Abstract

A compact (4.49 μm × 4.54 μm) and ultra-broadband circular Bragg grating mirror with relaxed fabrication requirements is proposed and demonstrated based on the 220 nm silicon-on-insulator (SOI) platform. Based on FDTD-simulations, the proposed grating mirror can achieve a reflectivity of >90% over a ultrabroad bandwidth of 500 nm (1263 - 1763 nm), and a high reflectivity of >95% over a broad bandwidth of 397 nm (1340 - 1737 nm), which covers the entire E- to U-bands. The circular grating is fabricated, and the experimental measurement results exhibit a high reflectivity of 93% - 98% within the measured band of 1530 to 1610 nm, which agrees well with simulations. Based on the proposed broadband and high-efficiency circular Bragg mirror, a compact notch filter with high rejection ratio (>10 dB) and low transmission loss (<0.5 dB) is also fabricated and presented, and the proposed filter could find various potential applications in optical communications and sensing applications. With its ultrabroad bandwidth, high reflectivity and compact size, the proposed circular Bragg mirror is expected to be a promising element for large-scale photonic integrated circuits and applications which require ultra-broadband and high-efficiency on-chip reflections.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-compact low-loss broadband waveguide taper in silicon-on-insulator

Purnima Sethi, Anubhab Haldar, and Shankar Kumar Selvaraja
Opt. Express 25(9) 10196-10203 (2017)

60-nm-thick basic photonic components and Bragg gratings on the silicon-on-insulator platform

Zhi Zou, Linjie Zhou, Xinwan Li, and Jianping Chen
Opt. Express 23(16) 20784-20795 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. Shin, M. Tamura, A. Kasukawa, N. Serizawa, S. Kurihashi, S. Tamura, and S. Arai, “Low threshold current density operation of GaInAsP-InP laser with multiple reflector microcavities,” IEEE Photonics Technol. Lett. 7(10), 1119–1121 (1995).
    [Crossref]
  2. T. Mukaihara, N. Yamanaka, N. Iwai, M. S. Arakawa, T. Ishikawa, and A. Kasukawa, “Integrated GaInAsP Laser Diodes with Monitoring Photodiodes Through Semiconductor/Air Bragg Reflector (SABAR),” IEEE J. Sel. Top. Quantum Electron. 5(3), 469–475 (1999).
  3. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
    [Crossref]
  4. T. C. Kleckner, D. Modotto, A. Locatelli, J. P. Mondia, S. Linden, R. Morandotti, C. D. Angelis, C. R. Stanley, H. M. Driel, and J. S. Aitchison, “Design, Fabrication, and Characterization of Deep-Etched Waveguide Gratings,” J. Light. Tech. 23(11), 3832–3842 (2005).
    [Crossref]
  5. C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, “Compact Silicon Tunable Fabry-Perot Resonator With Low Power Consumption,” IEEE Photonics Technol. Lett. 16(2), 506–508 (2004).
    [Crossref]
  6. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Integrated waveguide Fabry-Perot microcavities with silicon/air Bragg mirrors,” Opt. Lett. 32(5), 533–535 (2007).
    [Crossref] [PubMed]
  7. S. Gao, Y. Wang, K. Wang, and E. Skafidas, “High contrast circular grating reflector on silicon-on-insulator platform,” Opt. Lett. 41(3), 520–523 (2016).
    [Crossref] [PubMed]
  8. W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, D. P. Bienstman, Van Thourhout, and R. Bates, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  9. H. Sun, A. Chen, and L. R. Dalton, “A reflective microring notch filter and sensor,” Opt. Express 17(13), 10731–10737 (2009).
    [Crossref] [PubMed]
  10. M. S. Rasras, K. Tu, D. M. Gill, Y. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, J. Michel, and L. C. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter Using Low-Loss Silicon Ring Resonators,” J. Light. Tech. 27(12), 2105–2110 (2009).
    [Crossref]
  11. E. Hecht, “Diffraction,” in Optics, 5th ed. (Pearson, 2017), pp. 449–528.
  12. Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/mode/ .
  13. M. Born and E. Wolf, “Elements of the theory of diffraction,” in Principles of Optics, 7th ed. (Cambridge University. 1999), pp. 412–514.
  14. T. E. Murphy, “Design, Fabrication and Measurement of Integrated Bragg Grating Optical Filters,” Ph.D. dissertation (Department of Electrical Engineering and Computer Science, MIT, 2001), pp. 72–78.
  15. K. Ghoumid, I. Elhechmi, S. Mekaoui, C. Pieralli, and T. Gharbi, “Analysis of optical filtering in waveguides with a high index modulation using the extended coupled mode theory by hybridization of a matrix method,” Opt. Commun. 289, 85–91 (2013).
    [Crossref]
  16. Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/ .
  17. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D. X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
    [Crossref] [PubMed]
  18. R. Halir, P. J. Bock, P. Cheben, A. O. Monux, C. A. Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. W. Perez, I. M. Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
    [Crossref]
  19. G. T. Reed, “Passive silicon photonic devices,” in Silicon Photonics: The State of The Art (J. W. & Sons Ltd, 2008), pp. 255–257.
  20. W. S. Cleveland, “Robust Locally Weighted Regression and Smoothing Scatter Plots,” J. Am. Stat. Assoc. 74(368), 829–836 (1979).
    [Crossref]
  21. C. J. Chae, D. Y. Choi, E. Skafidas, and Y. T. Lee, “Compact Waveguide Resonator Filter for Wavelength-Selective Reflection and Rejection in Silicon Waveguides,” in Opto-Electronics and Communications Conference (OECC),2015, pp. 1–3.
    [Crossref]

