Abstract

The spatially and spectrally resolved photoluminescence (PL) of the archetypical molecular dye ZnPc in periodically ordered organic-silver nanocavities (NC) is investigated by confocal microscopy. The presented approach of long-range ordered pillar structures prepared by nanosphere lithography not only combines the advantages of nanopatterning and localized surface plasmon resonances (LSPR) to improve the light out-coupling efficiency in metal-organic hybrid assemblies, but allows for distinction between geometrical and plasmonic contributions to the PL enhancement, the latter supported by complementary finite-difference-time-domain (FDTD) simulations. Supplementary time-resolved optical measurements indicate exciton lifetime reduction by at least one order of magnitude to be the main mechanism for PL increase amongst the improvement of geometrical out-coupling.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Localized surface plasmon enhanced emission of organic light emitting diode coupled to DBR-cathode microcavity by using silver nanoclusters

Samira Khadir, Mahmoud Chakaroun, Abderrahmane Belkhir, Alexis Fischer, Omar Lamrous, and Azzedine Boudrioua
Opt. Express 23(18) 23647-23659 (2015)

Light out-coupling efficiency enhancement in organic light-emitting diodes using a multilayer stacked electrode with sol-gel processed Ta2O5

Jiho Sohn, Yongwon Kwon, Yeonkyung Lee, and Changhee Lee
Opt. Express 25(22) 27886-27895 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
    [Crossref]
  2. C. Y. Chen, W. K. Lee, Y. J. Chen, C. Y. Lu, H. Y. Lin, and C. C. Wu, “Enhancing optical out-coupling of organic light-emitting devices with nanostructured composite electrodes consisting of indium tin oxide nanomesh and conducting Polymer,” Adv. Mater. 27(33), 4883–4888 (2015).
    [Crossref] [PubMed]
  3. F. Liu and J.-M. Nunzi, “Phosphorescent organic light emitting diode efficiency enhancement using functionalized silver nanoparticles,” Appl. Phys. Lett. 99(12), 123302 (2011).
    [Crossref]
  4. J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. 13(3), 1553–1558 (1995).
    [Crossref]
  5. J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large-area high-quality plasmonic oligomers fabricated by angle-controlled colloidal nanolithography,” ACS Nano 5(11), 9009–9016 (2011).
    [Crossref] [PubMed]
  6. M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
    [Crossref] [PubMed]
  7. B. Fuhrmann, H. S. Leipner, H.-R. Höche, L. Schubert, P. Werner, and U. Gösele, “Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy,” Nano Lett. 5(12), 2524–2527 (2005).
    [Crossref] [PubMed]
  8. M. Brendel, S. Krause, A. Steindamm, A. K. Topczak, S. Sundarraj, P. Erk, S. Höhla, N. Fruehauf, N. Koch, and J. Pflaum, “The effect of gradual fluorination on the properties of FnZnPc thin films and FnZnPc/C60 bilayer photovoltaic cells,” Adv. Funct. Mater. 25(10), 1565–1573 (2015).
    [Crossref]
  9. B. Geffroy, P. le Roy, and C. Prat, “Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
    [Crossref]
  10. J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical nanoantenna,” Nat. Photonics 2(4), 230–233 (2008).
    [Crossref]
  11. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
    [Crossref] [PubMed]
  12. W. Bała, M. Wojdyła, M. Rebarz, M. Szybowic, M. Drozdowski, A. Grodzicki, and P. Piszczek, “Influence of central metal atom in MPc (M = Cu, Zn, Mg, Co) on Raman, FT-IR, absorbance, reflectance, and photoluminescence spectra,” J. Optoelectron. Adv. Mater. 11, 264–269 (2009).
  13. M. Wojdyła, B. Derkowska, Z. Łukasiak, and W. Bała, “Absorption and photoreflectance spectroscopy of zinc phthalocyanine (ZnPc) thin films grown by thermal evaporation,” Mater. Lett. 60(29-30), 3441–3446 (2006).
    [Crossref]
  14. D. G. De Oteyza, E. Barrena, J. O. Ossó, H. Dosch, S. Meyer, and J. Pflaum, “Controlled enhancement of the electron field-effect mobility of F16CuPc thin-film transistors by use of functionalized SiO2 substrates,” Appl. Phys. Lett. 87(18), 183504 (2005).
    [Crossref]
  15. A. Gerlach, F. Schreiber, S. Sellner, H. Dosch, I. A. Vartanyants, B. C. C. Cowie, T. L. Lee, and J. Zegenhagen, “Adsorption-induced distortion of F16CuPc on Cu(111) and Ag(111): An x-ray standing wave study,” Phys. Rev. B 71(20), 205425 (2005).
    [Crossref]
  16. S. Kakade, R. Ghosh, and D. K. Palit, “Excited State Dynamics of Zinc − Phthalocyanine nanoaggregates in strong hydrogen bonding solvents,” J. Phys. Chem. C 116(28), 15155–15166 (2012).
    [Crossref]
  17. A. J. Gesquiere, T. Uwada, T. Asahi, H. Masuhara, and P. F. Barbara, “Single molecule spectroscopy of organic dye nanoparticles,” Nano Lett. 5(7), 1321–1325 (2005).
    [Crossref] [PubMed]
  18. A. M.-C. Ng, A. B. Djurišić, K.-H. Tam, W.-M. Kwok, W.-K. Chan, W. Y. Tam, D. L. Phillips, and K.-W. Cheah, “Organic nanoclusters on inorganic nanostructures for tailoring the emission properties of organic materials,” Adv. Funct. Mater. 18(4), 566–574 (2008).
    [Crossref]
  19. M. Szybowicz, T. Runka, M. Drozdowski, W. Bała, M. Wojdyła, A. Grodzicki, P. Piszczek, and A. Bratkowski, “Temperature study of Raman, FT-IR and photoluminescence spectra of ZnPc thin layers on Si substrate,” J. Mol. Struct. 830(1-3), 14–20 (2007).
    [Crossref]
  20. A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
    [Crossref]
  21. G. M. Akselrod, Y. R. Tischler, E. R. Young, D. G. Nocera, and V. Bulovic, “Exciton-exciton annihilation in organic polariton microcavities,” Phys. Rev. B 82(11), 113106 (2010).
    [Crossref]
  22. C. D. Geddes and J. R. Lakowicz, “Editorial: Metal-enhanced fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
    [Crossref]
  23. M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. Taga, “Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer,” Appl. Phys. Lett. 79(2), 156–158 (2001).
    [Crossref]
  24. W. Gao and A. Kahn, “Controlled p-doping of zinc phthalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: A direct and inverse photoemission study,” Appl. Phys. Lett. 79(24), 4040–4042 (2001).
    [Crossref]
  25. C. B. Lee, A. Uddin, X. Hu, and T. G. Andersson, “Study of Alq3 thermal evaporation rate effects on the OLED,” Mater. Sci. Eng. B 112, 14–18 (2004).
  26. V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
    [Crossref]
  27. T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography : Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103(45), 9846–9853 (1999).
    [Crossref]
  28. V. Settels, A. Schubert, M. Tafipolski, W. Liu, V. Stehr, A. K. Topczak, J. Pflaum, C. Deibel, R. F. Fink, V. Engel, and B. Engels, “Identification of ultrafast relaxation processes as a major reason for inefficient exciton diffusion in perylene-based organic semiconductors,” J. Am. Chem. Soc. 136(26), 9327–9337 (2014).
    [Crossref] [PubMed]
  29. T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
    [Crossref] [PubMed]
  30. W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
    [Crossref] [PubMed]
  31. M. Scharnberg, J. Hu, J. Kanzow, K. Rätzke, R. Adelung, F. Faupel, C. Pannemann, U. Hilleringmann, S. Meyer, and J. Pflaum, “Radiotracer measurements as a sensitive tool for the detection of metal penetration in molecular-based organic electronics,” Appl. Phys. Lett. 86(2), 024104 (2005).
    [Crossref]

2015 (3)

C. Y. Chen, W. K. Lee, Y. J. Chen, C. Y. Lu, H. Y. Lin, and C. C. Wu, “Enhancing optical out-coupling of organic light-emitting devices with nanostructured composite electrodes consisting of indium tin oxide nanomesh and conducting Polymer,” Adv. Mater. 27(33), 4883–4888 (2015).
[Crossref] [PubMed]

