Abstract

This paper presents a method for the implementation of speckle reduced lensless holographic projection based on phase-only computer-generated hologram (CGH). The CGH is calculated from the image by double-step Fresnel diffraction. A virtual convergence light is imposed to the image to ensure the focusing of its wavefront to the virtual plane, which is established between the image and the hologram plane. The speckle noise is reduced due to the reconstruction of the complex amplitude of the image via a lensless optical filtering system. Both simulation and optical experiments are carried out to confirm the feasibility of the proposed method. Furthermore, the size of the projected image can reach to the maximum diffraction bandwidth of the spatial light modulator (SLM) at a given distance. The method is effective for improving the image quality as well as the image size at the same time in compact lensless holographic projection system.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simple calculation of a computer-generated hologram for lensless holographic 3D projection using a nonuniform sampled wavefront recording plane

Chenliang Chang, Jun Wu, Yijun Qi, Caojin Yuan, Shouping Nie, and Jun Xia
Appl. Opt. 55(28) 7988-7996 (2016)

Lensless zoomable holographic projection using scaled Fresnel diffraction

Tomoyoshi Shimobaba, Michal Makowski, Takashi Kakue, Minoru Oikawa, Naohisa Okada, Yutaka Endo, Ryuji Hirayama, and Tomoyoshi Ito
Opt. Express 21(21) 25285-25290 (2013)

Non-iterative phase hologram computation for low speckle holographic image projection

Deniz Mengu, Erdem Ulusoy, and Hakan Urey
Opt. Express 24(5) 4462-4476 (2016)

References

  • View by:
  • |
  • |
  • |

  1. E. Buckley, “Holographic projector using one lens,” Opt. Lett. 35(20), 3399–3401 (2010).
    [Crossref] [PubMed]
  2. E. Buckley, “Holographic Laser Projection,” J. Disp. Technol. 7(3), 135–140 (2011).
    [Crossref]
  3. M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk, “Simple holographic projection in color,” Opt. Express 20(22), 25130–25136 (2012).
    [Crossref] [PubMed]
  4. T. Shimobaba, M. Makowski, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, and T. Ito, “Lensless zoomable holographic projection using scaled Fresnel diffraction,” Opt. Express 21(21), 25285–25290 (2013).
    [Crossref] [PubMed]
  5. T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced Fresnel diffraction with scale and shift operations,” J. Opt. 15(7), 536–544 (2013).
    [Crossref]
  6. M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikuła, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44(12), 125805 (2005).
    [Crossref]
  7. L. Golan and S. Shoham, “Speckle elimination using shift-averaging in high-rate holographic projection,” Opt. Express 17(3), 1330–1339 (2009).
    [Crossref] [PubMed]
  8. W. Qu, H. Gu, and Q. Tan, “Holographic projection with higher image quality,” Opt. Express 24(17), 19179–19184 (2016).
    [Crossref] [PubMed]
  9. Y. Takaki and M. Yokouchi, “Speckle-free and grayscale hologram reconstruction using time-multiplexing technique,” Opt. Express 19(8), 7567–7579 (2011).
    [Crossref] [PubMed]
  10. M. Makowski, “Minimized speckle noise in lens-less holographic projection by pixel separation,” Opt. Express 21(24), 29205–29216 (2013).
    [Crossref] [PubMed]
  11. Y. Mori, T. Fukuoka, and T. Nomura, “Speckle reduction in holographic projection by random pixel separation with time multiplexing,” Appl. Opt. 53(35), 8182–8188 (2014).
    [Crossref] [PubMed]
  12. T. Shimobaba and T. Ito, “Random phase-free computer-generated hologram,” Opt. Express 23(7), 9549–9554 (2015).
    [Crossref] [PubMed]
  13. T. Shimobaba, T. Kakue, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, M. Sano, M. Oikawa, T. Sugie, and T. Ito, “Random phase-free kinoform for large objects,” Opt. Express 23(13), 17269–17274 (2015).
    [Crossref] [PubMed]
  14. R. D. Juday and J. M. Florence, “Full-complex modulation with two one-parameter SLMs,” Proc. SPIE 1558, 499–504 (1991).
    [Crossref]
  15. A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Near-perfect hologram reconstruction with a spatial light modulator,” Opt. Express 16(4), 2597–2603 (2008).
    [Crossref] [PubMed]
  16. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. 38(23), 5004–5013 (1999).
    [Crossref] [PubMed]
  17. X. Li, J. Liu, J. Jia, Y. Pan, and Y. Wang, “3D dynamic holographic display by modulating complex amplitude experimentally,” Opt. Express 21(18), 20577–20587 (2013).
    [Crossref] [PubMed]
  18. G. Xue, J. Liu, X. Li, J. Jia, Z. Zhang, B. Hu, and Y. Wang, “Multiplexing encoding method for full-color dynamic 3D holographic display,” Opt. Express 22(15), 18473–18482 (2014).
    [Crossref] [PubMed]
  19. V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. A 24(11), 3500–3507 (2007).
    [Crossref] [PubMed]
  20. H. Song, G. Sung, S. Choi, K. Won, H.-S. Lee, and H. Kim, “Optimal synthesis of double-phase computer generated holograms using a phase-only spatial light modulator with grating filter,” Opt. Express 20(28), 29844–29853 (2012).
    [Crossref] [PubMed]
  21. O. Mendoza-Yero, G. Mínguez-Vega, and J. Lancis, “Encoding complex fields by using a phase-only optical element,” Opt. Lett. 39(7), 1740–1743 (2014).
    [Crossref] [PubMed]
  22. Y. Qi, C. Chang, and J. Xia, “Speckleless holographic display by complex modulation based on double-phase method,” Opt. Express 24(26), 30368–30378 (2016).
    [Crossref] [PubMed]
  23. C. Chang, J. Xia, L. Yang, W. Lei, Z. Yang, and J. Chen, “Speckle-suppressed phase-only holographic three-dimensional display based on double-constraint Gerchberg-Saxton algorithm,” Appl. Opt. 54(23), 6994–7001 (2015).
    [Crossref] [PubMed]
  24. M. Oikawa, T. Shimobaba, T. Yoda, H. Nakayama, A. Shiraki, N. Masuda, and T. Ito, “Time-division color electroholography using one-chip RGB LED and synchronizing controller,” Opt. Express 19(13), 12008–12013 (2011).
    [Crossref] [PubMed]
  25. M. Makowski, T. Shimobaba, and T. Ito, “Increased depth of focus in random-phase-free holographic projection,” Chin. Opt. Lett. 14, 120901 (2016).

