Abstract

We report on a method for realizing high refractive index metamaterials using corrugated metallic slot structures at terahertz frequencies. The effective refractive index and peak index frequency can be controlled by varying the width of the air gap in the corrugated slot arrays. The phenomenon occurs because of the secondary resonance effect due to the fundamental inductive-capacitive resonance, which generates a red-shift of the fundamental resonance determined by twice the length of the corrugated metallic slots. In addition, multiple gaps in the corrugated slots act as plasmonic hotspots which have the properties of three-dimensional subwavelength confinement due to extremely strong enhancement of the terahertz waves. The versatile characteristics of the structures may have many potential applications in designing compact optical devices incorporating various functionalities and in developing highly sensitive spectroscopic/imaging systems.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Negative refractive index metamaterials using only metallic cut wires

Alexandre Sellier, Shah Nawaz Burokur, Boubacar Kanté, and André de Lustrac
Opt. Express 17(8) 6301-6310 (2009)

Monopole resonators in planar plasmonic metamaterials

Joong Wook Lee, Jin-Kyu Yang, Ik-Bu Sohn, Hyung Keun Yoo, Chul Kang, and Chul-Sik Kee
Opt. Express 22(15) 18433-18438 (2014)

Terahertz metasurfaces with a high refractive index enhanced by the strong nearest neighbor coupling

Siyu Tan, Fengping Yan, Leena Singh, Wei Cao, Ningning Xu, Xiang Hu, Ranjan Singh, Mingwei Wang, and Weili Zhang
Opt. Express 23(22) 29222-29230 (2015)