2016 (1)

2015 (1)

R. Halir, P. J. Bock, P. Cheben, A. O. Monux, C. A. Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. W. Perez, I. M. Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

2013 (1)

K. Ghoumid, I. Elhechmi, S. Mekaoui, C. Pieralli, and T. Gharbi, “Analysis of optical filtering in waveguides with a high index modulation using the extended coupled mode theory by hybridization of a matrix method,” Opt. Commun. 289, 85–91 (2013).
[Crossref]

2012 (1)

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, D. P. Bienstman, Van Thourhout, and R. Bates, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

2010 (1)

2009 (2)

H. Sun, A. Chen, and L. R. Dalton, “A reflective microring notch filter and sensor,” Opt. Express 17(13), 10731–10737 (2009).
[Crossref] [PubMed]

M. S. Rasras, K. Tu, D. M. Gill, Y. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, J. Michel, and L. C. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter Using Low-Loss Silicon Ring Resonators,” J. Light. Tech. 27(12), 2105–2110 (2009).
[Crossref]

2007 (1)

2005 (1)

T. C. Kleckner, D. Modotto, A. Locatelli, J. P. Mondia, S. Linden, R. Morandotti, C. D. Angelis, C. R. Stanley, H. M. Driel, and J. S. Aitchison, “Design, Fabrication, and Characterization of Deep-Etched Waveguide Gratings,” J. Light. Tech. 23(11), 3832–3842 (2005).
[Crossref]

2004 (2)

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, “Compact Silicon Tunable Fabry-Perot Resonator With Low Power Consumption,” IEEE Photonics Technol. Lett. 16(2), 506–508 (2004).
[Crossref]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

1999 (1)

T. Mukaihara, N. Yamanaka, N. Iwai, M. S. Arakawa, T. Ishikawa, and A. Kasukawa, “Integrated GaInAsP Laser Diodes with Monitoring Photodiodes Through Semiconductor/Air Bragg Reflector (SABAR),” IEEE J. Sel. Top. Quantum Electron. 5(3), 469–475 (1999).

1995 (1)

K. Shin, M. Tamura, A. Kasukawa, N. Serizawa, S. Kurihashi, S. Tamura, and S. Arai, “Low threshold current density operation of GaInAsP-InP laser with multiple reflector microcavities,” IEEE Photonics Technol. Lett. 7(10), 1119–1121 (1995).
[Crossref]

1979 (1)

W. S. Cleveland, “Robust Locally Weighted Regression and Smoothing Scatter Plots,” J. Am. Stat. Assoc. 74(368), 829–836 (1979).
[Crossref]

Aers, G. C.