2016 (3)

2015 (3)

2014 (3)

2013 (4)

2012 (2)

2011 (3)

2010 (1)

2009 (1)

2008 (1)

2007 (1)

2005 (1)

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikuła, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44(12), 125805 (2005).
[Crossref]

1999 (1)

1991 (1)

R. D. Juday and J. M. Florence, “Full-complex modulation with two one-parameter SLMs,” Proc. SPIE 1558, 499–504 (1991).
[Crossref]

Arrizón, V.

Bernet, S.

Buckley, E.

E. Buckley, “Holographic Laser Projection,” J. Disp. Technol. 7(3), 135–140 (2011).
[Crossref]

E. Buckley, “Holographic projector using one lens,” Opt. Lett. 35(20), 3399–3401 (2010).
[Crossref] [PubMed]

Campos, J.

Carrada, R.

Chang, C.

Chen, J.

Choi, S.

Cottrell, D. M.

Davis, J. A.

Ducin, I.

Endo, Y.

Florence, J. M.

R. D. Juday and J. M. Florence, “Full-complex modulation with two one-parameter SLMs,” Proc. SPIE 1558, 499–504 (1991).
[Crossref]

Fukuoka, T.

Golan, L.

González, L. A.

Gu, H.

Hasegawa, S.

Hirayama, R.

Hiyama, D.

Hu, B.

Ito, T.

Jesacher, A.

Jia, J.

Juday, R. D.

R. D. Juday and J. M. Florence, “Full-complex modulation with two one-parameter SLMs,” Proc. SPIE 1558, 499–504 (1991).
[Crossref]

Kakarenko, K.

Kakue, T.

Kim, H.

Kolodziejczyk, A.

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk, “Simple holographic projection in color,” Opt. Express 20(22), 25130–25136 (2012).
[Crossref] [PubMed]

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikuła, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44(12), 125805 (2005).
[Crossref]

Lancis, J.

Lee, H.-S.

Lei, W.

Li, X.

Liu, J.

Makowski, M.

Masuda, N.

Maurer, C.

Mendoza-Yero, O.

Mikula, G.

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikuła, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44(12), 125805 (2005).
[Crossref]

Mínguez-Vega, G.

Moreno, I.

Mori, Y.

Nagahama, Y.

Nakayama, H.

Nomura, T.

Oikawa, M.

Okada, N.