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
    [Crossref]
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
    [Crossref]
  3. D. R. Smith and N. Kroll, “Negative refractive index in left-handed materials,” Phys. Rev. Lett. 85(14), 2933–2936 (2000).
    [Crossref] [PubMed]
  4. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  5. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  6. J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
    [Crossref] [PubMed]
  7. J. Shin, J. T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh effective refractive index over a broad bandwidth,” Phys. Rev. Lett. 102(9), 093903 (2009).
    [Crossref] [PubMed]
  8. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
    [Crossref] [PubMed]
  9. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  10. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  11. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  12. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
    [Crossref] [PubMed]
  13. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  14. J. Lee, M. Seo, D. Park, D. Kim, S. Jeoung, Ch. Lienau, Q. H. Park, and P. Planken, “Shape resonance omni-directional terahertz filters with near-unity transmittance,” Opt. Express 14(3), 1253–1259 (2006).
    [Crossref] [PubMed]
  15. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).
  16. J. W. Lee, J. K. Yang, I. B. Sohn, H. K. Yoo, C. Kang, and C. S. Kee, “Monopole resonators in planar plasmonic metamaterials,” Opt. Express 22(15), 18433–18439 (2014).
    [Crossref] [PubMed]
  17. X. Zhang, J. Gu, W. Cao, J. Han, A. Lakhtakia, and W. Zhang, “Bilayer-fish-scale ultrabroad terahertz bandpass filter,” Opt. Lett. 37(5), 906–908 (2012).
    [Crossref] [PubMed]
  18. I. S. Lee, I. B. Sohn, C. Kang, C. S. Kee, J. K. Yang, and J. W. Lee, “Optical isotropy at terahertz frequencies using anisotropic metamaterials,” Appl. Phys. Lett. 109(3), 031103 (2016).
    [Crossref]
  19. H. Jung, C. In, H. Choi, and H. Lee, “Anisotropy modeling of terahertz metamaterials: polarization dependent resonance manipulation by meta-atom cluster,” Sci. Rep. 4, 5217 (2014).
    [Crossref] [PubMed]
  20. Z. Lu, B. Camps-Raga, and N. E. Islam, “Design and analysis of a THz metamaterial structure with high refractive index at two frequencies,” Phys. Res. Int. 2012, 206879 (2012).
    [Crossref]
  21. J. K. Yang, C. S. Kee, and J. W. Lee, “Three-dimensional subwavelength confinement of terahertz electromagnetic surface modes in a coupled slit structure,” Opt. Express 19(21), 20199–20204 (2011).
    [Crossref] [PubMed]
  22. A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
    [Crossref] [PubMed]
  23. Z. Liao, B. C. Pan, Z. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
    [Crossref] [PubMed]
  24. J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
    [Crossref] [PubMed]
  25. G. Subramania, S. Foteinopoulou, and I. Brener, “Nonresonant broadband funneling of light via ultrasubwavelength channels,” Phys. Rev. Lett. 107(16), 163902 (2011).
    [Crossref] [PubMed]
  26. L. Hou, M. Haji, I. Eddie, H. Zhu, and J. H. Marsh, “Laterally coupled dual-grating distributed feedback lasers for generating mode-beat terahertz signals,” Opt. Lett. 40(2), 182–185 (2015).
    [Crossref] [PubMed]
  27. D. Palaferri, Y. Todorov, Y. N. Chen, J. Madeo, A. Vasanelli, L. H. Li, A. G. Davies, E. H. Linfield, and C. Sirtori, “Patch antenna terahertz photodetectors,” Appl. Phys. Lett. 106(16), 161102 (2015).
    [Crossref]
  28. I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett. 98(9), 091107 (2011).
    [Crossref]
  29. Z. Li, S. Cakmakyapan, B. Butun, C. Daskalaki, S. Tzortzakis, X. Yang, and E. Ozbay, “Fano resonances in THz metamaterials composed of continuous metallic wires and split ring resonators,” Opt. Express 22(22), 26572–26584 (2014).
    [Crossref] [PubMed]
  30. Z. X. Zhang and K. T. Chan, “Polarization-dependent plasmonic coupling in dual-layer metallic structures at terahertz frequencies,” Opt. Express 19(3), 2791–2796 (2011).
    [Crossref] [PubMed]
  31. Y. Todorov, P. Desfond, C. Belacel, L. Becerra, and C. Sirtori, “Three-dimensional THz lumped-circuit resonators,” Opt. Express 23(13), 16838–16845 (2015).
    [Crossref] [PubMed]
  32. J. H. Kang, D. S. Kim, and Q. H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102(9), 093906 (2009).
    [Crossref] [PubMed]
  33. M. van Exter and D. Grischkowsky, “Optical and electric properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56(17), 1694–1696 (1990).
    [Crossref]
  34. Z. Jiang, M. Li, and X. C. Zhang, “Dielectric constant measurement of thin films by differential time domain spectroscopy,” Appl. Phys. Lett. 76(22), 3221–3223 (2000).
    [Crossref]
  35. J. W. Lee, J. K. Yang, I. B. Sohn, H. K. Choi, C. Kang, and C. S. Kee, “Relationship between the order of rotation symmetry in perforated apertures and terahertz transmission characteristics,” Opt. Eng. 51(11), 119002 (2012).
    [Crossref]
  36. D. Y. Smith, E. Shiles, and M. Inokuti, “Aluminum (Al)” in Handbook of Optical Constant of Solids, E. D. Palik, ed. (Academic, 1985).
  37. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
    [Crossref] [PubMed]
  38. D. J. Park, S. B. Choi, Y. H. Ahn, Q. H. Park, and D. S. Kim, “Theoretical Study of terahertz Near-Field Enhancement Assisted by Shape Resonance in Rectangular Hole Arrays in Metal Films,” J. Korean Phys. Soc. 54, 7 (2009).

2016 (1)

I. S. Lee, I. B. Sohn, C. Kang, C. S. Kee, J. K. Yang, and J. W. Lee, “Optical isotropy at terahertz frequencies using anisotropic metamaterials,” Appl. Phys. Lett. 109(3), 031103 (2016).
[Crossref]

2015 (3)

2014 (4)

2013 (1)

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

2012 (4)

Z. Lu, B. Camps-Raga, and N. E. Islam, “Design and analysis of a THz metamaterial structure with high refractive index at two frequencies,” Phys. Res. Int. 2012, 206879 (2012).
[Crossref]

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

J. W. Lee, J. K. Yang, I. B. Sohn, H. K. Choi, C. Kang, and C. S. Kee, “Relationship between the order of rotation symmetry in perforated apertures and terahertz transmission characteristics,” Opt. Eng. 51(11), 119002 (2012).
[Crossref]

X. Zhang, J. Gu, W. Cao, J. Han, A. Lakhtakia, and W. Zhang, “Bilayer-fish-scale ultrabroad terahertz bandpass filter,” Opt. Lett. 37(5), 906–908 (2012).
[Crossref] [PubMed]