M. Brendel, S. Krause, A. Steindamm, A. K. Topczak, S. Sundarraj, P. Erk, S. Höhla, N. Fruehauf, N. Koch, and J. Pflaum, “The effect of gradual fluorination on the properties of FnZnPc thin films and FnZnPc/C60 bilayer photovoltaic cells,” Adv. Funct. Mater. 25(10), 1565–1573 (2015).
[Crossref]

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

2014 (1)

V. Settels, A. Schubert, M. Tafipolski, W. Liu, V. Stehr, A. K. Topczak, J. Pflaum, C. Deibel, R. F. Fink, V. Engel, and B. Engels, “Identification of ultrafast relaxation processes as a major reason for inefficient exciton diffusion in perylene-based organic semiconductors,” J. Am. Chem. Soc. 136(26), 9327–9337 (2014).
[Crossref] [PubMed]

2013 (1)

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

2012 (1)

S. Kakade, R. Ghosh, and D. K. Palit, “Excited State Dynamics of Zinc − Phthalocyanine nanoaggregates in strong hydrogen bonding solvents,” J. Phys. Chem. C 116(28), 15155–15166 (2012).
[Crossref]

2011 (2)

F. Liu and J.-M. Nunzi, “Phosphorescent organic light emitting diode efficiency enhancement using functionalized silver nanoparticles,” Appl. Phys. Lett. 99(12), 123302 (2011).
[Crossref]

J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large-area high-quality plasmonic oligomers fabricated by angle-controlled colloidal nanolithography,” ACS Nano 5(11), 9009–9016 (2011).
[Crossref] [PubMed]

2010 (1)

G. M. Akselrod, Y. R. Tischler, E. R. Young, D. G. Nocera, and V. Bulovic, “Exciton-exciton annihilation in organic polariton microcavities,” Phys. Rev. B 82(11), 113106 (2010).
[Crossref]

2009 (2)

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

W. Bała, M. Wojdyła, M. Rebarz, M. Szybowic, M. Drozdowski, A. Grodzicki, and P. Piszczek, “Influence of central metal atom in MPc (M = Cu, Zn, Mg, Co) on Raman, FT-IR, absorbance, reflectance, and photoluminescence spectra,” J. Optoelectron. Adv. Mater. 11, 264–269 (2009).

2008 (3)

A. M.-C. Ng, A. B. Djurišić, K.-H. Tam, W.-M. Kwok, W.-K. Chan, W. Y. Tam, D. L. Phillips, and K.-W. Cheah, “Organic nanoclusters on inorganic nanostructures for tailoring the emission properties of organic materials,” Adv. Funct. Mater. 18(4), 566–574 (2008).
[Crossref]

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical nanoantenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
[Crossref]

2007 (1)

M. Szybowicz, T. Runka, M. Drozdowski, W. Bała, M. Wojdyła, A. Grodzicki, P. Piszczek, and A. Bratkowski, “Temperature study of Raman, FT-IR and photoluminescence spectra of ZnPc thin layers on Si substrate,” J. Mol. Struct. 830(1-3), 14–20 (2007).
[Crossref]

2006 (3)

M. Wojdyła, B. Derkowska, Z. Łukasiak, and W. Bała, “Absorption and photoreflectance spectroscopy of zinc phthalocyanine (ZnPc) thin films grown by thermal evaporation,” Mater. Lett. 60(29-30), 3441–3446 (2006).
[Crossref]

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[Crossref] [PubMed]

B. Geffroy, P. le Roy, and C. Prat, “Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
[Crossref]

2005 (5)

B. Fuhrmann, H. S. Leipner, H.-R. Höche, L. Schubert, P. Werner, and U. Gösele, “Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy,” Nano Lett. 5(12), 2524–2527 (2005).
[Crossref] [PubMed]

D. G. De Oteyza, E. Barrena, J. O. Ossó, H. Dosch, S. Meyer, and J. Pflaum, “Controlled enhancement of the electron field-effect mobility of F16CuPc thin-film transistors by use of functionalized SiO2 substrates,” Appl. Phys. Lett. 87(18), 183504 (2005).
[Crossref]

A. Gerlach, F. Schreiber, S. Sellner, H. Dosch, I. A. Vartanyants, B. C. C. Cowie, T. L. Lee, and J. Zegenhagen, “Adsorption-induced distortion of F16CuPc on Cu(111) and Ag(111): An x-ray standing wave study,” Phys. Rev. B 71(20), 205425 (2005).
[Crossref]

A. J. Gesquiere, T. Uwada, T. Asahi, H. Masuhara, and P. F. Barbara, “Single molecule spectroscopy of organic dye nanoparticles,” Nano Lett. 5(7), 1321–1325 (2005).
[Crossref] [PubMed]

M. Scharnberg, J. Hu, J. Kanzow, K. Rätzke, R. Adelung, F. Faupel, C. Pannemann, U. Hilleringmann, S. Meyer, and J. Pflaum, “Radiotracer measurements as a sensitive tool for the detection of metal penetration in molecular-based organic electronics,” Appl. Phys. Lett. 86(2), 024104 (2005).
[Crossref]

2004 (1)

C. B. Lee, A. Uddin, X. Hu, and T. G. Andersson, “Study of Alq3 thermal evaporation rate effects on the OLED,” Mater. Sci. Eng. B 112, 14–18 (2004).

2002 (1)

C. D. Geddes and J. R. Lakowicz, “Editorial: Metal-enhanced fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
[Crossref]

2001 (2)

M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. Taga, “Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer,” Appl. Phys. Lett. 79(2), 156–158 (2001).
[Crossref]

W. Gao and A. Kahn, “Controlled p-doping of zinc phthalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: A direct and inverse photoemission study,” Appl. Phys. Lett. 79(24), 4040–4042 (2001).
[Crossref]

1999 (1)

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography : Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103(45), 9846–9853 (1999).
[Crossref]

1998 (2)

V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[Crossref]

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

1995 (1)

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. 13(3), 1553–1558 (1995).
[Crossref]

Adelung, R.

M. Scharnberg, J. Hu, J. Kanzow, K. Rätzke, R. Adelung, F. Faupel, C. Pannemann, U. Hilleringmann, S. Meyer, and J. Pflaum, “Radiotracer measurements as a sensitive tool for the detection of metal penetration in molecular-based organic electronics,” Appl. Phys. Lett. 86(2), 024104 (2005).
[Crossref]

Akselrod, G. M.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

G. M. Akselrod, Y. R. Tischler, E. R. Young, D. G. Nocera, and V. Bulovic, “Exciton-exciton annihilation in organic polariton microcavities,” Phys. Rev. B 82(11), 113106 (2010).
[Crossref]

Andersson, T. G.

C. B. Lee, A. Uddin, X. Hu, and T. G. Andersson, “Study of Alq3 thermal evaporation rate effects on the OLED,” Mater. Sci. Eng. B 112, 14–18 (2004).

Argyropoulos, C.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

Asahi, T.

A. J. Gesquiere, T. Uwada, T. Asahi, H. Masuhara, and P. F. Barbara, “Single molecule spectroscopy of organic dye nanoparticles,” Nano Lett. 5(7), 1321–1325 (2005).
[Crossref] [PubMed]

Bala, W.

W. Bała, M. Wojdyła, M. Rebarz, M. Szybowic, M. Drozdowski, A. Grodzicki, and P. Piszczek, “Influence of central metal atom in MPc (M = Cu, Zn, Mg, Co) on Raman, FT-IR, absorbance, reflectance, and photoluminescence spectra,” J. Optoelectron. Adv. Mater. 11, 264–269 (2009).

M. Szybowicz, T. Runka, M. Drozdowski, W. Bała, M. Wojdyła, A. Grodzicki, P. Piszczek, and A. Bratkowski, “Temperature study of Raman, FT-IR and photoluminescence spectra of ZnPc thin layers on Si substrate,” J. Mol. Struct. 830(1-3), 14–20 (2007).
[Crossref]

M. Wojdyła, B. Derkowska, Z. Łukasiak, and W. Bała, “Absorption and photoreflectance spectroscopy of zinc phthalocyanine (ZnPc) thin films grown by thermal evaporation,” Mater. Lett. 60(29-30), 3441–3446 (2006).
[Crossref]

Barbara, P. F.

