Abstract

A novel bidirectional ultra-wideband over-fiber (UWBoF) system compatible with the wavelength-division-multiplexing (WDM) architecture is presented. In the proposed scheme, a 6th order Gaussian derivative is generated for UWB transmission in a downstream (DS) scenario, based on the directly modulated laser, accumulative chromatic dispersion in the transmission fiber and delay-line-interferometer (DLI). While the UWB signal is received from one of the DLI outputs, the other output is utilized to reuse the wavelength by injection locking a colorless Fabry-Perot laser diode (FP-LD). Due to the filtering effect of the FP-LD, a clear optical carrier without intensity modulation is then generated which can be used for upstream (US) baseband (BB) transmission by directly modulating the FP-LD. In order to eliminate the unwanted Rayleigh scattering induced noise in the bidirectional transmission, a dual - fiber transmission architecture is used. The principle of operation is explained. A symmetric transmission of 1.25 Gbps UWB over 60 km single mode fiber (SMF) is performed. Bit-error-rate (BER) measurements and eye diagrams for both down and upstream transmissions are presented.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wavelength reuse in a bidirectional UWB over fiber system

Tong Shao and Jianping Yao
Opt. Express 21(10) 11921-11927 (2013)

TDM-PON compatible generation of 10 Gbps NRZ and 1.25 Gbps UWB signals by a single light source

Mohammadreza Malekizandi, Quang Trung Le, Ali Emsia, Dieter Briggmann, Arkadi Chipouline, and Franko Küppers
Opt. Express 24(15) 17018-17026 (2016)

Experimental study of coexistence of multi-band OFDM-UWB and OFDM-baseband signals in long-reach PONs using directly modulated lasers

José A. P. Morgado, Daniel Fonseca, and Adolfo V. T. Cartaxo
Opt. Express 19(23) 23601-23612 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41, 66–74 (2003).
    [Crossref]
  2. U.S. Federal Communications Commission, “Revision of Part 15 of the Commissions Rules Regarding Ultra-Wideband Transmission Systems,” First Report and Order, ET Docket98–153 (2002).
  3. K. Prince, J. Jensen, A. Caballero, X. Yu, T. Gibbon, D. Zibar, N. Guerrero, A. Osadchiy, and I. Monroy, “Converged Wireline and Wireless Access Over a 78-km Deployed Fiber Long-Reach WDM PON,” IEEE Photon. Technol. Lett. 21(17), 1274–1276 (2009).
    [Crossref]
  4. H. Sheng, P. Orlik, A. M. Haimovich, L. J. Cimini, and J. Zhang, “On the spectral and power requirements for ultra-wideband transmission,” IEEE Int. Conf. Commun. 1, 738–742 (2003).
    [Crossref]
  5. M. Malekizandi, Q. Le, A. Emsia, D. Briggmann, and F. Küppers, “Generation of UWB Doublet Pulse Based on Directly Modulated Laser and Chromatic Dispersion,” IEEE Photon. Technol. Lett. 28(3), 343–346 (2016).
    [Crossref]
  6. M. Malekizandi, Q. Le, A. Emsia, D. Briggmann, A. Chipouline, and F. Küppers, “TDM-PON compatible generation of 10 Gbps NRZ and 1.25 Gbps UWB signals by a single light source,” Opt. Exp. 24(15), 17018–17026 (2016).
    [Crossref]
  7. K. Grobe and J. P. Elbers, “PON in adolescence: from TDMA to WDM-PON,” IEEE Commun. Mag. 46(1), 26–34 (2008).
    [Crossref]
  8. G. Chang, A. Chowdhury, Z. Jia, H. Chien, M. Huang, J. Yu, and G. Ellinas, “Key Technologies of WDM-PON for Future Converged Optical Broadband Access Networks,” J. Opt. Commun. Netw. 1, 35–50 (2009).
    [Crossref]
  9. L. Chen, H. Wen, and S. Wen, “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE Photon. Technol. Lett. 18(19), 2056–2058 (2006).
    [Crossref]
  10. Z. Jia, J. Yu, and G.-K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
    [Crossref]
  11. I. Papagiannakis, M. Omella, D. Klonidis, J. A. LÃązaro, A. Birbas, J. Kikidas, I. Tomkos, and J. Prat, “Design characteristics for a full-duplex IM/IM bidirectional transmission at 10 Gb/s using low bandwidth RSOA,” J. Lightw. Technol. 28(7), 1094–1101 (2010).
    [Crossref]
  12. M. Presi, R. Proietti, K. Prince, G. Contestabile, and E. Ciaramella, “A 80 km reach fully passive WDM-PON based on reflective ONUs,” Opt. Exp. 16(23), 19043–19048 (2008).
    [Crossref]
  13. F. Xiong, W.-D. Zhong, and H. Kim, “A broadcast-capable WDM-PON based on polarization-sensitive weak-resonant-cavity Fabry-Perot laser diodes,” J. Lightw. Technol. 30(3), 355–361 (2012).
    [Crossref]
  14. S. M. Lee, K. M. Choi, S. G. Mun, J. H. Moon, and C. H. Lee, “Dense WDM-PON based on wavelength-locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett. 17(7), 1579–1581 (2008).
  15. G. Talli and P. D. Townsend, “Hybrid DWDM-TDM long-reach PON for next-generation optical access,” J. Lightw. Technol. 24(7), 2827–2834 (2006).
    [Crossref]
  16. J. C. Cartledge and G. S. Burley, “The effect of laser chirping on lightwave system performance,” J. Lightw. Technol. 7(3), 568–573 (1989).
    [Crossref]
  17. GP. Agrawal and NK. Dutta, Semiconductor lasers, 2nd edition (New York: Van Nostrand ReinholdNew York, 1993).