2011 (7)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref] [PubMed]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Z. X. Zhang and K. T. Chan, “Polarization-dependent plasmonic coupling in dual-layer metallic structures at terahertz frequencies,” Opt. Express 19(3), 2791–2796 (2011).
[Crossref] [PubMed]

J. K. Yang, C. S. Kee, and J. W. Lee, “Three-dimensional subwavelength confinement of terahertz electromagnetic surface modes in a coupled slit structure,” Opt. Express 19(21), 20199–20204 (2011).
[Crossref] [PubMed]

G. Subramania, S. Foteinopoulou, and I. Brener, “Nonresonant broadband funneling of light via ultrasubwavelength channels,” Phys. Rev. Lett. 107(16), 163902 (2011).
[Crossref] [PubMed]

I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett. 98(9), 091107 (2011).
[Crossref]

2009 (3)

J. H. Kang, D. S. Kim, and Q. H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102(9), 093906 (2009).
[Crossref] [PubMed]

J. Shin, J. T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh effective refractive index over a broad bandwidth,” Phys. Rev. Lett. 102(9), 093903 (2009).
[Crossref] [PubMed]

D. J. Park, S. B. Choi, Y. H. Ahn, Q. H. Park, and D. S. Kim, “Theoretical Study of terahertz Near-Field Enhancement Assisted by Shape Resonance in Rectangular Hole Arrays in Metal Films,” J. Korean Phys. Soc. 54, 7 (2009).

2008 (2)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2006 (2)

2005 (2)

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

2004 (1)

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

2000 (3)

D. R. Smith and N. Kroll, “Negative refractive index in left-handed materials,” Phys. Rev. Lett. 85(14), 2933–2936 (2000).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Z. Jiang, M. Li, and X. C. Zhang, “Dielectric constant measurement of thin films by differential time domain spectroscopy,” Appl. Phys. Lett. 76(22), 3221–3223 (2000).
[Crossref]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

1990 (1)

M. van Exter and D. Grischkowsky, “Optical and electric properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56(17), 1694–1696 (1990).
[Crossref]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Ahn, Y. H.

D. J. Park, S. B. Choi, Y. H. Ahn, Q. H. Park, and D. S. Kim, “Theoretical Study of terahertz Near-Field Enhancement Assisted by Shape Resonance in Rectangular Hole Arrays in Metal Films,” J. Korean Phys. Soc. 54, 7 (2009).

Alivisatos, A. P.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref] [PubMed]

Al-Naib, I. A. I.

I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett. 98(9), 091107 (2011).
[Crossref]

Becerra, L.

Belacel, C.

Born, N.

I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett. 98(9), 091107 (2011).
[Crossref]

Brener, I.

G. Subramania, S. Foteinopoulou, and I. Brener, “Nonresonant broadband funneling of light via ultrasubwavelength channels,” Phys. Rev. Lett. 107(16), 163902 (2011).
[Crossref] [PubMed]

Butun, B.

Cakmakyapan, S.

Camps-Raga, B.

Z. Lu, B. Camps-Raga, and N. E. Islam, “Design and analysis of a THz metamaterial structure with high refractive index at two frequencies,” Phys. Res. Int. 2012, 206879 (2012).
[Crossref]

Cao, W.

Catrysse, P. B.

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[Crossref] [PubMed]

Chan, K. T.

Chen, Y. N.

D. Palaferri, Y. Todorov, Y. N. Chen, J. Madeo, A. Vasanelli, L. H. Li, A. G. Davies, E. H. Linfield, and C. Sirtori, “Patch antenna terahertz photodetectors,” Appl. Phys. Lett. 106(16), 161102 (2015).
[Crossref]

Choi, H.

H. Jung, C. In, H. Choi, and H. Lee, “Anisotropy modeling of terahertz metamaterials: polarization dependent resonance manipulation by meta-atom cluster,” Sci. Rep. 4, 5217 (2014).
[Crossref] [PubMed]

Choi, H. K.

J. W. Lee, J. K. Yang, I. B. Sohn, H. K. Choi, C. Kang, and C. S. Kee, “Relationship between the order of rotation symmetry in perforated apertures and terahertz transmission characteristics,” Opt. Eng. 51(11), 119002 (2012).
[Crossref]

Choi, M.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Choi, S. B.