Aitchison, J. S.

T. C. Kleckner, D. Modotto, A. Locatelli, J. P. Mondia, S. Linden, R. Morandotti, C. D. Angelis, C. R. Stanley, H. M. Driel, and J. S. Aitchison, “Design, Fabrication, and Characterization of Deep-Etched Waveguide Gratings,” J. Light. Tech. 23(11), 3832–3842 (2005).
[Crossref]

Almeida, V. R.

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, “Compact Silicon Tunable Fabry-Perot Resonator With Low Power Consumption,” IEEE Photonics Technol. Lett. 16(2), 506–508 (2004).
[Crossref]

Angelis, C. D.

T. C. Kleckner, D. Modotto, A. Locatelli, J. P. Mondia, S. Linden, R. Morandotti, C. D. Angelis, C. R. Stanley, H. M. Driel, and J. S. Aitchison, “Design, Fabrication, and Characterization of Deep-Etched Waveguide Gratings,” J. Light. Tech. 23(11), 3832–3842 (2005).
[Crossref]

Arai, S.

K. Shin, M. Tamura, A. Kasukawa, N. Serizawa, S. Kurihashi, S. Tamura, and S. Arai, “Low threshold current density operation of GaInAsP-InP laser with multiple reflector microcavities,” IEEE Photonics Technol. Lett. 7(10), 1119–1121 (1995).
[Crossref]

Arakawa, M. S.

T. Mukaihara, N. Yamanaka, N. Iwai, M. S. Arakawa, T. Ishikawa, and A. Kasukawa, “Integrated GaInAsP Laser Diodes with Monitoring Photodiodes Through Semiconductor/Air Bragg Reflector (SABAR),” IEEE J. Sel. Top. Quantum Electron. 5(3), 469–475 (1999).

Barrios, C. A.

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, “Compact Silicon Tunable Fabry-Perot Resonator With Low Power Consumption,” IEEE Photonics Technol. Lett. 16(2), 506–508 (2004).
[Crossref]

Bates, R.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, D. P. Bienstman, Van Thourhout, and R. Bates, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Beattie, J.

M. S. Rasras, K. Tu, D. M. Gill, Y. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, J. Michel, and L. C. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter Using Low-Loss Silicon Ring Resonators,” J. Light. Tech. 27(12), 2105–2110 (2009).
[Crossref]

Bock, P. J.

R. Halir, P. J. Bock, P. Cheben, A. O. Monux, C. A. Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. W. Perez, I. M. Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D. X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

Bogaerts, W.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, D. P. Bienstman, Van Thourhout, and R. Bates, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Carothers, D.

M. S. Rasras, K. Tu, D. M. Gill, Y. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, J. Michel, and L. C. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter Using Low-Loss Silicon Ring Resonators,” J. Light. Tech. 27(12), 2105–2110 (2009).
[Crossref]

Chae, C. J.

C. J. Chae, D. Y. Choi, E. Skafidas, and Y. T. Lee, “Compact Waveguide Resonator Filter for Wavelength-Selective Reflection and Rejection in Silicon Waveguides,” in Opto-Electronics and Communications Conference (OECC),2015, pp. 1–3.
[Crossref]

Chang-Hasnain, C. J.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Cheben, P.

R. Halir, P. J. Bock, P. Cheben, A. O. Monux, C. A. Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. W. Perez, I. M. Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D. X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

Chen, A.

Chen, Y.

M. S. Rasras, K. Tu, D. M. Gill, Y. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, J. Michel, and L. C. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter Using Low-Loss Silicon Ring Resonators,” J. Light. Tech. 27(12), 2105–2110 (2009).
[Crossref]

Choi, D. Y.

C. J. Chae, D. Y. Choi, E. Skafidas, and Y. T. Lee, “Compact Waveguide Resonator Filter for Wavelength-Selective Reflection and Rejection in Silicon Waveguides,” in Opto-Electronics and Communications Conference (OECC),2015, pp. 1–3.
[Crossref]

Claes, T.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, D. P. Bienstman, Van Thourhout, and R. Bates, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Cleveland, W. S.