A. J. Gesquiere, T. Uwada, T. Asahi, H. Masuhara, and P. F. Barbara, “Single molecule spectroscopy of organic dye nanoparticles,” Nano Lett. 5(7), 1321–1325 (2005).
[Crossref] [PubMed]

Barrena, E.

D. G. De Oteyza, E. Barrena, J. O. Ossó, H. Dosch, S. Meyer, and J. Pflaum, “Controlled enhancement of the electron field-effect mobility of F16CuPc thin-film transistors by use of functionalized SiO2 substrates,” Appl. Phys. Lett. 87(18), 183504 (2005).
[Crossref]

Boneberg, J.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical nanoantenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

Bratkowski, A.

M. Szybowicz, T. Runka, M. Drozdowski, W. Bała, M. Wojdyła, A. Grodzicki, P. Piszczek, and A. Bratkowski, “Temperature study of Raman, FT-IR and photoluminescence spectra of ZnPc thin layers on Si substrate,” J. Mol. Struct. 830(1-3), 14–20 (2007).
[Crossref]

Bratschitsch, R.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical nanoantenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

Brendel, M.

M. Brendel, S. Krause, A. Steindamm, A. K. Topczak, S. Sundarraj, P. Erk, S. Höhla, N. Fruehauf, N. Koch, and J. Pflaum, “The effect of gradual fluorination on the properties of FnZnPc thin films and FnZnPc/C60 bilayer photovoltaic cells,” Adv. Funct. Mater. 25(10), 1565–1573 (2015).
[Crossref]

Brütting, W.

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
[Crossref]

Bulovic, V.

G. M. Akselrod, Y. R. Tischler, E. R. Young, D. G. Nocera, and V. Bulovic, “Exciton-exciton annihilation in organic polariton microcavities,” Phys. Rev. B 82(11), 113106 (2010).
[Crossref]

V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[Crossref]

Burger, S.

J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large-area high-quality plasmonic oligomers fabricated by angle-controlled colloidal nanolithography,” ACS Nano 5(11), 9009–9016 (2011).
[Crossref] [PubMed]

Burrows, P.

V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[Crossref]

Campion, A.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

Chan, W.-K.

A. M.-C. Ng, A. B. Djurišić, K.-H. Tam, W.-M. Kwok, W.-K. Chan, W. Y. Tam, D. L. Phillips, and K.-W. Cheah, “Organic nanoclusters on inorganic nanostructures for tailoring the emission properties of organic materials,” Adv. Funct. Mater. 18(4), 566–574 (2008).
[Crossref]

Cheah, K.-W.

A. M.-C. Ng, A. B. Djurišić, K.-H. Tam, W.-M. Kwok, W.-K. Chan, W. Y. Tam, D. L. Phillips, and K.-W. Cheah, “Organic nanoclusters on inorganic nanostructures for tailoring the emission properties of organic materials,” Adv. Funct. Mater. 18(4), 566–574 (2008).
[Crossref]

Chen, C. Y.

C. Y. Chen, W. K. Lee, Y. J. Chen, C. Y. Lu, H. Y. Lin, and C. C. Wu, “Enhancing optical out-coupling of organic light-emitting devices with nanostructured composite electrodes consisting of indium tin oxide nanomesh and conducting Polymer,” Adv. Mater. 27(33), 4883–4888 (2015).
[Crossref] [PubMed]

Chen, Y. J.

C. Y. Chen, W. K. Lee, Y. J. Chen, C. Y. Lu, H. Y. Lin, and C. C. Wu, “Enhancing optical out-coupling of organic light-emitting devices with nanostructured composite electrodes consisting of indium tin oxide nanomesh and conducting Polymer,” Adv. Mater. 27(33), 4883–4888 (2015).
[Crossref] [PubMed]

Co, D. T.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Cowie, B. C. C.

A. Gerlach, F. Schreiber, S. Sellner, H. Dosch, I. A. Vartanyants, B. C. C. Cowie, T. L. Lee, and J. Zegenhagen, “Adsorption-induced distortion of F16CuPc on Cu(111) and Ag(111): An x-ray standing wave study,” Phys. Rev. B 71(20), 205425 (2005).
[Crossref]

De Oteyza, D. G.

D. G. De Oteyza, E. Barrena, J. O. Ossó, H. Dosch, S. Meyer, and J. Pflaum, “Controlled enhancement of the electron field-effect mobility of F16CuPc thin-film transistors by use of functionalized SiO2 substrates,” Appl. Phys. Lett. 87(18), 183504 (2005).
[Crossref]

Deibel, C.

V. Settels, A. Schubert, M. Tafipolski, W. Liu, V. Stehr, A. K. Topczak, J. Pflaum, C. Deibel, R. F. Fink, V. Engel, and B. Engels, “Identification of ultrafast relaxation processes as a major reason for inefficient exciton diffusion in perylene-based organic semiconductors,” J. Am. Chem. Soc. 136(26), 9327–9337 (2014).
[Crossref] [PubMed]

Derkowska, B.

M. Wojdyła, B. Derkowska, Z. Łukasiak, and W. Bała, “Absorption and photoreflectance spectroscopy of zinc phthalocyanine (ZnPc) thin films grown by thermal evaporation,” Mater. Lett. 60(29-30), 3441–3446 (2006).
[Crossref]

Djurišic, A. B.

A. M.-C. Ng, A. B. Djurišić, K.-H. Tam, W.-M. Kwok, W.-K. Chan, W. Y. Tam, D. L. Phillips, and K.-W. Cheah, “Organic nanoclusters on inorganic nanostructures for tailoring the emission properties of organic materials,” Adv. Funct. Mater. 18(4), 566–574 (2008).
[Crossref]

Dosch, H.

D. G. De Oteyza, E. Barrena, J. O. Ossó, H. Dosch, S. Meyer, and J. Pflaum, “Controlled enhancement of the electron field-effect mobility of F16CuPc thin-film transistors by use of functionalized SiO2 substrates,” Appl. Phys. Lett. 87(18), 183504 (2005).
[Crossref]

A. Gerlach, F. Schreiber, S. Sellner, H. Dosch, I. A. Vartanyants, B. C. C. Cowie, T. L. Lee, and J. Zegenhagen, “Adsorption-induced distortion of F16CuPc on Cu(111) and Ag(111): An x-ray standing wave study,” Phys. Rev. B 71(20), 205425 (2005).
[Crossref]

Dridi, M.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Drozdowski, M.

W. Bała, M. Wojdyła, M. Rebarz, M. Szybowic, M. Drozdowski, A. Grodzicki, and P. Piszczek, “Influence of central metal atom in MPc (M = Cu, Zn, Mg, Co) on Raman, FT-IR, absorbance, reflectance, and photoluminescence spectra,” J. Optoelectron. Adv. Mater. 11, 264–269 (2009).

M. Szybowicz, T. Runka, M. Drozdowski, W. Bała, M. Wojdyła, A. Grodzicki, P. Piszczek, and A. Bratkowski, “Temperature study of Raman, FT-IR and photoluminescence spectra of ZnPc thin layers on Si substrate,” J. Mol. Struct. 830(1-3), 14–20 (2007).
[Crossref]

Duval, M. L.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography : Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103(45), 9846–9853 (1999).
[Crossref]

Engel, V.

V. Settels, A. Schubert, M. Tafipolski, W. Liu, V. Stehr, A. K. Topczak, J. Pflaum, C. Deibel, R. F. Fink, V. Engel, and B. Engels, “Identification of ultrafast relaxation processes as a major reason for inefficient exciton diffusion in perylene-based organic semiconductors,” J. Am. Chem. Soc. 136(26), 9327–9337 (2014).
[Crossref] [PubMed]

Engels, B.

V. Settels, A. Schubert, M. Tafipolski, W. Liu, V. Stehr, A. K. Topczak, J. Pflaum, C. Deibel, R. F. Fink, V. Engel, and B. Engels, “Identification of ultrafast relaxation processes as a major reason for inefficient exciton diffusion in perylene-based organic semiconductors,” J. Am. Chem. Soc. 136(26), 9327–9337 (2014).
[Crossref] [PubMed]

Erk, P.