D. J. Park, S. B. Choi, Y. H. Ahn, Q. H. Park, and D. S. Kim, “Theoretical Study of terahertz Near-Field Enhancement Assisted by Shape Resonance in Rectangular Hole Arrays in Metal Films,” J. Korean Phys. Soc. 54, 7 (2009).

Cui, T. J.

Daskalaki, C.

Davies, A. G.

D. Palaferri, Y. Todorov, Y. N. Chen, J. Madeo, A. Vasanelli, L. H. Li, A. G. Davies, E. H. Linfield, and C. Sirtori, “Patch antenna terahertz photodetectors,” Appl. Phys. Lett. 106(16), 161102 (2015).
[Crossref]

Desfond, P.

Eddie, I.

Enoch, S.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

Fan, S.

J. Shin, J. T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh effective refractive index over a broad bandwidth,” Phys. Rev. Lett. 102(9), 093903 (2009).
[Crossref] [PubMed]

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[Crossref] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Foteinopoulou, S.

G. Subramania, S. Foteinopoulou, and I. Brener, “Nonresonant broadband funneling of light via ultrasubwavelength channels,” Phys. Rev. Lett. 107(16), 163902 (2011).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Giessen, H.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref] [PubMed]

Grischkowsky, D.

M. van Exter and D. Grischkowsky, “Optical and electric properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56(17), 1694–1696 (1990).
[Crossref]

Gu, J.

Haji, M.

Han, J.

Hentschel, M.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Hou, L.

In, C.

H. Jung, C. In, H. Choi, and H. Lee, “Anisotropy modeling of terahertz metamaterials: polarization dependent resonance manipulation by meta-atom cluster,” Sci. Rep. 4, 5217 (2014).
[Crossref] [PubMed]

Islam, N. E.

Z. Lu, B. Camps-Raga, and N. E. Islam, “Design and analysis of a THz metamaterial structure with high refractive index at two frequencies,” Phys. Res. Int. 2012, 206879 (2012).
[Crossref]

Jansen, C.

I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett. 98(9), 091107 (2011).
[Crossref]

Jeoung, S.

Jiang, Z.

Z. Jiang, M. Li, and X. C. Zhang, “Dielectric constant measurement of thin films by differential time domain spectroscopy,” Appl. Phys. Lett. 76(22), 3221–3223 (2000).
[Crossref]

Jung, H.

H. Jung, C. In, H. Choi, and H. Lee, “Anisotropy modeling of terahertz metamaterials: polarization dependent resonance manipulation by meta-atom cluster,” Sci. Rep. 4, 5217 (2014).
[Crossref] [PubMed]

Kang, C.

I. S. Lee, I. B. Sohn, C. Kang, C. S. Kee, J. K. Yang, and J. W. Lee, “Optical isotropy at terahertz frequencies using anisotropic metamaterials,” Appl. Phys. Lett. 109(3), 031103 (2016).
[Crossref]

J. W. Lee, J. K. Yang, I. B. Sohn, H. K. Yoo, C. Kang, and C. S. Kee, “Monopole resonators in planar plasmonic metamaterials,” Opt. Express 22(15), 18433–18439 (2014).
[Crossref] [PubMed]

J. W. Lee, J. K. Yang, I. B. Sohn, H. K. Choi, C. Kang, and C. S. Kee, “Relationship between the order of rotation symmetry in perforated apertures and terahertz transmission characteristics,” Opt. Eng. 51(11), 119002 (2012).
[Crossref]

Kang, J. H.

J. H. Kang, D. S. Kim, and Q. H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102(9), 093906 (2009).
[Crossref] [PubMed]

Kang, K. Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Kang, S. B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Kee, C. S.

