Abstract

A Nd3+ fiber amplifier with gain from 1376 nm to 1466 nm is demonstrated. This is enabled by a wavelength selective waveguide that suppresses amplified spontaneous emission between 850 nm and 1150 nm. It is shown that while excited state absorption (ESA) precludes net gain below 1375 nm with the exception of a small band from 1333 nm to 1350 nm, ESA diminishes steadily beyond 1375 nm allowing for the construction of an efficient fiber amplifier with a gain peak at 1400 nm and the potential for gain from 1375 nm to 1500 nm. A peak small signal gain of 13.3 dB is measured at 1402 nm with a noise figure of 7.6 dB. Detailed measurements of the Nd3+ emission and excited state absorption cross sections suggest the potential for better performance in improved fibers. Specifically, reduction of the fiber mode field diameter from 10.5 µm to 5.25 µm and reduction of the fiber background loss to <10 dB/km at 1400 nm should enable construction of an E-band fiber amplifier with a noise figure < 5 dB and a small signal gain > 20 dB over 30 nm of bandwidth. Such an amplifier would have a form factor and optical properties similar to current erbium fiber amplifiers, enabling modern fiber optic communication systems to operate in the E-band with amplifier technology similar to that employed in the C and L bands.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
1.2W laser amplification at 1427nm on the 4F3/2 to 4I13/2 spectral line in an Nd3+ doped fused silica optical fiber

Jay W. Dawson, Paul H. Pax, Graham S. Allen, Derrek R. Drachenberg, Victor V. Khitrov, Nick Schenkel, and Michael J. Messerly
Opt. Express 24(25) 29138-29152 (2016)

Investigation of signal excited-state absorption in bismuth-based erbium-doped fiber amplifier

Jae Hyun Shin and Ju Han Lee
J. Opt. Soc. Am. B 27(7) 1452-1457 (2010)

1.50-µm-band gain-shifted thulium-doped fiber amplifier with 1.05- and 1.56-µm dual-wavelength pumping

Tadashi Kasamatsu, Yutaka Yano, and Hitoshi Sekita
Opt. Lett. 24(23) 1684-1686 (1999)