W. S. Cleveland, “Robust Locally Weighted Regression and Smoothing Scatter Plots,” J. Am. Stat. Assoc. 74(368), 829–836 (1979).
[Crossref]

Dalton, L. R.

Delâge, A.

Deng, Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Densmore, A.

Driel, H. M.

T. C. Kleckner, D. Modotto, A. Locatelli, J. P. Mondia, S. Linden, R. Morandotti, C. D. Angelis, C. R. Stanley, H. M. Driel, and J. S. Aitchison, “Design, Fabrication, and Characterization of Deep-Etched Waveguide Gratings,” J. Light. Tech. 23(11), 3832–3842 (2005).
[Crossref]

Dumon, P.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, D. P. Bienstman, Van Thourhout, and R. Bates, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Elhechmi, I.

K. Ghoumid, I. Elhechmi, S. Mekaoui, C. Pieralli, and T. Gharbi, “Analysis of optical filtering in waveguides with a high index modulation using the extended coupled mode theory by hybridization of a matrix method,” Opt. Commun. 289, 85–91 (2013).
[Crossref]

Fernandez, I. M.

R. Halir, P. J. Bock, P. Cheben, A. O. Monux, C. A. Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. W. Perez, I. M. Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Gao, S.

Gharbi, T.

K. Ghoumid, I. Elhechmi, S. Mekaoui, C. Pieralli, and T. Gharbi, “Analysis of optical filtering in waveguides with a high index modulation using the extended coupled mode theory by hybridization of a matrix method,” Opt. Commun. 289, 85–91 (2013).
[Crossref]

Ghoumid, K.

K. Ghoumid, I. Elhechmi, S. Mekaoui, C. Pieralli, and T. Gharbi, “Analysis of optical filtering in waveguides with a high index modulation using the extended coupled mode theory by hybridization of a matrix method,” Opt. Commun. 289, 85–91 (2013).
[Crossref]

Gill, D. M.

M. S. Rasras, K. Tu, D. M. Gill, Y. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, J. Michel, and L. C. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter Using Low-Loss Silicon Ring Resonators,” J. Light. Tech. 27(12), 2105–2110 (2009).
[Crossref]

Halir, R.

R. Halir, P. J. Bock, P. Cheben, A. O. Monux, C. A. Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. W. Perez, I. M. Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Hall, T. J.

Heyn, P. D.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, D. P. Bienstman, Van Thourhout, and R. Bates, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Huang, M. C. Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Ishikawa, T.

T. Mukaihara, N. Yamanaka, N. Iwai, M. S. Arakawa, T. Ishikawa, and A. Kasukawa, “Integrated GaInAsP Laser Diodes with Monitoring Photodiodes Through Semiconductor/Air Bragg Reflector (SABAR),” IEEE J. Sel. Top. Quantum Electron. 5(3), 469–475 (1999).

Iwai, N.

T. Mukaihara, N. Yamanaka, N. Iwai, M. S. Arakawa, T. Ishikawa, and A. Kasukawa, “Integrated GaInAsP Laser Diodes with Monitoring Photodiodes Through Semiconductor/Air Bragg Reflector (SABAR),” IEEE J. Sel. Top. Quantum Electron. 5(3), 469–475 (1999).

Janz, S.

R. Halir, P. J. Bock, P. Cheben, A. O. Monux, C. A. Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. W. Perez, I. M. Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D. X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

Kasukawa, A.

T. Mukaihara, N. Yamanaka, N. Iwai, M. S. Arakawa, T. Ishikawa, and A. Kasukawa, “Integrated GaInAsP Laser Diodes with Monitoring Photodiodes Through Semiconductor/Air Bragg Reflector (SABAR),” IEEE J. Sel. Top. Quantum Electron. 5(3), 469–475 (1999).

K. Shin, M. Tamura, A. Kasukawa, N. Serizawa, S. Kurihashi, S. Tamura, and S. Arai, “Low threshold current density operation of GaInAsP-InP laser with multiple reflector microcavities,” IEEE Photonics Technol. Lett. 7(10), 1119–1121 (1995).
[Crossref]

Kimerling, L. C.