M. Brendel, S. Krause, A. Steindamm, A. K. Topczak, S. Sundarraj, P. Erk, S. Höhla, N. Fruehauf, N. Koch, and J. Pflaum, “The effect of gradual fluorination on the properties of FnZnPc thin films and FnZnPc/C60 bilayer photovoltaic cells,” Adv. Funct. Mater. 25(10), 1565–1573 (2015).
[Crossref]

Faupel, F.

M. Scharnberg, J. Hu, J. Kanzow, K. Rätzke, R. Adelung, F. Faupel, C. Pannemann, U. Hilleringmann, S. Meyer, and J. Pflaum, “Radiotracer measurements as a sensitive tool for the detection of metal penetration in molecular-based organic electronics,” Appl. Phys. Lett. 86(2), 024104 (2005).
[Crossref]

Fink, R. F.

V. Settels, A. Schubert, M. Tafipolski, W. Liu, V. Stehr, A. K. Topczak, J. Pflaum, C. Deibel, R. F. Fink, V. Engel, and B. Engels, “Identification of ultrafast relaxation processes as a major reason for inefficient exciton diffusion in perylene-based organic semiconductors,” J. Am. Chem. Soc. 136(26), 9327–9337 (2014).
[Crossref] [PubMed]

Forrest, S.

V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[Crossref]

Frank, B.

J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large-area high-quality plasmonic oligomers fabricated by angle-controlled colloidal nanolithography,” ACS Nano 5(11), 9009–9016 (2011).
[Crossref] [PubMed]

Frischeisen, J.

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
[Crossref]

Fruehauf, N.

M. Brendel, S. Krause, A. Steindamm, A. K. Topczak, S. Sundarraj, P. Erk, S. Höhla, N. Fruehauf, N. Koch, and J. Pflaum, “The effect of gradual fluorination on the properties of FnZnPc thin films and FnZnPc/C60 bilayer photovoltaic cells,” Adv. Funct. Mater. 25(10), 1565–1573 (2015).
[Crossref]

Fu, L.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Fuhrmann, B.

B. Fuhrmann, H. S. Leipner, H.-R. Höche, L. Schubert, P. Werner, and U. Gösele, “Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy,” Nano Lett. 5(12), 2524–2527 (2005).
[Crossref] [PubMed]

Gao, W.

W. Gao and A. Kahn, “Controlled p-doping of zinc phthalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: A direct and inverse photoemission study,” Appl. Phys. Lett. 79(24), 4040–4042 (2001).
[Crossref]

Garbuzov, D.

V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[Crossref]

Geddes, C. D.

C. D. Geddes and J. R. Lakowicz, “Editorial: Metal-enhanced fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
[Crossref]

Geffroy, B.

B. Geffroy, P. le Roy, and C. Prat, “Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
[Crossref]

Gerlach, A.

A. Gerlach, F. Schreiber, S. Sellner, H. Dosch, I. A. Vartanyants, B. C. C. Cowie, T. L. Lee, and J. Zegenhagen, “Adsorption-induced distortion of F16CuPc on Cu(111) and Ag(111): An x-ray standing wave study,” Phys. Rev. B 71(20), 205425 (2005).
[Crossref]

Gesquiere, A. J.

A. J. Gesquiere, T. Uwada, T. Asahi, H. Masuhara, and P. F. Barbara, “Single molecule spectroscopy of organic dye nanoparticles,” Nano Lett. 5(7), 1321–1325 (2005).
[Crossref] [PubMed]

Ghosh, R.

S. Kakade, R. Ghosh, and D. K. Palit, “Excited State Dynamics of Zinc − Phthalocyanine nanoaggregates in strong hydrogen bonding solvents,” J. Phys. Chem. C 116(28), 15155–15166 (2012).
[Crossref]

Giersig, M.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Giessen, H.

J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large-area high-quality plasmonic oligomers fabricated by angle-controlled colloidal nanolithography,” ACS Nano 5(11), 9009–9016 (2011).
[Crossref] [PubMed]

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Gösele, U.

B. Fuhrmann, H. S. Leipner, H.-R. Höche, L. Schubert, P. Werner, and U. Gösele, “Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy,” Nano Lett. 5(12), 2524–2527 (2005).
[Crossref] [PubMed]

Grodzicki, A.

W. Bała, M. Wojdyła, M. Rebarz, M. Szybowic, M. Drozdowski, A. Grodzicki, and P. Piszczek, “Influence of central metal atom in MPc (M = Cu, Zn, Mg, Co) on Raman, FT-IR, absorbance, reflectance, and photoluminescence spectra,” J. Optoelectron. Adv. Mater. 11, 264–269 (2009).

M. Szybowicz, T. Runka, M. Drozdowski, W. Bała, M. Wojdyła, A. Grodzicki, P. Piszczek, and A. Bratkowski, “Temperature study of Raman, FT-IR and photoluminescence spectra of ZnPc thin layers on Si substrate,” J. Mol. Struct. 830(1-3), 14–20 (2007).
[Crossref]

Gu, G.

V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[Crossref]

Gwinner, M. C.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Halm, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical nanoantenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

Hilleringmann, U.

M. Scharnberg, J. Hu, J. Kanzow, K. Rätzke, R. Adelung, F. Faupel, C. Pannemann, U. Hilleringmann, S. Meyer, and J. Pflaum, “Radiotracer measurements as a sensitive tool for the detection of metal penetration in molecular-based organic electronics,” Appl. Phys. Lett. 86(2), 024104 (2005).
[Crossref]

Hoang, T. B.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

Höche, H.-R.

B. Fuhrmann, H. S. Leipner, H.-R. Höche, L. Schubert, P. Werner, and U. Gösele, “Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy,” Nano Lett. 5(12), 2524–2527 (2005).
[Crossref] [PubMed]

Höhla, S.

M. Brendel, S. Krause, A. Steindamm, A. K. Topczak, S. Sundarraj, P. Erk, S. Höhla, N. Fruehauf, N. Koch, and J. Pflaum, “The effect of gradual fluorination on the properties of FnZnPc thin films and FnZnPc/C60 bilayer photovoltaic cells,” Adv. Funct. Mater. 25(10), 1565–1573 (2015).
[Crossref]

Hu, J.

M. Scharnberg, J. Hu, J. Kanzow, K. Rätzke, R. Adelung, F. Faupel, C. Pannemann, U. Hilleringmann, S. Meyer, and J. Pflaum, “Radiotracer measurements as a sensitive tool for the detection of metal penetration in molecular-based organic electronics,” Appl. Phys. Lett. 86(2), 024104 (2005).
[Crossref]

Hu, X.

C. B. Lee, A. Uddin, X. Hu, and T. G. Andersson, “Study of Alq3 thermal evaporation rate effects on the OLED,” Mater. Sci. Eng. B 112, 14–18 (2004).

Huang, J.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

Hulteen, J. C.

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. 13(3), 1553–1558 (1995).
[Crossref]

Ikai, M.

M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. Taga, “Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer,” Appl. Phys. Lett. 79(2), 156–158 (2001).
[Crossref]

Jensen, T. R.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography : Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103(45), 9846–9853 (1999).
[Crossref]

Jin, R.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[Crossref] [PubMed]

Kahl, M.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical nanoantenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

Kahn, A.

W. Gao and A. Kahn, “Controlled p-doping of zinc phthalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: A direct and inverse photoemission study,” Appl. Phys. Lett. 79(24), 4040–4042 (2001).
[Crossref]

Kakade, S.

S. Kakade, R. Ghosh, and D. K. Palit, “Excited State Dynamics of Zinc − Phthalocyanine nanoaggregates in strong hydrogen bonding solvents,” J. Phys. Chem. C 116(28), 15155–15166 (2012).
[Crossref]

Kambhampati, P.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

Kandulski, W.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Kanzow, J.

M. Scharnberg, J. Hu, J. Kanzow, K. Rätzke, R. Adelung, F. Faupel, C. Pannemann, U. Hilleringmann, S. Meyer, and J. Pflaum, “Radiotracer measurements as a sensitive tool for the detection of metal penetration in molecular-based organic electronics,” Appl. Phys. Lett. 86(2), 024104 (2005).
[Crossref]

Kelly, K. L.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography : Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103(45), 9846–9853 (1999).
[Crossref]

Khalfin, V.