References

  • View by:
  • |
  • |
  • |

  1. F. P. Partus, G. A. Thomas, R. M. Atkins, and J. W. Fleming, “Optical Fiber with Low OH Impurity and Communication System Using the Optical Fiber,” US Patent Number 5,692,087 (1997).
  2. K. Chang, D. Kalish, and M. Pearsall, “New hydrogen aging loss mechanism in the 1400 nm window,” in Optical Fiber Communication Conference and the International Conference on Integrated Optics and Optical Fiber Communication, OSA Technical Digest Series (Optical Society of America, 1999), paper PD22.
    [Crossref]
  3. B. Clesca, H. Fevier, and W. Pelouch, “Raman amplification,” Opt. Photonics News 26(9), 32–39 (2015).
    [Crossref]
  4. J. Bromage, “Raman amplification for fiber communication systems,” J. Lightwave Technol. 22(1), 79–92 (2004).
    [Crossref]
  5. E. M. Dianov, “Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers,” Light Sci. Appl. 1(5), e12 (2012).
    [Crossref]
  6. P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photonics Technol. Lett. 10(1), 159–161 (1998).
    [Crossref]
  7. J. W. Dawson, P. H. Pax, G. S. Allen, D. R. Drachenberg, V. V. Khitrov, N. Schenkel, and M. J. Messerly, “1.2W laser amplification at 1427 nm on the 4F3/2 to 4I13/2 spectral line in an Nd3+ doped fused silica optical fiber,” Opt. Express 24(25), 29138–29152 (2016).
    [Crossref]
  8. J. W. Dawson, P. H. Pax, G. S. Allen, D. R. Drachenberg, V. V. Khitrov, L. S. Kiani, N. Schenkel, and M. J. Messerly, “High gain, high power Nd3+ fiber laser at 1427 nm,” in Lasers Congress 2016 (ASSL, LSC, LAC), OSA Technical Digest (online) (Optical Society of America, 2016), paper ATu6A.5.
    [Crossref]
  9. F. Hakimi, H. Po, R. Tumminelli, B. C. McCollum, L. Zenteno, N. M. Cho, and E. Snitzer, “Glass fiber laser at 1.36 µm from SiO2:Nd,” Opt. Lett. 14(19), 1060–1061 (1989).
    [Crossref]
  10. Y. Miyajima, T. Komukai, and T. Sugawa, “1.31-1.36µm optical amplification in Nd3+-doped fluorozirconate fibre,” Electron. Lett. 26(3), 194–195 (1990).
    [Crossref]
  11. T. Komukai, Y. Fukasaku, T. Sugawa, and Y. Miyajima, “Highly efficient and tunable Nd3+ doped fluoride fiber laser operating in 1.3µm band,” Electron. Lett. 29(9), 755–757 (1993).
    [Crossref]
  12. P. R. Morkel, M. C. Farries, and S. B. Poole, “Spectral variation of excited state absorption in neodymium doped fibre lasers,” Opt. Commun. 67(5), 349–352 (1988).
    [Crossref]
  13. S. Zemon, B. Pedersen, G. Lambert, W. J. Miniscalco, B. T. Hall, R. C. Folweiler, B. A. Thompson, and L. J. Andrews, “Excited-state-absorption cross sections and amplifier modeling in the 1300-nm region for Nd-doped glasses,” IEEE Photonics Technol. Lett. 4(3), 244–247 (1992).
    [Crossref]
  14. P. H. Pax, V. V. Khitrov, D. R. Drachenberg, G. S. Allen, B. Ward, M. Dubinskii, M. J. Messerly, and J. W. Dawson, “Scalable waveguide design for three-level operation in Neodymium doped fiber laser,” Opt. Express 24(25), 28633–28647 (2016).
    [Crossref]
  15. C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930nm,” Appl. Phys. B 98(2-3), 317–322 (2010).
    [Crossref]
  16. C. R. Giles and E. Desurvire, “Modeling Erbium-doped fiber amplifiers,” J. Lightwave Technol. 9(2), 271–283 (1991).
    [Crossref]
  17. J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum Electronic Properties of the Na3Ga2Li3F12: Cr3+ Laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
    [Crossref]
  18. D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range,” IEEE J. Quantum Electron. 40(9), 1275–1282 (2004).
    [Crossref]
  19. D. Derickson, Fiber Optic Test and Measurement (Prentice Hall PTR, 1998)

2016 (2)

2015 (1)

B. Clesca, H. Fevier, and W. Pelouch, “Raman amplification,” Opt. Photonics News 26(9), 32–39 (2015).
[Crossref]

2012 (1)

E. M. Dianov, “Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers,” Light Sci. Appl. 1(5), e12 (2012).
[Crossref]

2010 (1)

C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930nm,” Appl. Phys. B 98(2-3), 317–322 (2010).
[Crossref]

2004 (2)

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range,” IEEE J. Quantum Electron. 40(9), 1275–1282 (2004).
[Crossref]

J. Bromage, “Raman amplification for fiber communication systems,” J. Lightwave Technol. 22(1), 79–92 (2004).
[Crossref]

1998 (1)

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photonics Technol. Lett. 10(1), 159–161 (1998).
[Crossref]

1993 (1)

T. Komukai, Y. Fukasaku, T. Sugawa, and Y. Miyajima, “Highly efficient and tunable Nd3+ doped fluoride fiber laser operating in 1.3µm band,” Electron. Lett. 29(9), 755–757 (1993).
[Crossref]

1992 (1)

S. Zemon, B. Pedersen, G. Lambert, W. J. Miniscalco, B. T. Hall, R. C. Folweiler, B. A. Thompson, and L. J. Andrews, “Excited-state-absorption cross sections and amplifier modeling in the 1300-nm region for Nd-doped glasses,” IEEE Photonics Technol. Lett. 4(3), 244–247 (1992).
[Crossref]

1991 (1)

C. R. Giles and E. Desurvire, “Modeling Erbium-doped fiber amplifiers,” J. Lightwave Technol. 9(2), 271–283 (1991).
[Crossref]

1990 (1)

Y. Miyajima, T. Komukai, and T. Sugawa, “1.31-1.36µm optical amplification in Nd3+-doped fluorozirconate fibre,” Electron. Lett. 26(3), 194–195 (1990).
[Crossref]

1989 (1)

1988 (2)

P. R. Morkel, M. C. Farries, and S. B. Poole, “Spectral variation of excited state absorption in neodymium doped fibre lasers,” Opt. Commun. 67(5), 349–352 (1988).
[Crossref]

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum Electronic Properties of the Na3Ga2Li3F12: Cr3+ Laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Allen, G. S.