2016 (2)

M. Malekizandi, Q. Le, A. Emsia, D. Briggmann, and F. Küppers, “Generation of UWB Doublet Pulse Based on Directly Modulated Laser and Chromatic Dispersion,” IEEE Photon. Technol. Lett. 28(3), 343–346 (2016).
[Crossref]

M. Malekizandi, Q. Le, A. Emsia, D. Briggmann, A. Chipouline, and F. Küppers, “TDM-PON compatible generation of 10 Gbps NRZ and 1.25 Gbps UWB signals by a single light source,” Opt. Exp. 24(15), 17018–17026 (2016).
[Crossref]

2012 (1)

F. Xiong, W.-D. Zhong, and H. Kim, “A broadcast-capable WDM-PON based on polarization-sensitive weak-resonant-cavity Fabry-Perot laser diodes,” J. Lightw. Technol. 30(3), 355–361 (2012).
[Crossref]

2010 (1)

I. Papagiannakis, M. Omella, D. Klonidis, J. A. LÃązaro, A. Birbas, J. Kikidas, I. Tomkos, and J. Prat, “Design characteristics for a full-duplex IM/IM bidirectional transmission at 10 Gb/s using low bandwidth RSOA,” J. Lightw. Technol. 28(7), 1094–1101 (2010).
[Crossref]

2009 (2)

G. Chang, A. Chowdhury, Z. Jia, H. Chien, M. Huang, J. Yu, and G. Ellinas, “Key Technologies of WDM-PON for Future Converged Optical Broadband Access Networks,” J. Opt. Commun. Netw. 1, 35–50 (2009).
[Crossref]

K. Prince, J. Jensen, A. Caballero, X. Yu, T. Gibbon, D. Zibar, N. Guerrero, A. Osadchiy, and I. Monroy, “Converged Wireline and Wireless Access Over a 78-km Deployed Fiber Long-Reach WDM PON,” IEEE Photon. Technol. Lett. 21(17), 1274–1276 (2009).
[Crossref]

2008 (3)

K. Grobe and J. P. Elbers, “PON in adolescence: from TDMA to WDM-PON,” IEEE Commun. Mag. 46(1), 26–34 (2008).
[Crossref]

M. Presi, R. Proietti, K. Prince, G. Contestabile, and E. Ciaramella, “A 80 km reach fully passive WDM-PON based on reflective ONUs,” Opt. Exp. 16(23), 19043–19048 (2008).
[Crossref]

S. M. Lee, K. M. Choi, S. G. Mun, J. H. Moon, and C. H. Lee, “Dense WDM-PON based on wavelength-locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett. 17(7), 1579–1581 (2008).