I. S. Lee, I. B. Sohn, C. Kang, C. S. Kee, J. K. Yang, and J. W. Lee, “Optical isotropy at terahertz frequencies using anisotropic metamaterials,” Appl. Phys. Lett. 109(3), 031103 (2016).
[Crossref]

J. W. Lee, J. K. Yang, I. B. Sohn, H. K. Yoo, C. Kang, and C. S. Kee, “Monopole resonators in planar plasmonic metamaterials,” Opt. Express 22(15), 18433–18439 (2014).
[Crossref] [PubMed]

J. W. Lee, J. K. Yang, I. B. Sohn, H. K. Choi, C. Kang, and C. S. Kee, “Relationship between the order of rotation symmetry in perforated apertures and terahertz transmission characteristics,” Opt. Eng. 51(11), 119002 (2012).
[Crossref]

J. K. Yang, C. S. Kee, and J. W. Lee, “Three-dimensional subwavelength confinement of terahertz electromagnetic surface modes in a coupled slit structure,” Opt. Express 19(21), 20199–20204 (2011).
[Crossref] [PubMed]

Kim, D.

Kim, D. S.

D. J. Park, S. B. Choi, Y. H. Ahn, Q. H. Park, and D. S. Kim, “Theoretical Study of terahertz Near-Field Enhancement Assisted by Shape Resonance in Rectangular Hole Arrays in Metal Films,” J. Korean Phys. Soc. 54, 7 (2009).

J. H. Kang, D. S. Kim, and Q. H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102(9), 093906 (2009).
[Crossref] [PubMed]

Kim, Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Koch, M.

I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett. 98(9), 091107 (2011).
[Crossref]

Koerkamp, K. J. K.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

Kroll, N.

D. R. Smith and N. Kroll, “Negative refractive index in left-handed materials,” Phys. Rev. Lett. 85(14), 2933–2936 (2000).
[Crossref] [PubMed]

Kuipers, L.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

Kwak, M. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Lakhtakia, A.

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lee, H.

H. Jung, C. In, H. Choi, and H. Lee, “Anisotropy modeling of terahertz metamaterials: polarization dependent resonance manipulation by meta-atom cluster,” Sci. Rep. 4, 5217 (2014).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Lee, I. S.

I. S. Lee, I. B. Sohn, C. Kang, C. S. Kee, J. K. Yang, and J. W. Lee, “Optical isotropy at terahertz frequencies using anisotropic metamaterials,” Appl. Phys. Lett. 109(3), 031103 (2016).
[Crossref]

Lee, J.

Lee, J. W.

I. S. Lee, I. B. Sohn, C. Kang, C. S. Kee, J. K. Yang, and J. W. Lee, “Optical isotropy at terahertz frequencies using anisotropic metamaterials,” Appl. Phys. Lett. 109(3), 031103 (2016).
[Crossref]

J. W. Lee, J. K. Yang, I. B. Sohn, H. K. Yoo, C. Kang, and C. S. Kee, “Monopole resonators in planar plasmonic metamaterials,” Opt. Express 22(15), 18433–18439 (2014).
[Crossref] [PubMed]

J. W. Lee, J. K. Yang, I. B. Sohn, H. K. Choi, C. Kang, and C. S. Kee, “Relationship between the order of rotation symmetry in perforated apertures and terahertz transmission characteristics,” Opt. Eng. 51(11), 119002 (2012).
[Crossref]

J. K. Yang, C. S. Kee, and J. W. Lee, “Three-dimensional subwavelength confinement of terahertz electromagnetic surface modes in a coupled slit structure,” Opt. Express 19(21), 20199–20204 (2011).
[Crossref] [PubMed]

Lee, S. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Lee, Y. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Li, L. H.

D. Palaferri, Y. Todorov, Y. N. Chen, J. Madeo, A. Vasanelli, L. H. Li, A. G. Davies, E. H. Linfield, and C. Sirtori, “Patch antenna terahertz photodetectors,” Appl. Phys. Lett. 106(16), 161102 (2015).
[Crossref]

Li, M.

Z. Jiang, M. Li, and X. C. Zhang, “Dielectric constant measurement of thin films by differential time domain spectroscopy,” Appl. Phys. Lett. 76(22), 3221–3223 (2000).
[Crossref]

Li, Z.

Liao, Z.

Lienau, Ch.

Linfield, E. H.

D. Palaferri, Y. Todorov, Y. N. Chen, J. Madeo, A. Vasanelli, L. H. Li, A. G. Davies, E. H. Linfield, and C. Sirtori, “Patch antenna terahertz photodetectors,” Appl. Phys. Lett. 106(16), 161102 (2015).
[Crossref]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, N.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref] [PubMed]

Lu, Z.