T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced Fresnel diffraction with scale and shift operations,” J. Opt. 15(7), 536–544 (2013).
[Crossref]

T. Shimobaba, M. Makowski, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, and T. Ito, “Lensless zoomable holographic projection using scaled Fresnel diffraction,” Opt. Express 21(21), 25285–25290 (2013).
[Crossref] [PubMed]

Pan, Y.

Qi, Y.

Qu, W.

Ritsch-Marte, M.

Ruiz, U.

Sano, M.

Schwaighofer, A.

Shimobaba, T.

Shiraki, A.

Shoham, S.

Song, H.

Sugie, T.

Sung, G.

Suszek, J.

Sypek, M.

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk, “Simple holographic projection in color,” Opt. Express 20(22), 25130–25136 (2012).
[Crossref] [PubMed]

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikuła, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44(12), 125805 (2005).
[Crossref]

Takaki, Y.

Tan, Q.

Wang, Y.

Won, K.

Xia, J.

Xue, G.

Yamaguchi, Y.

T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced Fresnel diffraction with scale and shift operations,” J. Opt. 15(7), 536–544 (2013).
[Crossref]

Yang, L.

Yang, Z.

Yoda, T.

Yokouchi, M.

Yzuel, M. J.

Zhang, Z.

Appl. Opt. (3)

Chin. Opt. Lett. (1)

J. Disp. Technol. (1)

E. Buckley, “Holographic Laser Projection,” J. Disp. Technol. 7(3), 135–140 (2011).
[Crossref]

J. Opt. (1)

T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced Fresnel diffraction with scale and shift operations,” J. Opt. 15(7), 536–544 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikuła, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44(12), 125805 (2005).
[Crossref]

Opt. Express (14)

L. Golan and S. Shoham, “Speckle elimination using shift-averaging in high-rate holographic projection,” Opt. Express 17(3), 1330–1339 (2009).
[Crossref] [PubMed]

W. Qu, H. Gu, and Q. Tan, “Holographic projection with higher image quality,” Opt. Express 24(17), 19179–19184 (2016).
[Crossref] [PubMed]

Y. Takaki and M. Yokouchi, “Speckle-free and grayscale hologram reconstruction using time-multiplexing technique,” Opt. Express 19(8), 7567–7579 (2011).
[Crossref] [PubMed]

M. Makowski, “Minimized speckle noise in lens-less holographic projection by pixel separation,” Opt. Express 21(24), 29205–29216 (2013).
[Crossref] [PubMed]

T. Shimobaba and T. Ito, “Random phase-free computer-generated hologram,” Opt. Express 23(7), 9549–9554 (2015).
[Crossref] [PubMed]

T. Shimobaba, T. Kakue, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, M. Sano, M. Oikawa, T. Sugie, and T. Ito, “Random phase-free kinoform for large objects,” Opt. Express 23(13), 17269–17274 (2015).
[Crossref] [PubMed]

H. Song, G. Sung, S. Choi, K. Won, H.-S. Lee, and H. Kim, “Optimal synthesis of double-phase computer generated holograms using a phase-only spatial light modulator with grating filter,” Opt. Express 20(28), 29844–29853 (2012).
[Crossref] [PubMed]

X. Li, J. Liu, J. Jia, Y. Pan, and Y. Wang, “3D dynamic holographic display by modulating complex amplitude experimentally,” Opt. Express 21(18), 20577–20587 (2013).
[Crossref] [PubMed]

G. Xue, J. Liu, X. Li, J. Jia, Z. Zhang, B. Hu, and Y. Wang, “Multiplexing encoding method for full-color dynamic 3D holographic display,” Opt. Express 22(15), 18473–18482 (2014).
[Crossref] [PubMed]

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk, “Simple holographic projection in color,” Opt. Express 20(22), 25130–25136 (2012).
[Crossref] [PubMed]

T. Shimobaba, M. Makowski, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, and T. Ito, “Lensless zoomable holographic projection using scaled Fresnel diffraction,” Opt. Express 21(21), 25285–25290 (2013).
[Crossref] [PubMed]

A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Near-perfect hologram reconstruction with a spatial light modulator,” Opt. Express 16(4), 2597–2603 (2008).
[Crossref] [PubMed]

Y. Qi, C. Chang, and J. Xia, “Speckleless holographic display by complex modulation based on double-phase method,” Opt. Express 24(26), 30368–30378 (2016).
[Crossref] [PubMed]