2006 (3)

G. Talli and P. D. Townsend, “Hybrid DWDM-TDM long-reach PON for next-generation optical access,” J. Lightw. Technol. 24(7), 2827–2834 (2006).
[Crossref]

L. Chen, H. Wen, and S. Wen, “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE Photon. Technol. Lett. 18(19), 2056–2058 (2006).
[Crossref]

Z. Jia, J. Yu, and G.-K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[Crossref]

2003 (2)

H. Sheng, P. Orlik, A. M. Haimovich, L. J. Cimini, and J. Zhang, “On the spectral and power requirements for ultra-wideband transmission,” IEEE Int. Conf. Commun. 1, 738–742 (2003).
[Crossref]

D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41, 66–74 (2003).
[Crossref]

1989 (1)

J. C. Cartledge and G. S. Burley, “The effect of laser chirping on lightwave system performance,” J. Lightw. Technol. 7(3), 568–573 (1989).
[Crossref]

Agrawal, GP.

GP. Agrawal and NK. Dutta, Semiconductor lasers, 2nd edition (New York: Van Nostrand ReinholdNew York, 1993).

Birbas, A.

I. Papagiannakis, M. Omella, D. Klonidis, J. A. LÃązaro, A. Birbas, J. Kikidas, I. Tomkos, and J. Prat, “Design characteristics for a full-duplex IM/IM bidirectional transmission at 10 Gb/s using low bandwidth RSOA,” J. Lightw. Technol. 28(7), 1094–1101 (2010).
[Crossref]

Briggmann, D.

M. Malekizandi, Q. Le, A. Emsia, D. Briggmann, and F. Küppers, “Generation of UWB Doublet Pulse Based on Directly Modulated Laser and Chromatic Dispersion,” IEEE Photon. Technol. Lett. 28(3), 343–346 (2016).
[Crossref]

M. Malekizandi, Q. Le, A. Emsia, D. Briggmann, A. Chipouline, and F. Küppers, “TDM-PON compatible generation of 10 Gbps NRZ and 1.25 Gbps UWB signals by a single light source,” Opt. Exp. 24(15), 17018–17026 (2016).
[Crossref]

Burley, G. S.

J. C. Cartledge and G. S. Burley, “The effect of laser chirping on lightwave system performance,” J. Lightw. Technol. 7(3), 568–573 (1989).
[Crossref]

Caballero, A.

K. Prince, J. Jensen, A. Caballero, X. Yu, T. Gibbon, D. Zibar, N. Guerrero, A. Osadchiy, and I. Monroy, “Converged Wireline and Wireless Access Over a 78-km Deployed Fiber Long-Reach WDM PON,” IEEE Photon. Technol. Lett. 21(17), 1274–1276 (2009).
[Crossref]

Cartledge, J. C.

J. C. Cartledge and G. S. Burley, “The effect of laser chirping on lightwave system performance,” J. Lightw. Technol. 7(3), 568–573 (1989).
[Crossref]

Chang, G.

G. Chang, A. Chowdhury, Z. Jia, H. Chien, M. Huang, J. Yu, and G. Ellinas, “Key Technologies of WDM-PON for Future Converged Optical Broadband Access Networks,” J. Opt. Commun. Netw. 1, 35–50 (2009).
[Crossref]

Chang, G.-K.

Z. Jia, J. Yu, and G.-K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[Crossref]

Chen, L.

L. Chen, H. Wen, and S. Wen, “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE Photon. Technol. Lett. 18(19), 2056–2058 (2006).
[Crossref]

Chien, H.

G. Chang, A. Chowdhury, Z. Jia, H. Chien, M. Huang, J. Yu, and G. Ellinas, “Key Technologies of WDM-PON for Future Converged Optical Broadband Access Networks,” J. Opt. Commun. Netw. 1, 35–50 (2009).
[Crossref]

Chipouline, A.

M. Malekizandi, Q. Le, A. Emsia, D. Briggmann, A. Chipouline, and F. Küppers, “TDM-PON compatible generation of 10 Gbps NRZ and 1.25 Gbps UWB signals by a single light source,” Opt. Exp. 24(15), 17018–17026 (2016).
[Crossref]

Choi, K. M.

S. M. Lee, K. M. Choi, S. G. Mun, J. H. Moon, and C. H. Lee, “Dense WDM-PON based on wavelength-locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett. 17(7), 1579–1581 (2008).

Chowdhury, A.

G. Chang, A. Chowdhury, Z. Jia, H. Chien, M. Huang, J. Yu, and G. Ellinas, “Key Technologies of WDM-PON for Future Converged Optical Broadband Access Networks,” J. Opt. Commun. Netw. 1, 35–50 (2009).
[Crossref]

Ciaramella, E.