Z. Lu, B. Camps-Raga, and N. E. Islam, “Design and analysis of a THz metamaterial structure with high refractive index at two frequencies,” Phys. Res. Int. 2012, 206879 (2012).
[Crossref]

Madeo, J.

D. Palaferri, Y. Todorov, Y. N. Chen, J. Madeo, A. Vasanelli, L. H. Li, A. G. Davies, E. H. Linfield, and C. Sirtori, “Patch antenna terahertz photodetectors,” Appl. Phys. Lett. 106(16), 161102 (2015).
[Crossref]

Marsh, J. H.

Martin-Moreno, L.

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

Min, B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Moreno, E.

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

Ou, J. Y.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Ozbay, E.

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Palaferri, D.

D. Palaferri, Y. Todorov, Y. N. Chen, J. Madeo, A. Vasanelli, L. H. Li, A. G. Davies, E. H. Linfield, and C. Sirtori, “Patch antenna terahertz photodetectors,” Appl. Phys. Lett. 106(16), 161102 (2015).
[Crossref]

Pan, B. C.

Park, D.

Park, D. J.

D. J. Park, S. B. Choi, Y. H. Ahn, Q. H. Park, and D. S. Kim, “Theoretical Study of terahertz Near-Field Enhancement Assisted by Shape Resonance in Rectangular Hole Arrays in Metal Films,” J. Korean Phys. Soc. 54, 7 (2009).

Park, N.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Park, Q. H.

D. J. Park, S. B. Choi, Y. H. Ahn, Q. H. Park, and D. S. Kim, “Theoretical Study of terahertz Near-Field Enhancement Assisted by Shape Resonance in Rectangular Hole Arrays in Metal Films,” J. Korean Phys. Soc. 54, 7 (2009).

J. H. Kang, D. S. Kim, and Q. H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102(9), 093906 (2009).
[Crossref] [PubMed]

J. Lee, M. Seo, D. Park, D. Kim, S. Jeoung, Ch. Lienau, Q. H. Park, and P. Planken, “Shape resonance omni-directional terahertz filters with near-unity transmittance,” Opt. Express 14(3), 1253–1259 (2006).
[Crossref] [PubMed]

Pendry, J. B.

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Planken, P.

Plum, E.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Pors, A.

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Segerink, F. B.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

Seo, M.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shen, J. T.

J. Shin, J. T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh effective refractive index over a broad bandwidth,” Phys. Rev. Lett. 102(9), 093903 (2009).
[Crossref] [PubMed]

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[Crossref] [PubMed]

Shen, Z.

Shin, J.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

J. Shin, J. T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh effective refractive index over a broad bandwidth,” Phys. Rev. Lett. 102(9), 093903 (2009).
[Crossref] [PubMed]

Sirtori, C.

D. Palaferri, Y. Todorov, Y. N. Chen, J. Madeo, A. Vasanelli, L. H. Li, A. G. Davies, E. H. Linfield, and C. Sirtori, “Patch antenna terahertz photodetectors,” Appl. Phys. Lett. 106(16), 161102 (2015).
[Crossref]

Y. Todorov, P. Desfond, C. Belacel, L. Becerra, and C. Sirtori, “Three-dimensional THz lumped-circuit resonators,” Opt. Express 23(13), 16838–16845 (2015).
[Crossref] [PubMed]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

D. R. Smith and N. Kroll, “Negative refractive index in left-handed materials,” Phys. Rev. Lett. 85(14), 2933–2936 (2000).
[Crossref] [PubMed]

Sohn, I. B.

I. S. Lee, I. B. Sohn, C. Kang, C. S. Kee, J. K. Yang, and J. W. Lee, “Optical isotropy at terahertz frequencies using anisotropic metamaterials,” Appl. Phys. Lett. 109(3), 031103 (2016).
[Crossref]

J. W. Lee, J. K. Yang, I. B. Sohn, H. K. Yoo, C. Kang, and C. S. Kee, “Monopole resonators in planar plasmonic metamaterials,” Opt. Express 22(15), 18433–18439 (2014).
[Crossref] [PubMed]

J. W. Lee, J. K. Yang, I. B. Sohn, H. K. Choi, C. Kang, and C. S. Kee, “Relationship between the order of rotation symmetry in perforated apertures and terahertz transmission characteristics,” Opt. Eng. 51(11), 119002 (2012).
[Crossref]

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Subramania, G.