Andrews, L. J.

S. Zemon, B. Pedersen, G. Lambert, W. J. Miniscalco, B. T. Hall, R. C. Folweiler, B. A. Thompson, and L. J. Andrews, “Excited-state-absorption cross sections and amplifier modeling in the 1300-nm region for Nd-doped glasses,” IEEE Photonics Technol. Lett. 4(3), 244–247 (1992).
[Crossref]

Baek, S.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range,” IEEE J. Quantum Electron. 40(9), 1275–1282 (2004).
[Crossref]

Bartolacci, C.

C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930nm,” Appl. Phys. B 98(2-3), 317–322 (2010).
[Crossref]

Bromage, J.

Cadier, B.

C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930nm,” Appl. Phys. B 98(2-3), 317–322 (2010).
[Crossref]

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum Electronic Properties of the Na3Ga2Li3F12: Cr3+ Laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Chase, L. L.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum Electronic Properties of the Na3Ga2Li3F12: Cr3+ Laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Cho, N. M.

Clesca, B.

B. Clesca, H. Fevier, and W. Pelouch, “Raman amplification,” Opt. Photonics News 26(9), 32–39 (2015).
[Crossref]

Codemard, C.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range,” IEEE J. Quantum Electron. 40(9), 1275–1282 (2004).
[Crossref]

Dawson, J. W.

DeMarco, J. J.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photonics Technol. Lett. 10(1), 159–161 (1998).
[Crossref]

Desurvire, E.

C. R. Giles and E. Desurvire, “Modeling Erbium-doped fiber amplifiers,” J. Lightwave Technol. 9(2), 271–283 (1991).
[Crossref]

Dianov, E. M.

E. M. Dianov, “Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers,” Light Sci. Appl. 1(5), e12 (2012).
[Crossref]

DiGiovanni, D. J.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photonics Technol. Lett. 10(1), 159–161 (1998).
[Crossref]

Drachenberg, D. R.

Dubinskii, M.

Dupriez, P.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range,” IEEE J. Quantum Electron. 40(9), 1275–1282 (2004).
[Crossref]

Eskildsen, L.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photonics Technol. Lett. 10(1), 159–161 (1998).
[Crossref]

Farries, M. C.

P. R. Morkel, M. C. Farries, and S. B. Poole, “Spectral variation of excited state absorption in neodymium doped fibre lasers,” Opt. Commun. 67(5), 349–352 (1988).
[Crossref]

Fevier, H.

B. Clesca, H. Fevier, and W. Pelouch, “Raman amplification,” Opt. Photonics News 26(9), 32–39 (2015).
[Crossref]

Folweiler, R. C.

S. Zemon, B. Pedersen, G. Lambert, W. J. Miniscalco, B. T. Hall, R. C. Folweiler, B. A. Thompson, and L. J. Andrews, “Excited-state-absorption cross sections and amplifier modeling in the 1300-nm region for Nd-doped glasses,” IEEE Photonics Technol. Lett. 4(3), 244–247 (1992).
[Crossref]

Fukasaku, Y.

T. Komukai, Y. Fukasaku, T. Sugawa, and Y. Miyajima, “Highly efficient and tunable Nd3+ doped fluoride fiber laser operating in 1.3µm band,” Electron. Lett. 29(9), 755–757 (1993).
[Crossref]

Giles, C. R.

C. R. Giles and E. Desurvire, “Modeling Erbium-doped fiber amplifiers,” J. Lightwave Technol. 9(2), 271–283 (1991).
[Crossref]

Gilles, H.

C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930nm,” Appl. Phys. B 98(2-3), 317–322 (2010).
[Crossref]

Girard, S.