M. Oikawa, T. Shimobaba, T. Yoda, H. Nakayama, A. Shiraki, N. Masuda, and T. Ito, “Time-division color electroholography using one-chip RGB LED and synchronizing controller,” Opt. Express 19(13), 12008–12013 (2011).
[Crossref] [PubMed]

Opt. Lett. (2)

Proc. SPIE (1)

R. D. Juday and J. M. Florence, “Full-complex modulation with two one-parameter SLMs,” Proc. SPIE 1558, 499–504 (1991).
[Crossref]

Supplementary Material (4)

NameDescription
» Visualization 1: MOV (1101 KB)      projected animation of "basketball" in lensless holographic projection system
» Visualization 2: MOV (1574 KB)      projected animation of "horse-riding" in lensless holographic projection system
» Visualization 3: MOV (1136 KB)      projected animation of large-sized "basketball" in lensless holographic projection system
» Visualization 4: MOV (1703 KB)      projected animation of large-sized "horse-riding" in lensless holographic projection system

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Principle illustration of the proposed method for lensless holographic projection. (a) Geometry model of the CGH calculation. (b) Geometry model of the CGH reconstruction.
Fig. 2
Fig. 2 Computer simulation results. (a) The original image. (b) Phase-only CGH calculated by the proposed method. (c) Amplitude of light field at the virtual plane (filter plane). (d) Reconstructed amplitude of the image. (e) Reconstructed phase of the image. (f) Reconstructed amplitude of the image in a different size.
Fig. 3
Fig. 3 (a) Optical setup for lensless holographic projection. (b) Optical reconstructions of projected images (image size is 10.24mm). (c) Optical reconstructions of projected images (image size is 20.48mm).
Fig. 4
Fig. 4 One frame from reconstructed animations (image size is 20.48mm). (a) Basketball (see Visualization 1). (b) Horse riding (see Visualization 2).
Fig. 5
Fig. 5 Optical reconstructions of color projected images. (a) Reconstruction of red component of “Lena”. (b) Reconstruction of green component of “Lena”. (c) Reconstruction of blue component of “Lena”. (d) Reconstruction of color “Lena”. (e)-(g) Reconstruction of color “SEU”, “Baboon” and “Fruits”. (h)-(j) Reconstruction of color “Parrots” with different pixel pitches (10μm, 20μm and 30μm).
Fig. 6
Fig. 6 Optical reconstructions of zoomable lensless holographic projection. (a) The projected screen. (b)-(e) Monochromatic reconstructions with different image sizes of 8.2cm, 12.3cm, 16.4cm and 20.5cm (Visualization 3, Visualization 4). (f)-(h) Three color reconstructions with image size of 20.5cm.
Fig. 7
Fig. 7 Comparison of the results by different methods. (a) The iterative method. (b) The random phase-free (RPF) method. (c) The proposed method. (C = speckle contrast.)
Fig. 8
Fig. 8 Geometry models of different positions of the virtual plane. (a) d1 = ds. (b) d1>ds. (c) d1<ds. (Parameters in the simulation: λ = 532nm, N = 1024, z = 0.5m, dh = 8μm).
Fig. 9
Fig. 9 Measurement of reconstructed image quality by PSNR under different iris diameters. (Parameters in the simulation: λ = 532nm, N = 1024, z = 0.5m, dh = 8μm, dx = 20μm, d1 = 0.1m, d2 = 0.4m).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

V P ( x v , y v ) = I ( x , y ) exp { i π λ d 2 [ ( x v s x ) 2 + ( y v s y ) 2 ] } d x d y = F F T 1 { F F T [ I ( x , y ) exp ( i φ 1 ) ] F F T [ exp ( i φ 2 ) R e c t ] } .
H ( x h , y h ) = V P ( x v , y v ) exp { i π λ d 1 [ ( x h x v ) 2 + ( y h y v ) 2 ] } d x v d y v = exp [ i π ( x h 2 + y h 2 ) λ d 1 ] F F T [ V P ( x v , y v ) exp [ i π ( x v 2 + y v 2 ) λ d 1 ] ] .
θ 1 ( x h , y h ) = φ h ( x h , y h ) + cos 1 [ A h ( x h , y h ) / A max ] θ 2 ( x h , y h ) = φ h ( x h , y h ) cos 1 [ A h ( x h , y h ) / A max ] .
p ( x h , y h ) = θ 1 ( x h , y h ) M 1 ( x h , y h ) + θ 2 ( x h , y h ) M 2 ( x h , y h ) + 2 π x h sin α / λ .

Metrics