M. S. Rasras, K. Tu, D. M. Gill, Y. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, J. Michel, and L. C. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter Using Low-Loss Silicon Ring Resonators,” J. Light. Tech. 27(12), 2105–2110 (2009).
[Crossref]

Kleckner, T. C.

T. C. Kleckner, D. Modotto, A. Locatelli, J. P. Mondia, S. Linden, R. Morandotti, C. D. Angelis, C. R. Stanley, H. M. Driel, and J. S. Aitchison, “Design, Fabrication, and Characterization of Deep-Etched Waveguide Gratings,” J. Light. Tech. 23(11), 3832–3842 (2005).
[Crossref]

Kurihashi, S.

K. Shin, M. Tamura, A. Kasukawa, N. Serizawa, S. Kurihashi, S. Tamura, and S. Arai, “Low threshold current density operation of GaInAsP-InP laser with multiple reflector microcavities,” IEEE Photonics Technol. Lett. 7(10), 1119–1121 (1995).
[Crossref]

Lapointe, J.

R. Halir, P. J. Bock, P. Cheben, A. O. Monux, C. A. Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. W. Perez, I. M. Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D. X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

Lee, Y. T.

C. J. Chae, D. Y. Choi, E. Skafidas, and Y. T. Lee, “Compact Waveguide Resonator Filter for Wavelength-Selective Reflection and Rejection in Silicon Waveguides,” in Opto-Electronics and Communications Conference (OECC),2015, pp. 1–3.
[Crossref]

Linden, S.

T. C. Kleckner, D. Modotto, A. Locatelli, J. P. Mondia, S. Linden, R. Morandotti, C. D. Angelis, C. R. Stanley, H. M. Driel, and J. S. Aitchison, “Design, Fabrication, and Characterization of Deep-Etched Waveguide Gratings,” J. Light. Tech. 23(11), 3832–3842 (2005).
[Crossref]

Lipson, M.

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, “Compact Silicon Tunable Fabry-Perot Resonator With Low Power Consumption,” IEEE Photonics Technol. Lett. 16(2), 506–508 (2004).
[Crossref]

Locatelli, A.

T. C. Kleckner, D. Modotto, A. Locatelli, J. P. Mondia, S. Linden, R. Morandotti, C. D. Angelis, C. R. Stanley, H. M. Driel, and J. S. Aitchison, “Design, Fabrication, and Characterization of Deep-Etched Waveguide Gratings,” J. Light. Tech. 23(11), 3832–3842 (2005).
[Crossref]

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Mekaoui, S.

K. Ghoumid, I. Elhechmi, S. Mekaoui, C. Pieralli, and T. Gharbi, “Analysis of optical filtering in waveguides with a high index modulation using the extended coupled mode theory by hybridization of a matrix method,” Opt. Commun. 289, 85–91 (2013).
[Crossref]

Michel, J.

M. S. Rasras, K. Tu, D. M. Gill, Y. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, J. Michel, and L. C. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter Using Low-Loss Silicon Ring Resonators,” J. Light. Tech. 27(12), 2105–2110 (2009).
[Crossref]

Modotto, D.

T. C. Kleckner, D. Modotto, A. Locatelli, J. P. Mondia, S. Linden, R. Morandotti, C. D. Angelis, C. R. Stanley, H. M. Driel, and J. S. Aitchison, “Design, Fabrication, and Characterization of Deep-Etched Waveguide Gratings,” J. Light. Tech. 23(11), 3832–3842 (2005).
[Crossref]

Mondia, J. P.

T. C. Kleckner, D. Modotto, A. Locatelli, J. P. Mondia, S. Linden, R. Morandotti, C. D. Angelis, C. R. Stanley, H. M. Driel, and J. S. Aitchison, “Design, Fabrication, and Characterization of Deep-Etched Waveguide Gratings,” J. Light. Tech. 23(11), 3832–3842 (2005).
[Crossref]

Monux, A. O.

R. Halir, P. J. Bock, P. Cheben, A. O. Monux, C. A. Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. W. Perez, I. M. Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Morandotti, R.