C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930nm,” Appl. Phys. B 98(2-3), 317–322 (2010).
[Crossref]

Hakimi, F.

Hall, B. T.

S. Zemon, B. Pedersen, G. Lambert, W. J. Miniscalco, B. T. Hall, R. C. Folweiler, B. A. Thompson, and L. J. Andrews, “Excited-state-absorption cross sections and amplifier modeling in the 1300-nm region for Nd-doped glasses,” IEEE Photonics Technol. Lett. 4(3), 244–247 (1992).
[Crossref]

Hansen, P. B.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photonics Technol. Lett. 10(1), 159–161 (1998).
[Crossref]

Jeong, Y.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range,” IEEE J. Quantum Electron. 40(9), 1275–1282 (2004).
[Crossref]

Judkins, J.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photonics Technol. Lett. 10(1), 159–161 (1998).
[Crossref]

Khitrov, V. V.

Kim, J.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range,” IEEE J. Quantum Electron. 40(9), 1275–1282 (2004).
[Crossref]

Komukai, T.

T. Komukai, Y. Fukasaku, T. Sugawa, and Y. Miyajima, “Highly efficient and tunable Nd3+ doped fluoride fiber laser operating in 1.3µm band,” Electron. Lett. 29(9), 755–757 (1993).
[Crossref]

Y. Miyajima, T. Komukai, and T. Sugawa, “1.31-1.36µm optical amplification in Nd3+-doped fluorozirconate fibre,” Electron. Lett. 26(3), 194–195 (1990).
[Crossref]

Krupke, W. F.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum Electronic Properties of the Na3Ga2Li3F12: Cr3+ Laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Lambert, G.

S. Zemon, B. Pedersen, G. Lambert, W. J. Miniscalco, B. T. Hall, R. C. Folweiler, B. A. Thompson, and L. J. Andrews, “Excited-state-absorption cross sections and amplifier modeling in the 1300-nm region for Nd-doped glasses,” IEEE Photonics Technol. Lett. 4(3), 244–247 (1992).
[Crossref]

Laroche, M.

C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930nm,” Appl. Phys. B 98(2-3), 317–322 (2010).
[Crossref]

McCollum, B. C.

Messerly, M. J.

Miniscalco, W. J.

S. Zemon, B. Pedersen, G. Lambert, W. J. Miniscalco, B. T. Hall, R. C. Folweiler, B. A. Thompson, and L. J. Andrews, “Excited-state-absorption cross sections and amplifier modeling in the 1300-nm region for Nd-doped glasses,” IEEE Photonics Technol. Lett. 4(3), 244–247 (1992).
[Crossref]

Miyajima, Y.

T. Komukai, Y. Fukasaku, T. Sugawa, and Y. Miyajima, “Highly efficient and tunable Nd3+ doped fluoride fiber laser operating in 1.3µm band,” Electron. Lett. 29(9), 755–757 (1993).
[Crossref]

Y. Miyajima, T. Komukai, and T. Sugawa, “1.31-1.36µm optical amplification in Nd3+-doped fluorozirconate fibre,” Electron. Lett. 26(3), 194–195 (1990).
[Crossref]

Morkel, P. R.

P. R. Morkel, M. C. Farries, and S. B. Poole, “Spectral variation of excited state absorption in neodymium doped fibre lasers,” Opt. Commun. 67(5), 349–352 (1988).
[Crossref]

Nilsson, J.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range,” IEEE J. Quantum Electron. 40(9), 1275–1282 (2004).
[Crossref]

Oh, K.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range,” IEEE J. Quantum Electron. 40(9), 1275–1282 (2004).
[Crossref]

Pax, P. H.

Payne, S. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum Electronic Properties of the Na3Ga2Li3F12: Cr3+ Laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Pedersen, B.

S. Zemon, B. Pedersen, G. Lambert, W. J. Miniscalco, B. T. Hall, R. C. Folweiler, B. A. Thompson, and L. J. Andrews, “Excited-state-absorption cross sections and amplifier modeling in the 1300-nm region for Nd-doped glasses,” IEEE Photonics Technol. Lett. 4(3), 244–247 (1992).
[Crossref]

Pedrazzani, R.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photonics Technol. Lett. 10(1), 159–161 (1998).
[Crossref]

Pelouch, W.

