waveguide 18. As a result all terms corresponding to waveguide 18 are zero, and applying power to phase shifter 18 appears to produce a negative phase shift in all of the other waveguides.
Fig. 7
Fig. 7 (a) Comparison of optimizing an AWG with 10 GHz channel spacing using the intensity method described in section 4 (red curve) and using the interferometer method (blue curve). Using the interferometer improves cross-talk by more than 15 dB at channels far from the peak transmission. The ideal transmission spectrum is shown in light gray. (b) Measured transmission of each of the eleven channels of the 10 GHz channel spacing AWG following optimization with the interferometer. Each channel shows better than 20 dB of peak to side-lobe contrast and less than −25 dB of adjacent channel cross-talk.
Fig. 8
Fig. 8 (a) Transmission spectrum of each of the eleven channels of an AWG with 1 GHz channel spacing. The channels are not identical, and show peak to side-lobe contrast which ranges from 15 to 20 dB and adjacent channel cross-talk which ranges from −15 dB to −25 dB. (b) Remaining phase error measured using the interferometer. The standard deviation of the remaining phase is less than 0.1 radian. (c) Measured peak transmission of each channel, showing a channel spacing of 0.961 GHz.
Fig. 9
Fig. 9 (a) Schematic of the experimental setup used to demonstrate a photonic RF channelizer. An RF signal is applied to a lithium niobate modulator biased at its null point. The RF signal is modulated onto a fixed wavelength carrier laser. The laser passes through the AWG and the power at each of the output channels is monitored. (b) The observed optical power at each output with(red curve) and without(blue curve) a 2 GHz sinusoidal modulation applied. The modulation appears as increased optical power detected at the channels corresponding to ±2 GHz. (c) The observed optical power at each output with(red curve) and without(blue curve) a 2 GHz triangular modulation applied. Similar to (b), optical power is detected at channels corresponding to ±2 GHz. Additionally, the first harmonic is observed at channels corresponding to ±4 GHz.
Fig. 10
Fig. 10 (a) Target transmission spectrum calculated using phase offsets generated by the Gerchberg Saxton algorithm with a target shape of 11 peaks with linearly increasing transmission (blue curve) along with the measured transmission spectrum (red curve) after applying this phase offset to the AWG. (b) Phase offsets generated by the Gerchberg Saxton algorithm (blue circles) compared to the measured phase of the AWG.
Fig. 11
Fig. 11 (a) Measured spectral shift of a single channel of the AWG as the optical power is increased. The shift was measured to be approximately −70.4 MHz/mW up to 34 mW of power. The maximum power just before the chip was measured to be 85mW with an estimated coupling loss of −4 dB). (b) For comparison, the spectral shift with temperature is observed to be about 11.2 GHz/°C.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ 2 ( δ ϕ ) = L 2 × ( A × Δ 3 × σ 2 ( δ w ) + B × σ 2 ( δ n ) )
Δ = ( n core 2 n clad 2 ) 2 n core 2
ϕ measured + H P = 2 π n , n i = 0 , ± 1 , ± 2

Metrics