M. Presi, R. Proietti, K. Prince, G. Contestabile, and E. Ciaramella, “A 80 km reach fully passive WDM-PON based on reflective ONUs,” Opt. Exp. 16(23), 19043–19048 (2008).
[Crossref]

Cimini, L. J.

H. Sheng, P. Orlik, A. M. Haimovich, L. J. Cimini, and J. Zhang, “On the spectral and power requirements for ultra-wideband transmission,” IEEE Int. Conf. Commun. 1, 738–742 (2003).
[Crossref]

Contestabile, G.

M. Presi, R. Proietti, K. Prince, G. Contestabile, and E. Ciaramella, “A 80 km reach fully passive WDM-PON based on reflective ONUs,” Opt. Exp. 16(23), 19043–19048 (2008).
[Crossref]

Dutta, NK.

GP. Agrawal and NK. Dutta, Semiconductor lasers, 2nd edition (New York: Van Nostrand ReinholdNew York, 1993).

Elbers, J. P.

K. Grobe and J. P. Elbers, “PON in adolescence: from TDMA to WDM-PON,” IEEE Commun. Mag. 46(1), 26–34 (2008).
[Crossref]

Ellinas, G.

G. Chang, A. Chowdhury, Z. Jia, H. Chien, M. Huang, J. Yu, and G. Ellinas, “Key Technologies of WDM-PON for Future Converged Optical Broadband Access Networks,” J. Opt. Commun. Netw. 1, 35–50 (2009).
[Crossref]

Emsia, A.

M. Malekizandi, Q. Le, A. Emsia, D. Briggmann, A. Chipouline, and F. Küppers, “TDM-PON compatible generation of 10 Gbps NRZ and 1.25 Gbps UWB signals by a single light source,” Opt. Exp. 24(15), 17018–17026 (2016).
[Crossref]

M. Malekizandi, Q. Le, A. Emsia, D. Briggmann, and F. Küppers, “Generation of UWB Doublet Pulse Based on Directly Modulated Laser and Chromatic Dispersion,” IEEE Photon. Technol. Lett. 28(3), 343–346 (2016).
[Crossref]

Gibbon, T.

K. Prince, J. Jensen, A. Caballero, X. Yu, T. Gibbon, D. Zibar, N. Guerrero, A. Osadchiy, and I. Monroy, “Converged Wireline and Wireless Access Over a 78-km Deployed Fiber Long-Reach WDM PON,” IEEE Photon. Technol. Lett. 21(17), 1274–1276 (2009).
[Crossref]

Grobe, K.

K. Grobe and J. P. Elbers, “PON in adolescence: from TDMA to WDM-PON,” IEEE Commun. Mag. 46(1), 26–34 (2008).
[Crossref]

Guerrero, N.

K. Prince, J. Jensen, A. Caballero, X. Yu, T. Gibbon, D. Zibar, N. Guerrero, A. Osadchiy, and I. Monroy, “Converged Wireline and Wireless Access Over a 78-km Deployed Fiber Long-Reach WDM PON,” IEEE Photon. Technol. Lett. 21(17), 1274–1276 (2009).
[Crossref]

Haimovich, A. M.

H. Sheng, P. Orlik, A. M. Haimovich, L. J. Cimini, and J. Zhang, “On the spectral and power requirements for ultra-wideband transmission,” IEEE Int. Conf. Commun. 1, 738–742 (2003).
[Crossref]

Hirt, W.

D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41, 66–74 (2003).
[Crossref]

Huang, M.

G. Chang, A. Chowdhury, Z. Jia, H. Chien, M. Huang, J. Yu, and G. Ellinas, “Key Technologies of WDM-PON for Future Converged Optical Broadband Access Networks,” J. Opt. Commun. Netw. 1, 35–50 (2009).
[Crossref]

Jensen, J.

K. Prince, J. Jensen, A. Caballero, X. Yu, T. Gibbon, D. Zibar, N. Guerrero, A. Osadchiy, and I. Monroy, “Converged Wireline and Wireless Access Over a 78-km Deployed Fiber Long-Reach WDM PON,” IEEE Photon. Technol. Lett. 21(17), 1274–1276 (2009).
[Crossref]

Jia, Z.