V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[Crossref]

Kim, C. H.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Koch, N.

M. Brendel, S. Krause, A. Steindamm, A. K. Topczak, S. Sundarraj, P. Erk, S. Höhla, N. Fruehauf, N. Koch, and J. Pflaum, “The effect of gradual fluorination on the properties of FnZnPc thin films and FnZnPc/C60 bilayer photovoltaic cells,” Adv. Funct. Mater. 25(10), 1565–1573 (2015).
[Crossref]

Koroknay, E.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Krause, S.

M. Brendel, S. Krause, A. Steindamm, A. K. Topczak, S. Sundarraj, P. Erk, S. Höhla, N. Fruehauf, N. Koch, and J. Pflaum, “The effect of gradual fluorination on the properties of FnZnPc thin films and FnZnPc/C60 bilayer photovoltaic cells,” Adv. Funct. Mater. 25(10), 1565–1573 (2015).
[Crossref]

Krummacher, B. C.

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
[Crossref]

Kwok, W.-M.

A. M.-C. Ng, A. B. Djurišić, K.-H. Tam, W.-M. Kwok, W.-K. Chan, W. Y. Tam, D. L. Phillips, and K.-W. Cheah, “Organic nanoclusters on inorganic nanostructures for tailoring the emission properties of organic materials,” Adv. Funct. Mater. 18(4), 566–574 (2008).
[Crossref]

Lakowicz, J. R.

C. D. Geddes and J. R. Lakowicz, “Editorial: Metal-enhanced fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
[Crossref]

Lazarides, A. A.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography : Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103(45), 9846–9853 (1999).
[Crossref]

le Roy, P.

B. Geffroy, P. le Roy, and C. Prat, “Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
[Crossref]

Lee, C. B.

C. B. Lee, A. Uddin, X. Hu, and T. G. Andersson, “Study of Alq3 thermal evaporation rate effects on the OLED,” Mater. Sci. Eng. B 112, 14–18 (2004).

Lee, T. L.

A. Gerlach, F. Schreiber, S. Sellner, H. Dosch, I. A. Vartanyants, B. C. C. Cowie, T. L. Lee, and J. Zegenhagen, “Adsorption-induced distortion of F16CuPc on Cu(111) and Ag(111): An x-ray standing wave study,” Phys. Rev. B 71(20), 205425 (2005).
[Crossref]

Lee, W. K.

C. Y. Chen, W. K. Lee, Y. J. Chen, C. Y. Lu, H. Y. Lin, and C. C. Wu, “Enhancing optical out-coupling of organic light-emitting devices with nanostructured composite electrodes consisting of indium tin oxide nanomesh and conducting Polymer,” Adv. Mater. 27(33), 4883–4888 (2015).
[Crossref] [PubMed]

Leiderer, P.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical nanoantenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

Leipner, H. S.

B. Fuhrmann, H. S. Leipner, H.-R. Höche, L. Schubert, P. Werner, and U. Gösele, “Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy,” Nano Lett. 5(12), 2524–2527 (2005).
[Crossref] [PubMed]

Leitenstorfer, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical nanoantenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

Lin, H. Y.

C. Y. Chen, W. K. Lee, Y. J. Chen, C. Y. Lu, H. Y. Lin, and C. C. Wu, “Enhancing optical out-coupling of organic light-emitting devices with nanostructured composite electrodes consisting of indium tin oxide nanomesh and conducting Polymer,” Adv. Mater. 27(33), 4883–4888 (2015).
[Crossref] [PubMed]

Liu, F.

F. Liu and J.-M. Nunzi, “Phosphorescent organic light emitting diode efficiency enhancement using functionalized silver nanoparticles,” Appl. Phys. Lett. 99(12), 123302 (2011).
[Crossref]

Liu, W.

V. Settels, A. Schubert, M. Tafipolski, W. Liu, V. Stehr, A. K. Topczak, J. Pflaum, C. Deibel, R. F. Fink, V. Engel, and B. Engels, “Identification of ultrafast relaxation processes as a major reason for inefficient exciton diffusion in perylene-based organic semiconductors,” J. Am. Chem. Soc. 136(26), 9327–9337 (2014).
[Crossref] [PubMed]

Lu, C. Y.

C. Y. Chen, W. K. Lee, Y. J. Chen, C. Y. Lu, H. Y. Lin, and C. C. Wu, “Enhancing optical out-coupling of organic light-emitting devices with nanostructured composite electrodes consisting of indium tin oxide nanomesh and conducting Polymer,” Adv. Mater. 27(33), 4883–4888 (2015).
[Crossref] [PubMed]

Lukasiak, Z.

M. Wojdyła, B. Derkowska, Z. Łukasiak, and W. Bała, “Absorption and photoreflectance spectroscopy of zinc phthalocyanine (ZnPc) thin films grown by thermal evaporation,” Mater. Lett. 60(29-30), 3441–3446 (2006).
[Crossref]

Masuhara, H.

A. J. Gesquiere, T. Uwada, T. Asahi, H. Masuhara, and P. F. Barbara, “Single molecule spectroscopy of organic dye nanoparticles,” Nano Lett. 5(7), 1321–1325 (2005).
[Crossref] [PubMed]

Merlein, J.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical nanoantenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

Meyer, S.

D. G. De Oteyza, E. Barrena, J. O. Ossó, H. Dosch, S. Meyer, and J. Pflaum, “Controlled enhancement of the electron field-effect mobility of F16CuPc thin-film transistors by use of functionalized SiO2 substrates,” Appl. Phys. Lett. 87(18), 183504 (2005).
[Crossref]

M. Scharnberg, J. Hu, J. Kanzow, K. Rätzke, R. Adelung, F. Faupel, C. Pannemann, U. Hilleringmann, S. Meyer, and J. Pflaum, “Radiotracer measurements as a sensitive tool for the detection of metal penetration in molecular-based organic electronics,” Appl. Phys. Lett. 86(2), 024104 (2005).
[Crossref]

Mikkelsen, M. H.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

Mirkin, C. A.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[Crossref] [PubMed]

Ng, A. M.-C.

A. M.-C. Ng, A. B. Djurišić, K.-H. Tam, W.-M. Kwok, W.-K. Chan, W. Y. Tam, D. L. Phillips, and K.-W. Cheah, “Organic nanoclusters on inorganic nanostructures for tailoring the emission properties of organic materials,” Adv. Funct. Mater. 18(4), 566–574 (2008).
[Crossref]

Nocera, D. G.

G. M. Akselrod, Y. R. Tischler, E. R. Young, D. G. Nocera, and V. Bulovic, “Exciton-exciton annihilation in organic polariton microcavities,” Phys. Rev. B 82(11), 113106 (2010).
[Crossref]

Nowy, S.

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
[Crossref]

Nunzi, J.-M.

F. Liu and J.-M. Nunzi, “Phosphorescent organic light emitting diode efficiency enhancement using functionalized silver nanoparticles,” Appl. Phys. Lett. 99(12), 123302 (2011).
[Crossref]

Odom, T. W.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Ossó, J. O.

D. G. De Oteyza, E. Barrena, J. O. Ossó, H. Dosch, S. Meyer, and J. Pflaum, “Controlled enhancement of the electron field-effect mobility of F16CuPc thin-film transistors by use of functionalized SiO2 substrates,” Appl. Phys. Lett. 87(18), 183504 (2005).
[Crossref]

Palit, D. K.

S. Kakade, R. Ghosh, and D. K. Palit, “Excited State Dynamics of Zinc − Phthalocyanine nanoaggregates in strong hydrogen bonding solvents,” J. Phys. Chem. C 116(28), 15155–15166 (2012).
[Crossref]

Pannemann, C.

M. Scharnberg, J. Hu, J. Kanzow, K. Rätzke, R. Adelung, F. Faupel, C. Pannemann, U. Hilleringmann, S. Meyer, and J. Pflaum, “Radiotracer measurements as a sensitive tool for the detection of metal penetration in molecular-based organic electronics,” Appl. Phys. Lett. 86(2), 024104 (2005).
[Crossref]

Patoka, P.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Pflaum, J.

