Abstract

We investigated the grating effect in complex gold dolmen structures, in which multiple plasmon modes are present due to plasmon hybridization, experimentally from both the far field and the near field. In particular, the near-field properties were investigated using photoemission electron microscopy, and it was demonstrated that two hybridized plasmon modes on the dolmen structures could be influenced by the grating effect. For comparison, we also investigated the grating effect in arrays of simple nanoblocks and heptamer structures, which were supposed to support a strong bright plasmon mode and a strong dark plasmon mode, respectively, in the near field. We found that the spectral responses of the two hybridized modes on the dolmen structures as the pitch size changed evolved in a manner similar to that of the bright dipole mode on the nanoblocks, whereas the dark mode on the heptamer structures is less sensitive to the pitch size.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatial evolution of the near-field distribution on planar gold nanoparticles with the excitation wavelength across dipole and quadrupole modes

Jinghuan Yang, Quan Sun, Han Yu, Kosei Ueno, Hiroaki Misawa, and Qihuang Gong
Photon. Res. 5(3) 187-193 (2017)

Electric and magnetic resonances in arrays of coupled gold nanoparticle in-tandem pairs

Y. Ekinci, A. Christ, M. Agio, O. J. F. Martin, H. H. Solak, and J. F. Löffler
Opt. Express 16(17) 13287-13295 (2008)

Fano resonances in plasmonic heptamer nano-hole arrays

Akram Hajebifard and Pierre Berini
Opt. Express 25(16) 18566-18580 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. Zhang, Y. R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).
    [PubMed]
  2. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
    [Crossref] [PubMed]
  3. S. Gao, K. Ueno, and H. Misawa, “Plasmonic antenna effects on photochemical reactions,” Acc. Chem. Res. 44(4), 251–260 (2011).
    [Crossref] [PubMed]
  4. K. Ueno and H. Misawa, “Plasmon-enhanced photocurrent generation and water oxidation from visible to near-infrared wavelengths,” NPG Asia Mater. 5(9), e61 (2013).
    [Crossref]
  5. T. Oshikiri, K. Ueno, and H. Misawa, “Selective dinitrogen conversion to ammonia using water and visible light via plasmon-induced charge separation,” Angew. Chem. Int. Ed. Engl. 55(12), 3942–3946 (2016).
    [Crossref] [PubMed]
  6. Y. Zhong, K. Ueno, Y. Mori, X. Shi, T. Oshikiri, K. Murakoshi, H. Inoue, and H. Misawa, “Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy,” Angew. Chem. Int. Ed. Engl. 53(39), 10350–10354 (2014).
    [Crossref] [PubMed]
  7. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref] [PubMed]
  8. Y. Sonnefraud, A. L. Koh, D. W. McComb, and S. A. Maier, “Nanoplasmonics: engineering and observation of localized plasmon modes,” Laser Photonics Rev. 6(3), 277–295 (2012).
    [Crossref]
  9. T. Coenen, D. T. Schoen, S. A. Mann, S. R. K. Rodriguez, B. J. M. Brenny, A. Polman, and M. L. Brongersma, “Nanoscale spatial coherent control over the modal excitation of a coupled plasmonic resonator system,” Nano Lett. 15(11), 7666–7670 (2015).
    [Crossref] [PubMed]
  10. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  11. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
    [Crossref] [PubMed]
  12. C. Yan and O. J. F. Martin, “Periodicity-induced symmetry breaking in a Fano lattice: hybridization and tight-binding regimes,” ACS Nano 8(11), 11860–11868 (2014).
    [Crossref] [PubMed]
  13. J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
    [Crossref] [PubMed]
  14. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
    [Crossref] [PubMed]
  15. B. Gallinet and O. J. F. Martin, “Relation between near-field and far-field properties of plasmonic Fano resonances,” Opt. Express 19(22), 22167–22175 (2011).
    [Crossref] [PubMed]
  16. M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
    [Crossref] [PubMed]
  17. M. Frimmer, T. Coenen, and A. F. Koenderink, “Signature of a Fano resonance in a plasmonic metamolecule’s local density of optical states,” Phys. Rev. Lett. 108(7), 077404 (2012).
    [Crossref] [PubMed]
  18. M. Meier, P. F. Liao, and A. Wokaun, “Enhanced fields on rough surfaces - dipolar interactions among particles of sizes exceeding the Rayleigh limit,” J. Opt. Soc. Am. B 2(6), 931–949 (1985).
    [Crossref]
  19. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
    [Crossref] [PubMed]
  20. N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123(22), 221103 (2005).
    [Crossref] [PubMed]
  21. A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties: far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B 149(3), 251–258 (2008).
    [Crossref]
  22. C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
    [Crossref]
  23. N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
    [Crossref] [PubMed]
  24. H. Yu, Q. Sun, K. Ueno, T. Oshikiri, A. Kubo, Y. Matsuo, and H. Misawa, “Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy,” ACS Nano 10(11), 10373–10381 (2016).
    [Crossref] [PubMed]
  25. Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, “Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy,” ACS Nano 10(3), 3835–3842 (2016).
    [Crossref] [PubMed]
  26. Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, “Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy,” Light Sci. Appl. 2(12), e118 (2013).
    [Crossref]
  27. F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H. J. Elmers, and G. Schönhense, “Near field of strongly coupled plasmons: uncovering dark modes,” Nano Lett. 12(4), 1885–1890 (2012).
    [Crossref] [PubMed]
  28. A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
    [Crossref] [PubMed]
  29. P. Melchior, D. Kilbane, E. J. Vesseur, A. Polman, and M. Aeschlimann, “Photoelectron imaging of modal interference in plasmonic whispering gallery cavities,” Opt. Express 23(25), 31619–31626 (2015).
    [Crossref] [PubMed]
  30. R. C. Word and R. Könenkamp, “Mode structure of planar optical antennas on dielectric substrates,” Opt. Express 24(16), 18727–18738 (2016).
    [Crossref] [PubMed]
  31. B. Y. Ji, J. Qin, H. Y. Tao, Z. Q. Hao, and J. Q. Lin, “Subwavelength imaging and control of ultrafast optical near-field under resonant- and off-resonant excitation of bowtie nanostructures,” New J. Phys. 18(9), 093046 (2016).
    [Crossref]
  32. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]