T. C. Kleckner, D. Modotto, A. Locatelli, J. P. Mondia, S. Linden, R. Morandotti, C. D. Angelis, C. R. Stanley, H. M. Driel, and J. S. Aitchison, “Design, Fabrication, and Characterization of Deep-Etched Waveguide Gratings,” J. Light. Tech. 23(11), 3832–3842 (2005).
[Crossref]

Mukaihara, T.

T. Mukaihara, N. Yamanaka, N. Iwai, M. S. Arakawa, T. Ishikawa, and A. Kasukawa, “Integrated GaInAsP Laser Diodes with Monitoring Photodiodes Through Semiconductor/Air Bragg Reflector (SABAR),” IEEE J. Sel. Top. Quantum Electron. 5(3), 469–475 (1999).

Neureuther, A. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

P. Bienstman, D.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, D. P. Bienstman, Van Thourhout, and R. Bates, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Panepucci, R. R.

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, “Compact Silicon Tunable Fabry-Perot Resonator With Low Power Consumption,” IEEE Photonics Technol. Lett. 16(2), 506–508 (2004).
[Crossref]

Patel, S. S.

M. S. Rasras, K. Tu, D. M. Gill, Y. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, J. Michel, and L. C. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter Using Low-Loss Silicon Ring Resonators,” J. Light. Tech. 27(12), 2105–2110 (2009).
[Crossref]

Perez, J. G. W.

R. Halir, P. J. Bock, P. Cheben, A. O. Monux, C. A. Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. W. Perez, I. M. Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Pieralli, C.

K. Ghoumid, I. Elhechmi, S. Mekaoui, C. Pieralli, and T. Gharbi, “Analysis of optical filtering in waveguides with a high index modulation using the extended coupled mode theory by hybridization of a matrix method,” Opt. Commun. 289, 85–91 (2013).
[Crossref]

Pomerene, A.

M. S. Rasras, K. Tu, D. M. Gill, Y. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, J. Michel, and L. C. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter Using Low-Loss Silicon Ring Resonators,” J. Light. Tech. 27(12), 2105–2110 (2009).
[Crossref]

Pruessner, M. W.

Rabinovich, W. S.

Ramos, C. A.

R. Halir, P. J. Bock, P. Cheben, A. O. Monux, C. A. Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. W. Perez, I. M. Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Rasras, M. S.

M. S. Rasras, K. Tu, D. M. Gill, Y. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, J. Michel, and L. C. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter Using Low-Loss Silicon Ring Resonators,” J. Light. Tech. 27(12), 2105–2110 (2009).
[Crossref]

Schmid, J. H.

R. Halir, P. J. Bock, P. Cheben, A. O. Monux, C. A. Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. W. Perez, I. M. Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D. X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

Schmidt, B. S.

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, “Compact Silicon Tunable Fabry-Perot Resonator With Low Power Consumption,” IEEE Photonics Technol. Lett. 16(2), 506–508 (2004).
[Crossref]

Selvaraja, S. K.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, D. P. Bienstman, Van Thourhout, and R. Bates, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Serizawa, N.

K. Shin, M. Tamura, A. Kasukawa, N. Serizawa, S. Kurihashi, S. Tamura, and S. Arai, “Low threshold current density operation of GaInAsP-InP laser with multiple reflector microcavities,” IEEE Photonics Technol. Lett. 7(10), 1119–1121 (1995).
[Crossref]

Shin, K.

K. Shin, M. Tamura, A. Kasukawa, N. Serizawa, S. Kurihashi, S. Tamura, and S. Arai, “Low threshold current density operation of GaInAsP-InP laser with multiple reflector microcavities,” IEEE Photonics Technol. Lett. 7(10), 1119–1121 (1995).
[Crossref]

Skafidas, E.

S. Gao, Y. Wang, K. Wang, and E. Skafidas, “High contrast circular grating reflector on silicon-on-insulator platform,” Opt. Lett. 41(3), 520–523 (2016).
[Crossref] [PubMed]

C. J. Chae, D. Y. Choi, E. Skafidas, and Y. T. Lee, “Compact Waveguide Resonator Filter for Wavelength-Selective Reflection and Rejection in Silicon Waveguides,” in Opto-Electronics and Communications Conference (OECC),2015, pp. 1–3.
[Crossref]

Stanley, C. R.