G. Chang, A. Chowdhury, Z. Jia, H. Chien, M. Huang, J. Yu, and G. Ellinas, “Key Technologies of WDM-PON for Future Converged Optical Broadband Access Networks,” J. Opt. Commun. Netw. 1, 35–50 (2009).
[Crossref]

Z. Jia, J. Yu, and G.-K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[Crossref]

Kikidas, J.

I. Papagiannakis, M. Omella, D. Klonidis, J. A. LÃązaro, A. Birbas, J. Kikidas, I. Tomkos, and J. Prat, “Design characteristics for a full-duplex IM/IM bidirectional transmission at 10 Gb/s using low bandwidth RSOA,” J. Lightw. Technol. 28(7), 1094–1101 (2010).
[Crossref]

Kim, H.

F. Xiong, W.-D. Zhong, and H. Kim, “A broadcast-capable WDM-PON based on polarization-sensitive weak-resonant-cavity Fabry-Perot laser diodes,” J. Lightw. Technol. 30(3), 355–361 (2012).
[Crossref]

Klonidis, D.

I. Papagiannakis, M. Omella, D. Klonidis, J. A. LÃązaro, A. Birbas, J. Kikidas, I. Tomkos, and J. Prat, “Design characteristics for a full-duplex IM/IM bidirectional transmission at 10 Gb/s using low bandwidth RSOA,” J. Lightw. Technol. 28(7), 1094–1101 (2010).
[Crossref]

Küppers, F.

M. Malekizandi, Q. Le, A. Emsia, D. Briggmann, and F. Küppers, “Generation of UWB Doublet Pulse Based on Directly Modulated Laser and Chromatic Dispersion,” IEEE Photon. Technol. Lett. 28(3), 343–346 (2016).
[Crossref]

M. Malekizandi, Q. Le, A. Emsia, D. Briggmann, A. Chipouline, and F. Küppers, “TDM-PON compatible generation of 10 Gbps NRZ and 1.25 Gbps UWB signals by a single light source,” Opt. Exp. 24(15), 17018–17026 (2016).
[Crossref]

LÃazaro, J. A.

I. Papagiannakis, M. Omella, D. Klonidis, J. A. LÃązaro, A. Birbas, J. Kikidas, I. Tomkos, and J. Prat, “Design characteristics for a full-duplex IM/IM bidirectional transmission at 10 Gb/s using low bandwidth RSOA,” J. Lightw. Technol. 28(7), 1094–1101 (2010).
[Crossref]

Le, Q.

M. Malekizandi, Q. Le, A. Emsia, D. Briggmann, and F. Küppers, “Generation of UWB Doublet Pulse Based on Directly Modulated Laser and Chromatic Dispersion,” IEEE Photon. Technol. Lett. 28(3), 343–346 (2016).
[Crossref]

M. Malekizandi, Q. Le, A. Emsia, D. Briggmann, A. Chipouline, and F. Küppers, “TDM-PON compatible generation of 10 Gbps NRZ and 1.25 Gbps UWB signals by a single light source,” Opt. Exp. 24(15), 17018–17026 (2016).
[Crossref]

Lee, C. H.

S. M. Lee, K. M. Choi, S. G. Mun, J. H. Moon, and C. H. Lee, “Dense WDM-PON based on wavelength-locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett. 17(7), 1579–1581 (2008).

Lee, S. M.

S. M. Lee, K. M. Choi, S. G. Mun, J. H. Moon, and C. H. Lee, “Dense WDM-PON based on wavelength-locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett. 17(7), 1579–1581 (2008).

Malekizandi, M.

M. Malekizandi, Q. Le, A. Emsia, D. Briggmann, A. Chipouline, and F. Küppers, “TDM-PON compatible generation of 10 Gbps NRZ and 1.25 Gbps UWB signals by a single light source,” Opt. Exp. 24(15), 17018–17026 (2016).
[Crossref]

M. Malekizandi, Q. Le, A. Emsia, D. Briggmann, and F. Küppers, “Generation of UWB Doublet Pulse Based on Directly Modulated Laser and Chromatic Dispersion,” IEEE Photon. Technol. Lett. 28(3), 343–346 (2016).
[Crossref]

Monroy, I.