G. Subramania, S. Foteinopoulou, and I. Brener, “Nonresonant broadband funneling of light via ultrasubwavelength channels,” Phys. Rev. Lett. 107(16), 163902 (2011).
[Crossref] [PubMed]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Todorov, Y.

D. Palaferri, Y. Todorov, Y. N. Chen, J. Madeo, A. Vasanelli, L. H. Li, A. G. Davies, E. H. Linfield, and C. Sirtori, “Patch antenna terahertz photodetectors,” Appl. Phys. Lett. 106(16), 161102 (2015).
[Crossref]

Y. Todorov, P. Desfond, C. Belacel, L. Becerra, and C. Sirtori, “Three-dimensional THz lumped-circuit resonators,” Opt. Express 23(13), 16838–16845 (2015).
[Crossref] [PubMed]

Tzortzakis, S.

van Exter, M.

M. van Exter and D. Grischkowsky, “Optical and electric properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56(17), 1694–1696 (1990).
[Crossref]

van Hulst, N. F.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

Vasanelli, A.

D. Palaferri, Y. Todorov, Y. N. Chen, J. Madeo, A. Vasanelli, L. H. Li, A. G. Davies, E. H. Linfield, and C. Sirtori, “Patch antenna terahertz photodetectors,” Appl. Phys. Lett. 106(16), 161102 (2015).
[Crossref]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

Weiss, T.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref] [PubMed]

Yang, J. K.

I. S. Lee, I. B. Sohn, C. Kang, C. S. Kee, J. K. Yang, and J. W. Lee, “Optical isotropy at terahertz frequencies using anisotropic metamaterials,” Appl. Phys. Lett. 109(3), 031103 (2016).
[Crossref]

J. W. Lee, J. K. Yang, I. B. Sohn, H. K. Yoo, C. Kang, and C. S. Kee, “Monopole resonators in planar plasmonic metamaterials,” Opt. Express 22(15), 18433–18439 (2014).
[Crossref] [PubMed]

J. W. Lee, J. K. Yang, I. B. Sohn, H. K. Choi, C. Kang, and C. S. Kee, “Relationship between the order of rotation symmetry in perforated apertures and terahertz transmission characteristics,” Opt. Eng. 51(11), 119002 (2012).
[Crossref]

J. K. Yang, C. S. Kee, and J. W. Lee, “Three-dimensional subwavelength confinement of terahertz electromagnetic surface modes in a coupled slit structure,” Opt. Express 19(21), 20199–20204 (2011).
[Crossref] [PubMed]

Yang, X.

Yoo, H. K.

Zhang, J.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, W.

Zhang, X.

X. Zhang, J. Gu, W. Cao, J. Han, A. Lakhtakia, and W. Zhang, “Bilayer-fish-scale ultrabroad terahertz bandpass filter,” Opt. Lett. 37(5), 906–908 (2012).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Zhang, X. C.

Z. Jiang, M. Li, and X. C. Zhang, “Dielectric constant measurement of thin films by differential time domain spectroscopy,” Appl. Phys. Lett. 76(22), 3221–3223 (2000).
[Crossref]

Zhang, Z. X.

Zheludev, N. I.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Zhu, H.

Appl. Phys. Lett. (5)

I. S. Lee, I. B. Sohn, C. Kang, C. S. Kee, J. K. Yang, and J. W. Lee, “Optical isotropy at terahertz frequencies using anisotropic metamaterials,” Appl. Phys. Lett. 109(3), 031103 (2016).
[Crossref]

D. Palaferri, Y. Todorov, Y. N. Chen, J. Madeo, A. Vasanelli, L. H. Li, A. G. Davies, E. H. Linfield, and C. Sirtori, “Patch antenna terahertz photodetectors,” Appl. Phys. Lett. 106(16), 161102 (2015).
[Crossref]

I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett. 98(9), 091107 (2011).
[Crossref]

M. van Exter and D. Grischkowsky, “Optical and electric properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56(17), 1694–1696 (1990).
[Crossref]

Z. Jiang, M. Li, and X. C. Zhang, “Dielectric constant measurement of thin films by differential time domain spectroscopy,” Appl. Phys. Lett. 76(22), 3221–3223 (2000).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

J. Korean Phys. Soc. (1)

D. J. Park, S. B. Choi, Y. H. Ahn, Q. H. Park, and D. S. Kim, “Theoretical Study of terahertz Near-Field Enhancement Assisted by Shape Resonance in Rectangular Hole Arrays in Metal Films,” J. Korean Phys. Soc. 54, 7 (2009).