M. Brendel, S. Krause, A. Steindamm, A. K. Topczak, S. Sundarraj, P. Erk, S. Höhla, N. Fruehauf, N. Koch, and J. Pflaum, “The effect of gradual fluorination on the properties of FnZnPc thin films and FnZnPc/C60 bilayer photovoltaic cells,” Adv. Funct. Mater. 25(10), 1565–1573 (2015).
[Crossref]

V. Settels, A. Schubert, M. Tafipolski, W. Liu, V. Stehr, A. K. Topczak, J. Pflaum, C. Deibel, R. F. Fink, V. Engel, and B. Engels, “Identification of ultrafast relaxation processes as a major reason for inefficient exciton diffusion in perylene-based organic semiconductors,” J. Am. Chem. Soc. 136(26), 9327–9337 (2014).
[Crossref] [PubMed]

M. Scharnberg, J. Hu, J. Kanzow, K. Rätzke, R. Adelung, F. Faupel, C. Pannemann, U. Hilleringmann, S. Meyer, and J. Pflaum, “Radiotracer measurements as a sensitive tool for the detection of metal penetration in molecular-based organic electronics,” Appl. Phys. Lett. 86(2), 024104 (2005).
[Crossref]

D. G. De Oteyza, E. Barrena, J. O. Ossó, H. Dosch, S. Meyer, and J. Pflaum, “Controlled enhancement of the electron field-effect mobility of F16CuPc thin-film transistors by use of functionalized SiO2 substrates,” Appl. Phys. Lett. 87(18), 183504 (2005).
[Crossref]

Phillips, D. L.

A. M.-C. Ng, A. B. Djurišić, K.-H. Tam, W.-M. Kwok, W.-K. Chan, W. Y. Tam, D. L. Phillips, and K.-W. Cheah, “Organic nanoclusters on inorganic nanostructures for tailoring the emission properties of organic materials,” Adv. Funct. Mater. 18(4), 566–574 (2008).
[Crossref]

Piszczek, P.

W. Bała, M. Wojdyła, M. Rebarz, M. Szybowic, M. Drozdowski, A. Grodzicki, and P. Piszczek, “Influence of central metal atom in MPc (M = Cu, Zn, Mg, Co) on Raman, FT-IR, absorbance, reflectance, and photoluminescence spectra,” J. Optoelectron. Adv. Mater. 11, 264–269 (2009).

M. Szybowicz, T. Runka, M. Drozdowski, W. Bała, M. Wojdyła, A. Grodzicki, P. Piszczek, and A. Bratkowski, “Temperature study of Raman, FT-IR and photoluminescence spectra of ZnPc thin layers on Si substrate,” J. Mol. Struct. 830(1-3), 14–20 (2007).
[Crossref]

Prat, C.

B. Geffroy, P. le Roy, and C. Prat, “Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
[Crossref]

Rätzke, K.

M. Scharnberg, J. Hu, J. Kanzow, K. Rätzke, R. Adelung, F. Faupel, C. Pannemann, U. Hilleringmann, S. Meyer, and J. Pflaum, “Radiotracer measurements as a sensitive tool for the detection of metal penetration in molecular-based organic electronics,” Appl. Phys. Lett. 86(2), 024104 (2005).
[Crossref]

Rebarz, M.

W. Bała, M. Wojdyła, M. Rebarz, M. Szybowic, M. Drozdowski, A. Grodzicki, and P. Piszczek, “Influence of central metal atom in MPc (M = Cu, Zn, Mg, Co) on Raman, FT-IR, absorbance, reflectance, and photoluminescence spectra,” J. Optoelectron. Adv. Mater. 11, 264–269 (2009).

Reinke, N. A.

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
[Crossref]

Runka, T.

M. Szybowicz, T. Runka, M. Drozdowski, W. Bała, M. Wojdyła, A. Grodzicki, P. Piszczek, and A. Bratkowski, “Temperature study of Raman, FT-IR and photoluminescence spectra of ZnPc thin layers on Si substrate,” J. Mol. Struct. 830(1-3), 14–20 (2007).
[Crossref]

Sakamoto, Y.

M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. Taga, “Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer,” Appl. Phys. Lett. 79(2), 156–158 (2001).
[Crossref]

Scharnberg, M.

M. Scharnberg, J. Hu, J. Kanzow, K. Rätzke, R. Adelung, F. Faupel, C. Pannemann, U. Hilleringmann, S. Meyer, and J. Pflaum, “Radiotracer measurements as a sensitive tool for the detection of metal penetration in molecular-based organic electronics,” Appl. Phys. Lett. 86(2), 024104 (2005).
[Crossref]

Schatz, G. C.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[Crossref] [PubMed]

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography : Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103(45), 9846–9853 (1999).
[Crossref]

Schreiber, F.

A. Gerlach, F. Schreiber, S. Sellner, H. Dosch, I. A. Vartanyants, B. C. C. Cowie, T. L. Lee, and J. Zegenhagen, “Adsorption-induced distortion of F16CuPc on Cu(111) and Ag(111): An x-ray standing wave study,” Phys. Rev. B 71(20), 205425 (2005).
[Crossref]

Schubert, A.

V. Settels, A. Schubert, M. Tafipolski, W. Liu, V. Stehr, A. K. Topczak, J. Pflaum, C. Deibel, R. F. Fink, V. Engel, and B. Engels, “Identification of ultrafast relaxation processes as a major reason for inefficient exciton diffusion in perylene-based organic semiconductors,” J. Am. Chem. Soc. 136(26), 9327–9337 (2014).
[Crossref] [PubMed]

Schubert, L.

B. Fuhrmann, H. S. Leipner, H.-R. Höche, L. Schubert, P. Werner, and U. Gösele, “Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy,” Nano Lett. 5(12), 2524–2527 (2005).
[Crossref] [PubMed]

Sell, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical nanoantenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

Sellner, S.

A. Gerlach, F. Schreiber, S. Sellner, H. Dosch, I. A. Vartanyants, B. C. C. Cowie, T. L. Lee, and J. Zegenhagen, “Adsorption-induced distortion of F16CuPc on Cu(111) and Ag(111): An x-ray standing wave study,” Phys. Rev. B 71(20), 205425 (2005).
[Crossref]

Settels, V.

V. Settels, A. Schubert, M. Tafipolski, W. Liu, V. Stehr, A. K. Topczak, J. Pflaum, C. Deibel, R. F. Fink, V. Engel, and B. Engels, “Identification of ultrafast relaxation processes as a major reason for inefficient exciton diffusion in perylene-based organic semiconductors,” J. Am. Chem. Soc. 136(26), 9327–9337 (2014).
[Crossref] [PubMed]

Sherry, L. J.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[Crossref] [PubMed]

Smith, D. R.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

Stehr, V.

V. Settels, A. Schubert, M. Tafipolski, W. Liu, V. Stehr, A. K. Topczak, J. Pflaum, C. Deibel, R. F. Fink, V. Engel, and B. Engels, “Identification of ultrafast relaxation processes as a major reason for inefficient exciton diffusion in perylene-based organic semiconductors,” J. Am. Chem. Soc. 136(26), 9327–9337 (2014).
[Crossref] [PubMed]

Steindamm, A.

M. Brendel, S. Krause, A. Steindamm, A. K. Topczak, S. Sundarraj, P. Erk, S. Höhla, N. Fruehauf, N. Koch, and J. Pflaum, “The effect of gradual fluorination on the properties of FnZnPc thin films and FnZnPc/C60 bilayer photovoltaic cells,” Adv. Funct. Mater. 25(10), 1565–1573 (2015).
[Crossref]

Suh, J. Y.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Sundarraj, S.

M. Brendel, S. Krause, A. Steindamm, A. K. Topczak, S. Sundarraj, P. Erk, S. Höhla, N. Fruehauf, N. Koch, and J. Pflaum, “The effect of gradual fluorination on the properties of FnZnPc thin films and FnZnPc/C60 bilayer photovoltaic cells,” Adv. Funct. Mater. 25(10), 1565–1573 (2015).
[Crossref]

Suzuki, T.

M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. Taga, “Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer,” Appl. Phys. Lett. 79(2), 156–158 (2001).
[Crossref]

Szybowic, M.