K. Prince, J. Jensen, A. Caballero, X. Yu, T. Gibbon, D. Zibar, N. Guerrero, A. Osadchiy, and I. Monroy, “Converged Wireline and Wireless Access Over a 78-km Deployed Fiber Long-Reach WDM PON,” IEEE Photon. Technol. Lett. 21(17), 1274–1276 (2009).
[Crossref]

Moon, J. H.

S. M. Lee, K. M. Choi, S. G. Mun, J. H. Moon, and C. H. Lee, “Dense WDM-PON based on wavelength-locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett. 17(7), 1579–1581 (2008).

Mun, S. G.

S. M. Lee, K. M. Choi, S. G. Mun, J. H. Moon, and C. H. Lee, “Dense WDM-PON based on wavelength-locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett. 17(7), 1579–1581 (2008).

Omella, M.

I. Papagiannakis, M. Omella, D. Klonidis, J. A. LÃązaro, A. Birbas, J. Kikidas, I. Tomkos, and J. Prat, “Design characteristics for a full-duplex IM/IM bidirectional transmission at 10 Gb/s using low bandwidth RSOA,” J. Lightw. Technol. 28(7), 1094–1101 (2010).
[Crossref]

Orlik, P.

H. Sheng, P. Orlik, A. M. Haimovich, L. J. Cimini, and J. Zhang, “On the spectral and power requirements for ultra-wideband transmission,” IEEE Int. Conf. Commun. 1, 738–742 (2003).
[Crossref]

Osadchiy, A.

K. Prince, J. Jensen, A. Caballero, X. Yu, T. Gibbon, D. Zibar, N. Guerrero, A. Osadchiy, and I. Monroy, “Converged Wireline and Wireless Access Over a 78-km Deployed Fiber Long-Reach WDM PON,” IEEE Photon. Technol. Lett. 21(17), 1274–1276 (2009).
[Crossref]

Papagiannakis, I.

I. Papagiannakis, M. Omella, D. Klonidis, J. A. LÃązaro, A. Birbas, J. Kikidas, I. Tomkos, and J. Prat, “Design characteristics for a full-duplex IM/IM bidirectional transmission at 10 Gb/s using low bandwidth RSOA,” J. Lightw. Technol. 28(7), 1094–1101 (2010).
[Crossref]

Porcino, D.

D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41, 66–74 (2003).
[Crossref]

Prat, J.

I. Papagiannakis, M. Omella, D. Klonidis, J. A. LÃązaro, A. Birbas, J. Kikidas, I. Tomkos, and J. Prat, “Design characteristics for a full-duplex IM/IM bidirectional transmission at 10 Gb/s using low bandwidth RSOA,” J. Lightw. Technol. 28(7), 1094–1101 (2010).
[Crossref]

Presi, M.

M. Presi, R. Proietti, K. Prince, G. Contestabile, and E. Ciaramella, “A 80 km reach fully passive WDM-PON based on reflective ONUs,” Opt. Exp. 16(23), 19043–19048 (2008).
[Crossref]

Prince, K.

K. Prince, J. Jensen, A. Caballero, X. Yu, T. Gibbon, D. Zibar, N. Guerrero, A. Osadchiy, and I. Monroy, “Converged Wireline and Wireless Access Over a 78-km Deployed Fiber Long-Reach WDM PON,” IEEE Photon. Technol. Lett. 21(17), 1274–1276 (2009).
[Crossref]

M. Presi, R. Proietti, K. Prince, G. Contestabile, and E. Ciaramella, “A 80 km reach fully passive WDM-PON based on reflective ONUs,” Opt. Exp. 16(23), 19043–19048 (2008).
[Crossref]

Proietti, R.

M. Presi, R. Proietti, K. Prince, G. Contestabile, and E. Ciaramella, “A 80 km reach fully passive WDM-PON based on reflective ONUs,” Opt. Exp. 16(23), 19043–19048 (2008).
[Crossref]

Sheng, H.

H. Sheng, P. Orlik, A. M. Haimovich, L. J. Cimini, and J. Zhang, “On the spectral and power requirements for ultra-wideband transmission,” IEEE Int. Conf. Commun. 1, 738–742 (2003).
[Crossref]

Talli, G.

G. Talli and P. D. Townsend, “Hybrid DWDM-TDM long-reach PON for next-generation optical access,” J. Lightw. Technol. 24(7), 2827–2834 (2006).
[Crossref]

Tomkos, I.