B. Clesca, H. Fevier, and W. Pelouch, “Raman amplification,” Opt. Photonics News 26(9), 32–39 (2015).
[Crossref]

Philippov, V.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range,” IEEE J. Quantum Electron. 40(9), 1275–1282 (2004).
[Crossref]

Po, H.

Poole, S. B.

P. R. Morkel, M. C. Farries, and S. B. Poole, “Spectral variation of excited state absorption in neodymium doped fibre lasers,” Opt. Commun. 67(5), 349–352 (1988).
[Crossref]

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum Electronic Properties of the Na3Ga2Li3F12: Cr3+ Laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Robin, T.

C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930nm,” Appl. Phys. B 98(2-3), 317–322 (2010).
[Crossref]

Sahu, J. K.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range,” IEEE J. Quantum Electron. 40(9), 1275–1282 (2004).
[Crossref]

Schenkel, N.

Snitzer, E.

Soh, D. B. S.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range,” IEEE J. Quantum Electron. 40(9), 1275–1282 (2004).
[Crossref]

Staber, P. R.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum Electronic Properties of the Na3Ga2Li3F12: Cr3+ Laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Stentz, A. J.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photonics Technol. Lett. 10(1), 159–161 (1998).
[Crossref]

Strasser, T. A.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photonics Technol. Lett. 10(1), 159–161 (1998).
[Crossref]

Sugawa, T.

T. Komukai, Y. Fukasaku, T. Sugawa, and Y. Miyajima, “Highly efficient and tunable Nd3+ doped fluoride fiber laser operating in 1.3µm band,” Electron. Lett. 29(9), 755–757 (1993).
[Crossref]

Y. Miyajima, T. Komukai, and T. Sugawa, “1.31-1.36µm optical amplification in Nd3+-doped fluorozirconate fibre,” Electron. Lett. 26(3), 194–195 (1990).
[Crossref]

Thompson, B. A.

S. Zemon, B. Pedersen, G. Lambert, W. J. Miniscalco, B. T. Hall, R. C. Folweiler, B. A. Thompson, and L. J. Andrews, “Excited-state-absorption cross sections and amplifier modeling in the 1300-nm region for Nd-doped glasses,” IEEE Photonics Technol. Lett. 4(3), 244–247 (1992).
[Crossref]

Tumminelli, R.

Ward, B.

Yoo, S.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range,” IEEE J. Quantum Electron. 40(9), 1275–1282 (2004).
[Crossref]

Zemon, S.

S. Zemon, B. Pedersen, G. Lambert, W. J. Miniscalco, B. T. Hall, R. C. Folweiler, B. A. Thompson, and L. J. Andrews, “Excited-state-absorption cross sections and amplifier modeling in the 1300-nm region for Nd-doped glasses,” IEEE Photonics Technol. Lett. 4(3), 244–247 (1992).
[Crossref]

Zenteno, L.

Appl. Phys. B (1)

C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930nm,” Appl. Phys. B 98(2-3), 317–322 (2010).
[Crossref]

Electron. Lett. (2)

Y. Miyajima, T. Komukai, and T. Sugawa, “1.31-1.36µm optical amplification in Nd3+-doped fluorozirconate fibre,” Electron. Lett. 26(3), 194–195 (1990).
[Crossref]

T. Komukai, Y. Fukasaku, T. Sugawa, and Y. Miyajima, “Highly efficient and tunable Nd3+ doped fluoride fiber laser operating in 1.3µm band,” Electron. Lett. 29(9), 755–757 (1993).
[Crossref]

IEEE J. Quantum Electron. (2)

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum Electronic Properties of the Na3Ga2Li3F12: Cr3+ Laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range,” IEEE J. Quantum Electron. 40(9), 1275–1282 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (2)

S. Zemon, B. Pedersen, G. Lambert, W. J. Miniscalco, B. T. Hall, R. C. Folweiler, B. A. Thompson, and L. J. Andrews, “Excited-state-absorption cross sections and amplifier modeling in the 1300-nm region for Nd-doped glasses,” IEEE Photonics Technol. Lett. 4(3), 244–247 (1992).
[Crossref]