T. C. Kleckner, D. Modotto, A. Locatelli, J. P. Mondia, S. Linden, R. Morandotti, C. D. Angelis, C. R. Stanley, H. M. Driel, and J. S. Aitchison, “Design, Fabrication, and Characterization of Deep-Etched Waveguide Gratings,” J. Light. Tech. 23(11), 3832–3842 (2005).
[Crossref]

Stievater, T. H.

Sun, H.

Tamura, M.

K. Shin, M. Tamura, A. Kasukawa, N. Serizawa, S. Kurihashi, S. Tamura, and S. Arai, “Low threshold current density operation of GaInAsP-InP laser with multiple reflector microcavities,” IEEE Photonics Technol. Lett. 7(10), 1119–1121 (1995).
[Crossref]

Tamura, S.

K. Shin, M. Tamura, A. Kasukawa, N. Serizawa, S. Kurihashi, S. Tamura, and S. Arai, “Low threshold current density operation of GaInAsP-InP laser with multiple reflector microcavities,” IEEE Photonics Technol. Lett. 7(10), 1119–1121 (1995).
[Crossref]

Tu, K.

M. S. Rasras, K. Tu, D. M. Gill, Y. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, J. Michel, and L. C. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter Using Low-Loss Silicon Ring Resonators,” J. Light. Tech. 27(12), 2105–2110 (2009).
[Crossref]

Vaerenbergh, T. V.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, D. P. Bienstman, Van Thourhout, and R. Bates, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Van Thourhout,

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, D. P. Bienstman, Van Thourhout, and R. Bates, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Vos, K. D.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, D. P. Bienstman, Van Thourhout, and R. Bates, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Wang, K.

Wang, Y.

White, A. E.

M. S. Rasras, K. Tu, D. M. Gill, Y. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, J. Michel, and L. C. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter Using Low-Loss Silicon Ring Resonators,” J. Light. Tech. 27(12), 2105–2110 (2009).
[Crossref]

Xu, D.

R. Halir, P. J. Bock, P. Cheben, A. O. Monux, C. A. Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. W. Perez, I. M. Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Xu, D. X.

Yamanaka, N.

T. Mukaihara, N. Yamanaka, N. Iwai, M. S. Arakawa, T. Ishikawa, and A. Kasukawa, “Integrated GaInAsP Laser Diodes with Monitoring Photodiodes Through Semiconductor/Air Bragg Reflector (SABAR),” IEEE J. Sel. Top. Quantum Electron. 5(3), 469–475 (1999).

IEEE J. Sel. Top. Quantum Electron. (1)

T. Mukaihara, N. Yamanaka, N. Iwai, M. S. Arakawa, T. Ishikawa, and A. Kasukawa, “Integrated GaInAsP Laser Diodes with Monitoring Photodiodes Through Semiconductor/Air Bragg Reflector (SABAR),” IEEE J. Sel. Top. Quantum Electron. 5(3), 469–475 (1999).

IEEE Photonics Technol. Lett. (3)

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, “Compact Silicon Tunable Fabry-Perot Resonator With Low Power Consumption,” IEEE Photonics Technol. Lett. 16(2), 506–508 (2004).
[Crossref]

K. Shin, M. Tamura, A. Kasukawa, N. Serizawa, S. Kurihashi, S. Tamura, and S. Arai, “Low threshold current density operation of GaInAsP-InP laser with multiple reflector microcavities,” IEEE Photonics Technol. Lett. 7(10), 1119–1121 (1995).
[Crossref]

J. Am. Stat. Assoc. (1)

W. S. Cleveland, “Robust Locally Weighted Regression and Smoothing Scatter Plots,” J. Am. Stat. Assoc. 74(368), 829–836 (1979).
[Crossref]

J. Light. Tech. (2)

T. C. Kleckner, D. Modotto, A. Locatelli, J. P. Mondia, S. Linden, R. Morandotti, C. D. Angelis, C. R. Stanley, H. M. Driel, and J. S. Aitchison, “Design, Fabrication, and Characterization of Deep-Etched Waveguide Gratings,” J. Light. Tech. 23(11), 3832–3842 (2005).
[Crossref]