I. Papagiannakis, M. Omella, D. Klonidis, J. A. LÃązaro, A. Birbas, J. Kikidas, I. Tomkos, and J. Prat, “Design characteristics for a full-duplex IM/IM bidirectional transmission at 10 Gb/s using low bandwidth RSOA,” J. Lightw. Technol. 28(7), 1094–1101 (2010).
[Crossref]

Townsend, P. D.

G. Talli and P. D. Townsend, “Hybrid DWDM-TDM long-reach PON for next-generation optical access,” J. Lightw. Technol. 24(7), 2827–2834 (2006).
[Crossref]

Wen, H.

L. Chen, H. Wen, and S. Wen, “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE Photon. Technol. Lett. 18(19), 2056–2058 (2006).
[Crossref]

Wen, S.

L. Chen, H. Wen, and S. Wen, “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE Photon. Technol. Lett. 18(19), 2056–2058 (2006).
[Crossref]

Xiong, F.

F. Xiong, W.-D. Zhong, and H. Kim, “A broadcast-capable WDM-PON based on polarization-sensitive weak-resonant-cavity Fabry-Perot laser diodes,” J. Lightw. Technol. 30(3), 355–361 (2012).
[Crossref]

Yu, J.

G. Chang, A. Chowdhury, Z. Jia, H. Chien, M. Huang, J. Yu, and G. Ellinas, “Key Technologies of WDM-PON for Future Converged Optical Broadband Access Networks,” J. Opt. Commun. Netw. 1, 35–50 (2009).
[Crossref]

Z. Jia, J. Yu, and G.-K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[Crossref]

Yu, X.

K. Prince, J. Jensen, A. Caballero, X. Yu, T. Gibbon, D. Zibar, N. Guerrero, A. Osadchiy, and I. Monroy, “Converged Wireline and Wireless Access Over a 78-km Deployed Fiber Long-Reach WDM PON,” IEEE Photon. Technol. Lett. 21(17), 1274–1276 (2009).
[Crossref]

Zhang, J.

H. Sheng, P. Orlik, A. M. Haimovich, L. J. Cimini, and J. Zhang, “On the spectral and power requirements for ultra-wideband transmission,” IEEE Int. Conf. Commun. 1, 738–742 (2003).
[Crossref]

Zhong, W.-D.

F. Xiong, W.-D. Zhong, and H. Kim, “A broadcast-capable WDM-PON based on polarization-sensitive weak-resonant-cavity Fabry-Perot laser diodes,” J. Lightw. Technol. 30(3), 355–361 (2012).
[Crossref]

Zibar, D.

K. Prince, J. Jensen, A. Caballero, X. Yu, T. Gibbon, D. Zibar, N. Guerrero, A. Osadchiy, and I. Monroy, “Converged Wireline and Wireless Access Over a 78-km Deployed Fiber Long-Reach WDM PON,” IEEE Photon. Technol. Lett. 21(17), 1274–1276 (2009).
[Crossref]

IEEE Commun. Mag. (2)

D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41, 66–74 (2003).
[Crossref]

K. Grobe and J. P. Elbers, “PON in adolescence: from TDMA to WDM-PON,” IEEE Commun. Mag. 46(1), 26–34 (2008).
[Crossref]

IEEE Int. Conf. Commun. (1)

H. Sheng, P. Orlik, A. M. Haimovich, L. J. Cimini, and J. Zhang, “On the spectral and power requirements for ultra-wideband transmission,” IEEE Int. Conf. Commun. 1, 738–742 (2003).
[Crossref]

IEEE Photon. Technol. Lett. (5)

M. Malekizandi, Q. Le, A. Emsia, D. Briggmann, and F. Küppers, “Generation of UWB Doublet Pulse Based on Directly Modulated Laser and Chromatic Dispersion,” IEEE Photon. Technol. Lett. 28(3), 343–346 (2016).
[Crossref]

L. Chen, H. Wen, and S. Wen, “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE Photon. Technol. Lett. 18(19), 2056–2058 (2006).
[Crossref]

Z. Jia, J. Yu, and G.-K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[Crossref]

K. Prince, J. Jensen, A. Caballero, X. Yu, T. Gibbon, D. Zibar, N. Guerrero, A. Osadchiy, and I. Monroy, “Converged Wireline and Wireless Access Over a 78-km Deployed Fiber Long-Reach WDM PON,” IEEE Photon. Technol. Lett. 21(17), 1274–1276 (2009).
[Crossref]

S. M. Lee, K. M. Choi, S. G. Mun, J. H. Moon, and C. H. Lee, “Dense WDM-PON based on wavelength-locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett. 17(7), 1579–1581 (2008).