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photonics Technol. Lett. 10(1), 159–161 (1998).
[Crossref]

J. Lightwave Technol. (2)

J. Bromage, “Raman amplification for fiber communication systems,” J. Lightwave Technol. 22(1), 79–92 (2004).
[Crossref]

C. R. Giles and E. Desurvire, “Modeling Erbium-doped fiber amplifiers,” J. Lightwave Technol. 9(2), 271–283 (1991).
[Crossref]

Light Sci. Appl. (1)

E. M. Dianov, “Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers,” Light Sci. Appl. 1(5), e12 (2012).
[Crossref]

Opt. Commun. (1)

P. R. Morkel, M. C. Farries, and S. B. Poole, “Spectral variation of excited state absorption in neodymium doped fibre lasers,” Opt. Commun. 67(5), 349–352 (1988).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Photonics News (1)

B. Clesca, H. Fevier, and W. Pelouch, “Raman amplification,” Opt. Photonics News 26(9), 32–39 (2015).
[Crossref]

Other (4)

J. W. Dawson, P. H. Pax, G. S. Allen, D. R. Drachenberg, V. V. Khitrov, L. S. Kiani, N. Schenkel, and M. J. Messerly, “High gain, high power Nd3+ fiber laser at 1427 nm,” in Lasers Congress 2016 (ASSL, LSC, LAC), OSA Technical Digest (online) (Optical Society of America, 2016), paper ATu6A.5.
[Crossref]

F. P. Partus, G. A. Thomas, R. M. Atkins, and J. W. Fleming, “Optical Fiber with Low OH Impurity and Communication System Using the Optical Fiber,” US Patent Number 5,692,087 (1997).

K. Chang, D. Kalish, and M. Pearsall, “New hydrogen aging loss mechanism in the 1400 nm window,” in Optical Fiber Communication Conference and the International Conference on Integrated Optics and Optical Fiber Communication, OSA Technical Digest Series (Optical Society of America, 1999), paper PD22.
[Crossref]

D. Derickson, Fiber Optic Test and Measurement (Prentice Hall PTR, 1998)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Theoretical waveguide loss vs. wavelength in the absence of Nd3+ absorption and end face of the as-drawn, 126 µm diameter, Nd3+ optical fiber (inset), note the dark regions are fluorinated index depressions, the fiber has no holes or voids.
Fig. 2
Fig. 2 (a) Measured attenuation spectrum in the pump (700 nm to 850 nm) and (b) signal (1300 nm to 1500 nm) wavelength regions.
Fig. 3
Fig. 3 (a) Optical spectra from 4 m of the fiber excited by 200 mW 808 nm co-propagating pump light. (b) Pump transmission vs. pump power for 0.5 and 1.0 m fiber lengths with fits to assess the percentage of Nd3+ ions that are quenched (<1%).
Fig. 4
Fig. 4 Measured emission cross sections of Nd3+ core glass.
Fig. 5
Fig. 5 Block-diagram of the experimental set-up used to test E-band amplifier performance.
Fig. 6
Fig. 6 (a) Measured OSA data obtained by probing assembly 1 with an ASE seed source (solid black curve was taken at the input of assembly 1, output of isolator, remaining curves were taken at the output of assembly 1). (b) Processed gain and loss data calculated from measured OSA data.
Fig. 7
Fig. 7 (a) Intrinsic gain of single assembly from Fig. 5 and fit of expected gain based on emission cross section measurement of Fig. 4. (b) Derived excited state absorption cross section (red) plotted along with emission cross section from Fig. 4.
Fig. 8
Fig. 8 Measured gain, loss and noise figure of the integrated amplifier. Also plotted is the best case theoretical noise figure derived from the emission and ESA cross sections.
Fig. 9
Fig. 9 (a) Gain saturation curves of amplifier. (b) Power conversion efficiency curves.
Fig. 10
Fig. 10 (a) Projected gain and noise figure of an optimized amplifier. (b) Quantum defect and excited state absorption limited power conversion efficiency.

Metrics