M. S. Rasras, K. Tu, D. M. Gill, Y. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, J. Michel, and L. C. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter Using Low-Loss Silicon Ring Resonators,” J. Light. Tech. 27(12), 2105–2110 (2009).
[Crossref]

Laser Photonics Rev. (2)

R. Halir, P. J. Bock, P. Cheben, A. O. Monux, C. A. Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. W. Perez, I. M. Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, D. P. Bienstman, Van Thourhout, and R. Bates, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Opt. Commun. (1)

K. Ghoumid, I. Elhechmi, S. Mekaoui, C. Pieralli, and T. Gharbi, “Analysis of optical filtering in waveguides with a high index modulation using the extended coupled mode theory by hybridization of a matrix method,” Opt. Commun. 289, 85–91 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Other (7)

G. T. Reed, “Passive silicon photonic devices,” in Silicon Photonics: The State of The Art (J. W. & Sons Ltd, 2008), pp. 255–257.

C. J. Chae, D. Y. Choi, E. Skafidas, and Y. T. Lee, “Compact Waveguide Resonator Filter for Wavelength-Selective Reflection and Rejection in Silicon Waveguides,” in Opto-Electronics and Communications Conference (OECC),2015, pp. 1–3.
[Crossref]

Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/ .

E. Hecht, “Diffraction,” in Optics, 5th ed. (Pearson, 2017), pp. 449–528.

Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/mode/ .

M. Born and E. Wolf, “Elements of the theory of diffraction,” in Principles of Optics, 7th ed. (Cambridge University. 1999), pp. 412–514.

T. E. Murphy, “Design, Fabrication and Measurement of Integrated Bragg Grating Optical Filters,” Ph.D. dissertation (Department of Electrical Engineering and Computer Science, MIT, 2001), pp. 72–78.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a): The lateral schematic of the circular Bragg grating proposed in [7]. (b): The lateral schematic of the new circular Bragg grating design proposed in this paper (size scaled).
Fig. 2
Fig. 2 The field distribution (1550 nm) within the 2 µm long taper simulated with angles (θ) of (a) 270°, (b) 180°, (c) 60°, and (d) 20°. Note that the above field distributions were captured to illustrate the wave diffraction from strip waveguide to taper, and no grating blades were set in the simulation. The reflection observed was due to the refractive index contrast between taper and cladding, rather than Bragg reflection. The red circles in (a) and (b) indicate the branches formed in the 270° taper and the index-contrast interface in the 180° taper, respectively. The dashed line in (b) shows the 60° boundary. The tapers were all covered by 2 µm thick SiO2.
Fig. 3
Fig. 3 (a): The grating reflection spectra simulated with different sets of W1, Wt, Wb, and the reflection spectrum of the optimized grating when TM-polarized light is launched. (b - e): The vertical field intensity distributions of the proposed grating captured at y = 0 plane, based on different input wavelengths (1.3 µm and 1.75 µm). The width of the first grating trench (W1) is adjusted while the widths of all other grating trenches and blades are fixed at 181 nm.
Fig. 4
Fig. 4 (a): The grating spectra simulated with different W1 values. (b): The change of the grating reflectivity (1550 nm) and ∆λ with dc. (c): The grating spectra simulated with different angles (θ). (d): The change of the reflectivity (1550 nm) and ∆λ with the taper length (L) for gratings with a 20° and 60° angle. (e): The change of the grating reflectivity (1550 nm) and ∆λ with the number of blade (N). (f): The grating spectra simulated with 6, 8, and 10 periods.
Fig. 5
Fig. 5 (a): The schematic of the measurement setup and the SEM images of the fabricated grating mirror (right), and a notch filter (left) with the following parameters: Lw = 4 μm, Lc = 0 μm, rb = 5 μm. (b): The measured spectra of the circular grating mirror, reference waveguide, and chip-facet reflections. (c): The measured IL of the circular grating mirror. (d): The transmission spectra of the fabricated notch filters with different cavity and coupling lengths.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n t W t + n b W b = λ 0 2
filte r transmission (dB)= filte r output power -W G output power

Metrics