Nat. Nanotechnol. (1)

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

Nature (1)

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Opt. Eng. (1)

J. W. Lee, J. K. Yang, I. B. Sohn, H. K. Choi, C. Kang, and C. S. Kee, “Relationship between the order of rotation symmetry in perforated apertures and terahertz transmission characteristics,” Opt. Eng. 51(11), 119002 (2012).
[Crossref]

Opt. Express (7)

Opt. Lett. (2)

Phys. Res. Int. (1)

Z. Lu, B. Camps-Raga, and N. E. Islam, “Design and analysis of a THz metamaterial structure with high refractive index at two frequencies,” Phys. Res. Int. 2012, 206879 (2012).
[Crossref]

Phys. Rev. Lett. (10)

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

G. Subramania, S. Foteinopoulou, and I. Brener, “Nonresonant broadband funneling of light via ultrasubwavelength channels,” Phys. Rev. Lett. 107(16), 163902 (2011).
[Crossref] [PubMed]

J. H. Kang, D. S. Kim, and Q. H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102(9), 093906 (2009).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[Crossref] [PubMed]

J. Shin, J. T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh effective refractive index over a broad bandwidth,” Phys. Rev. Lett. 102(9), 093903 (2009).
[Crossref] [PubMed]

D. R. Smith and N. Kroll, “Negative refractive index in left-handed materials,” Phys. Rev. Lett. 85(14), 2933–2936 (2000).
[Crossref] [PubMed]

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

Sci. Rep. (1)

H. Jung, C. In, H. Choi, and H. Lee, “Anisotropy modeling of terahertz metamaterials: polarization dependent resonance manipulation by meta-atom cluster,” Sci. Rep. 4, 5217 (2014).
[Crossref] [PubMed]

Science (4)

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Other (1)

D. Y. Smith, E. Shiles, and M. Inokuti, “Aluminum (Al)” in Handbook of Optical Constant of Solids, E. D. Palik, ed. (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Schematic of the composite metamaterial consisting of the periodical arrangements of corrugated air-slots used in our experiments. The polarization of the incident THz waves lies in the x-axis. The side inset shows a unit cell with the associated geometric features. The unit cell has dimensions of Ly = 400 µm, Lx = 80 µm, b = 95 µm, t = 10 µm, a2 = 40 µm, and a1 = 10 µm. The gap width was designed with different values of d = 80, 20, 10, and 5 µm.
Fig. 2
Fig. 2 (a) Microscopic images of the unit cells of five metamaterials with different gap width of d = 5 µm (Sample A), 10 µm (Sample B), 20 µm (Sample C), and 80 µm (Sample E). The unit cell of Sample D has a straight slot of the width 5 µm. (b) and (c) Normalized transmission amplitudes measured from five metamaterials and simulation results based on FDTD method, respectively. (d) Resonance peak values extracted from experimental (blue triangles) and simulation (blue squares) results and scale parameters S (blue circles). The red ones represent the corresponding effect dielectric constants. All the curves indicate the fitting curves. (e) Electric field intensity distribution simulated with Sample A.
Fig. 3
Fig. 3 (a) Simulated amplitude spectra of the THz wave transmission for metamaterials composed of the corrugated slots with the length of 800 µm. The gap width d is varied from 90 µm to 5 µm, while keeping the other parameters constant. (b) The effective dielectric constants calculated using the resonance peak values of the simulation results shown in (a) (black squares) and ones shown in Fig. 2(c) (red circles). The inset shows the resonant peak values extracted from the simulation results. (c) Spatial field distribution of the electric field intensity at a unit cell of the corrugated slot structure. (d) The intensity profile of the electric near-field in the cross-section at the center of the slot along the y-axis.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S= α C 0 +β C 1 ,

Metrics