J. Lightw. Technol. (4)

G. Talli and P. D. Townsend, “Hybrid DWDM-TDM long-reach PON for next-generation optical access,” J. Lightw. Technol. 24(7), 2827–2834 (2006).
[Crossref]

J. C. Cartledge and G. S. Burley, “The effect of laser chirping on lightwave system performance,” J. Lightw. Technol. 7(3), 568–573 (1989).
[Crossref]

F. Xiong, W.-D. Zhong, and H. Kim, “A broadcast-capable WDM-PON based on polarization-sensitive weak-resonant-cavity Fabry-Perot laser diodes,” J. Lightw. Technol. 30(3), 355–361 (2012).
[Crossref]

I. Papagiannakis, M. Omella, D. Klonidis, J. A. LÃązaro, A. Birbas, J. Kikidas, I. Tomkos, and J. Prat, “Design characteristics for a full-duplex IM/IM bidirectional transmission at 10 Gb/s using low bandwidth RSOA,” J. Lightw. Technol. 28(7), 1094–1101 (2010).
[Crossref]

J. Opt. Commun. Netw. (1)

G. Chang, A. Chowdhury, Z. Jia, H. Chien, M. Huang, J. Yu, and G. Ellinas, “Key Technologies of WDM-PON for Future Converged Optical Broadband Access Networks,” J. Opt. Commun. Netw. 1, 35–50 (2009).
[Crossref]

Opt. Exp. (2)

M. Presi, R. Proietti, K. Prince, G. Contestabile, and E. Ciaramella, “A 80 km reach fully passive WDM-PON based on reflective ONUs,” Opt. Exp. 16(23), 19043–19048 (2008).
[Crossref]

M. Malekizandi, Q. Le, A. Emsia, D. Briggmann, A. Chipouline, and F. Küppers, “TDM-PON compatible generation of 10 Gbps NRZ and 1.25 Gbps UWB signals by a single light source,” Opt. Exp. 24(15), 17018–17026 (2016).
[Crossref]

Other (2)

U.S. Federal Communications Commission, “Revision of Part 15 of the Commissions Rules Regarding Ultra-Wideband Transmission Systems,” First Report and Order, ET Docket98–153 (2002).

GP. Agrawal and NK. Dutta, Semiconductor lasers, 2nd edition (New York: Van Nostrand ReinholdNew York, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Proposed wavelength resued UWBoF over WDM-PON architecture.
Fig. 2
Fig. 2 a) Applied electrical signal to DML. b) Output of modeled directly modulated DFB.
Fig. 3
Fig. 3 a) Output of the modeled OBPF. b) Output of the modeled fiber.
Fig. 4
Fig. 4 Optical FM-to-IM conversion by optical filtering.
Fig. 5
Fig. 5 Outputs of the DLI and corresponding spectrum, a) first output and b) second output.
Fig. 6
Fig. 6 Experimental setup of the proposed wavelength resued UWBoF system.
Fig. 7
Fig. 7 a) Applied electrical signal to CML b) CML output.
Fig. 8
Fig. 8 Obtained pulse shape, a) after fiber transmission, b) DLI output.
Fig. 9
Fig. 9 Electrical waveform and corresponding spectrum a) before wireless transmission and b) after wireless transmission.
Fig. 10
Fig. 10 a) Log(BER) vs. received optical power after 25 km SMF. b) Comparision of BER performance after 25 km and 60 km SMF.
Fig. 11
Fig. 11 FP-LD spectrum.
Fig. 12
Fig. 12 a) PSD of the injecting signal. b) Injection locked FP-LD. c) SMSR vs. injection power.
Fig. 13
Fig. 13 Waveform and electrical spectrum, a) before injection locking and b) after injection locking.
Fig. 14
Fig. 14 a) The temporal waveform of the US carrier after photodetection and low-pass filtering. b) Electrical spectrum of the US carrier.
Fig. 15
Fig. 15 Upstream BER measurement.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E out 1 ( t ) = 1 2 E in ( t T ) E in ( t ) , E out 2 ( t ) = j 1 2 E in ( t T ) + j E in ( t )

Metrics