W. Bała, M. Wojdyła, M. Rebarz, M. Szybowic, M. Drozdowski, A. Grodzicki, and P. Piszczek, “Influence of central metal atom in MPc (M = Cu, Zn, Mg, Co) on Raman, FT-IR, absorbance, reflectance, and photoluminescence spectra,” J. Optoelectron. Adv. Mater. 11, 264–269 (2009).

Szybowicz, M.

M. Szybowicz, T. Runka, M. Drozdowski, W. Bała, M. Wojdyła, A. Grodzicki, P. Piszczek, and A. Bratkowski, “Temperature study of Raman, FT-IR and photoluminescence spectra of ZnPc thin layers on Si substrate,” J. Mol. Struct. 830(1-3), 14–20 (2007).
[Crossref]

Tafipolski, M.

V. Settels, A. Schubert, M. Tafipolski, W. Liu, V. Stehr, A. K. Topczak, J. Pflaum, C. Deibel, R. F. Fink, V. Engel, and B. Engels, “Identification of ultrafast relaxation processes as a major reason for inefficient exciton diffusion in perylene-based organic semiconductors,” J. Am. Chem. Soc. 136(26), 9327–9337 (2014).
[Crossref] [PubMed]

Taga, Y.

M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. Taga, “Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer,” Appl. Phys. Lett. 79(2), 156–158 (2001).
[Crossref]

Tam, K.-H.

A. M.-C. Ng, A. B. Djurišić, K.-H. Tam, W.-M. Kwok, W.-K. Chan, W. Y. Tam, D. L. Phillips, and K.-W. Cheah, “Organic nanoclusters on inorganic nanostructures for tailoring the emission properties of organic materials,” Adv. Funct. Mater. 18(4), 566–574 (2008).
[Crossref]

Tam, W. Y.

A. M.-C. Ng, A. B. Djurišić, K.-H. Tam, W.-M. Kwok, W.-K. Chan, W. Y. Tam, D. L. Phillips, and K.-W. Cheah, “Organic nanoclusters on inorganic nanostructures for tailoring the emission properties of organic materials,” Adv. Funct. Mater. 18(4), 566–574 (2008).
[Crossref]

Tischler, Y. R.

G. M. Akselrod, Y. R. Tischler, E. R. Young, D. G. Nocera, and V. Bulovic, “Exciton-exciton annihilation in organic polariton microcavities,” Phys. Rev. B 82(11), 113106 (2010).
[Crossref]

Tokito, S.

M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. Taga, “Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer,” Appl. Phys. Lett. 79(2), 156–158 (2001).
[Crossref]

Topczak, A. K.

M. Brendel, S. Krause, A. Steindamm, A. K. Topczak, S. Sundarraj, P. Erk, S. Höhla, N. Fruehauf, N. Koch, and J. Pflaum, “The effect of gradual fluorination on the properties of FnZnPc thin films and FnZnPc/C60 bilayer photovoltaic cells,” Adv. Funct. Mater. 25(10), 1565–1573 (2015).
[Crossref]

V. Settels, A. Schubert, M. Tafipolski, W. Liu, V. Stehr, A. K. Topczak, J. Pflaum, C. Deibel, R. F. Fink, V. Engel, and B. Engels, “Identification of ultrafast relaxation processes as a major reason for inefficient exciton diffusion in perylene-based organic semiconductors,” J. Am. Chem. Soc. 136(26), 9327–9337 (2014).
[Crossref] [PubMed]

Uddin, A.

C. B. Lee, A. Uddin, X. Hu, and T. G. Andersson, “Study of Alq3 thermal evaporation rate effects on the OLED,” Mater. Sci. Eng. B 112, 14–18 (2004).

Uwada, T.

A. J. Gesquiere, T. Uwada, T. Asahi, H. Masuhara, and P. F. Barbara, “Single molecule spectroscopy of organic dye nanoparticles,” Nano Lett. 5(7), 1321–1325 (2005).
[Crossref] [PubMed]

Van Duyne, R. P.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[Crossref] [PubMed]

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography : Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103(45), 9846–9853 (1999).
[Crossref]

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. 13(3), 1553–1558 (1995).
[Crossref]

Vartanyants, I. A.

A. Gerlach, F. Schreiber, S. Sellner, H. Dosch, I. A. Vartanyants, B. C. C. Cowie, T. L. Lee, and J. Zegenhagen, “Adsorption-induced distortion of F16CuPc on Cu(111) and Ag(111): An x-ray standing wave study,” Phys. Rev. B 71(20), 205425 (2005).
[Crossref]

Wasielewski, M. R.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Werner, P.

B. Fuhrmann, H. S. Leipner, H.-R. Höche, L. Schubert, P. Werner, and U. Gösele, “Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy,” Nano Lett. 5(12), 2524–2527 (2005).
[Crossref] [PubMed]

Wojdyla, M.

W. Bała, M. Wojdyła, M. Rebarz, M. Szybowic, M. Drozdowski, A. Grodzicki, and P. Piszczek, “Influence of central metal atom in MPc (M = Cu, Zn, Mg, Co) on Raman, FT-IR, absorbance, reflectance, and photoluminescence spectra,” J. Optoelectron. Adv. Mater. 11, 264–269 (2009).

M. Szybowicz, T. Runka, M. Drozdowski, W. Bała, M. Wojdyła, A. Grodzicki, P. Piszczek, and A. Bratkowski, “Temperature study of Raman, FT-IR and photoluminescence spectra of ZnPc thin layers on Si substrate,” J. Mol. Struct. 830(1-3), 14–20 (2007).
[Crossref]

M. Wojdyła, B. Derkowska, Z. Łukasiak, and W. Bała, “Absorption and photoreflectance spectroscopy of zinc phthalocyanine (ZnPc) thin films grown by thermal evaporation,” Mater. Lett. 60(29-30), 3441–3446 (2006).
[Crossref]

Wu, C. C.

C. Y. Chen, W. K. Lee, Y. J. Chen, C. Y. Lu, H. Y. Lin, and C. C. Wu, “Enhancing optical out-coupling of organic light-emitting devices with nanostructured composite electrodes consisting of indium tin oxide nanomesh and conducting Polymer,” Adv. Mater. 27(33), 4883–4888 (2015).
[Crossref] [PubMed]

Young, E. R.

G. M. Akselrod, Y. R. Tischler, E. R. Young, D. G. Nocera, and V. Bulovic, “Exciton-exciton annihilation in organic polariton microcavities,” Phys. Rev. B 82(11), 113106 (2010).
[Crossref]

Zegenhagen, J.

A. Gerlach, F. Schreiber, S. Sellner, H. Dosch, I. A. Vartanyants, B. C. C. Cowie, T. L. Lee, and J. Zegenhagen, “Adsorption-induced distortion of F16CuPc on Cu(111) and Ag(111): An x-ray standing wave study,” Phys. Rev. B 71(20), 205425 (2005).
[Crossref]

Zhao, J.

J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large-area high-quality plasmonic oligomers fabricated by angle-controlled colloidal nanolithography,” ACS Nano 5(11), 9009–9016 (2011).
[Crossref] [PubMed]

Zhou, W.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Zuschlag, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical nanoantenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

ACS Nano (1)

J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large-area high-quality plasmonic oligomers fabricated by angle-controlled colloidal nanolithography,” ACS Nano 5(11), 9009–9016 (2011).
[Crossref] [PubMed]

Adv. Funct. Mater. (2)

M. Brendel, S. Krause, A. Steindamm, A. K. Topczak, S. Sundarraj, P. Erk, S. Höhla, N. Fruehauf, N. Koch, and J. Pflaum, “The effect of gradual fluorination on the properties of FnZnPc thin films and FnZnPc/C60 bilayer photovoltaic cells,” Adv. Funct. Mater. 25(10), 1565–1573 (2015).
[Crossref]

A. M.-C. Ng, A. B. Djurišić, K.-H. Tam, W.-M. Kwok, W.-K. Chan, W. Y. Tam, D. L. Phillips, and K.-W. Cheah, “Organic nanoclusters on inorganic nanostructures for tailoring the emission properties of organic materials,” Adv. Funct. Mater. 18(4), 566–574 (2008).
[Crossref]

Adv. Mater. (1)

C. Y. Chen, W. K. Lee, Y. J. Chen, C. Y. Lu, H. Y. Lin, and C. C. Wu, “Enhancing optical out-coupling of organic light-emitting devices with nanostructured composite electrodes consisting of indium tin oxide nanomesh and conducting Polymer,” Adv. Mater. 27(33), 4883–4888 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

F. Liu and J.-M. Nunzi, “Phosphorescent organic light emitting diode efficiency enhancement using functionalized silver nanoparticles,” Appl. Phys. Lett. 99(12), 123302 (2011).
[Crossref]

D. G. De Oteyza, E. Barrena, J. O. Ossó, H. Dosch, S. Meyer, and J. Pflaum, “Controlled enhancement of the electron field-effect mobility of F16CuPc thin-film transistors by use of functionalized SiO2 substrates,” Appl. Phys. Lett. 87(18), 183504 (2005).
[Crossref]

M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. Taga, “Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer,” Appl. Phys. Lett. 79(2), 156–158 (2001).
[Crossref]

W. Gao and A. Kahn, “Controlled p-doping of zinc phthalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: A direct and inverse photoemission study,” Appl. Phys. Lett. 79(24), 4040–4042 (2001).
[Crossref]

M. Scharnberg, J. Hu, J. Kanzow, K. Rätzke, R. Adelung, F. Faupel, C. Pannemann, U. Hilleringmann, S. Meyer, and J. Pflaum, “Radiotracer measurements as a sensitive tool for the detection of metal penetration in molecular-based organic electronics,” Appl. Phys. Lett. 86(2), 024104 (2005).
[Crossref]

Chem. Soc. Rev. (1)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

J. Am. Chem. Soc. (1)

V. Settels, A. Schubert, M. Tafipolski, W. Liu, V. Stehr, A. K. Topczak, J. Pflaum, C. Deibel, R. F. Fink, V. Engel, and B. Engels, “Identification of ultrafast relaxation processes as a major reason for inefficient exciton diffusion in perylene-based organic semiconductors,” J. Am. Chem. Soc. 136(26), 9327–9337 (2014).
[Crossref] [PubMed]

J. Appl. Phys. (1)

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
[Crossref]

J. Fluoresc. (1)

C. D. Geddes and J. R. Lakowicz, “Editorial: Metal-enhanced fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
[Crossref]

J. Mol. Struct. (1)

M. Szybowicz, T. Runka, M. Drozdowski, W. Bała, M. Wojdyła, A. Grodzicki, P. Piszczek, and A. Bratkowski, “Temperature study of Raman, FT-IR and photoluminescence spectra of ZnPc thin layers on Si substrate,” J. Mol. Struct. 830(1-3), 14–20 (2007).
[Crossref]

J. Optoelectron. Adv. Mater. (1)

W. Bała, M. Wojdyła, M. Rebarz, M. Szybowic, M. Drozdowski, A. Grodzicki, and P. Piszczek, “Influence of central metal atom in MPc (M = Cu, Zn, Mg, Co) on Raman, FT-IR, absorbance, reflectance, and photoluminescence spectra,” J. Optoelectron. Adv. Mater. 11, 264–269 (2009).

J. Phys. Chem. B (1)

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography : Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103(45), 9846–9853 (1999).
[Crossref]

J. Phys. Chem. C (1)

S. Kakade, R. Ghosh, and D. K. Palit, “Excited State Dynamics of Zinc − Phthalocyanine nanoaggregates in strong hydrogen bonding solvents,” J. Phys. Chem. C 116(28), 15155–15166 (2012).
[Crossref]

J. Vac. Sci. Technol. (1)

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. 13(3), 1553–1558 (1995).
[Crossref]

Mater. Lett. (1)

M. Wojdyła, B. Derkowska, Z. Łukasiak, and W. Bała, “Absorption and photoreflectance spectroscopy of zinc phthalocyanine (ZnPc) thin films grown by thermal evaporation,” Mater. Lett. 60(29-30), 3441–3446 (2006).
[Crossref]

Mater. Sci. Eng. B (1)

C. B. Lee, A. Uddin, X. Hu, and T. G. Andersson, “Study of Alq3 thermal evaporation rate effects on the OLED,” Mater. Sci. Eng. B 112, 14–18 (2004).

Nano Lett. (3)

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[Crossref] [PubMed]

A. J. Gesquiere, T. Uwada, T. Asahi, H. Masuhara, and P. F. Barbara, “Single molecule spectroscopy of organic dye nanoparticles,” Nano Lett. 5(7), 1321–1325 (2005).
[Crossref] [PubMed]

B. Fuhrmann, H. S. Leipner, H.-R. Höche, L. Schubert, P. Werner, and U. Gösele, “Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy,” Nano Lett. 5(12), 2524–2527 (2005).
[Crossref] [PubMed]

Nat. Commun. (1)

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical nanoantenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

Phys. Rev. B (3)

A. Gerlach, F. Schreiber, S. Sellner, H. Dosch, I. A. Vartanyants, B. C. C. Cowie, T. L. Lee, and J. Zegenhagen, “Adsorption-induced distortion of F16CuPc on Cu(111) and Ag(111): An x-ray standing wave study,” Phys. Rev. B 71(20), 205425 (2005).
[Crossref]

V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[Crossref]

G. M. Akselrod, Y. R. Tischler, E. R. Young, D. G. Nocera, and V. Bulovic, “Exciton-exciton annihilation in organic polariton microcavities,” Phys. Rev. B 82(11), 113106 (2010).
[Crossref]

Polym. Int. (1)

B. Geffroy, P. le Roy, and C. Prat, “Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
[Crossref]

Small (1)

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Scheme of sample preparation and thickness dependent shadowing during deposition leading to the formation of tilted sidewalls. (b) Investigated sample geometries: (I) thin film (TF) on glass and (II) on silver nanoprism array (TF on Ag prisms), (III) Ag/organic/Ag nanocavities (NC) and (IV) neat organic pillars (NP). (c) Molecular structure of ZnPc (left) and Alq3 (right). AFM images of (d) silver nanoprism array, (e) ZnPc layer on silver nanoprism array (II), (f) ZnPc nanocavities (III) and (g) neat ZnPc pillars (IV).
Fig. 2
Fig. 2 (a) Confocal photoluminescence image of a ZnPc layer grown atop a silver nanoprism array as in (1e). (b) FDTD simulations of the in-plane electrical field enhancement inside a nanocavity comprising a material of refractive index n = 1.9, according to ZnPc, and excited by light linearly polarized along the x-axis.
Fig. 3
Fig. 3 (a), (c) Photoluminescence spectra and (b), (d) resulting enhancement factors (colored lines) as well as simulated localized surface plasmon resonances (black lines) of ZnPc and Alq3:ZnPc based samples. The respective upper graphs show the PL of neat TFs (dashed lines) and TFs on Ag prisms (solid lines); lower graphs show the PL of NCs (solid lines) and TFs (dashed lines). (b), (d) Overlap of both curves (PL enhancement factor and simulated LSPR) indicates major plasmonic contributions to the PL enhancement.
Fig. 4
Fig. 4 (a) PL spectra of ZnPc-based (upper graph) and Alq3:ZnPc-based (lower graph) NCs (solid lines), thin films (dashed lines) and NPs (dashed-dotted lines) . (b) Enhancement factors of ZnPc-based (upper graph) and Alq3:ZnPc-based (lower graph) sample structures. Intensity gain of nanocavities relative to the respective thin film, representing the overall enhancement (black lines), and relative to pillar structures, representing the plasmonic contribution to the enhancement (red lines, in case of ZnPc multiplied by a factor of 10 for better visualization). The respective simulated LSPR are presented by the green dashed lines. Enhancement factors of the nanopillars relative to thin film samples, representing the structural contribution to the PL gain (blue lines).
Fig. 5
Fig. 5 TCSPC measurements. Upper graph: TCSPC signal of 30 nm thick films of ZnPc (blue) and Alq3:ZnPc (green) fitted by a multi-exponential decay (red) together with the instrument response function (IRF) (black). Lower graph: TCSPC signal of 30nm thick Alq3:ZnPc nanocavities (green) and nanopillars (black) modelled by multi-exponential fits (red).

Metrics