2016 (5)

T. Oshikiri, K. Ueno, and H. Misawa, “Selective dinitrogen conversion to ammonia using water and visible light via plasmon-induced charge separation,” Angew. Chem. Int. Ed. Engl. 55(12), 3942–3946 (2016).
[Crossref] [PubMed]

H. Yu, Q. Sun, K. Ueno, T. Oshikiri, A. Kubo, Y. Matsuo, and H. Misawa, “Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy,” ACS Nano 10(11), 10373–10381 (2016).
[Crossref] [PubMed]

Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, “Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy,” ACS Nano 10(3), 3835–3842 (2016).
[Crossref] [PubMed]

R. C. Word and R. Könenkamp, “Mode structure of planar optical antennas on dielectric substrates,” Opt. Express 24(16), 18727–18738 (2016).
[Crossref] [PubMed]

B. Y. Ji, J. Qin, H. Y. Tao, Z. Q. Hao, and J. Q. Lin, “Subwavelength imaging and control of ultrafast optical near-field under resonant- and off-resonant excitation of bowtie nanostructures,” New J. Phys. 18(9), 093046 (2016).
[Crossref]

2015 (2)

P. Melchior, D. Kilbane, E. J. Vesseur, A. Polman, and M. Aeschlimann, “Photoelectron imaging of modal interference in plasmonic whispering gallery cavities,” Opt. Express 23(25), 31619–31626 (2015).
[Crossref] [PubMed]

T. Coenen, D. T. Schoen, S. A. Mann, S. R. K. Rodriguez, B. J. M. Brenny, A. Polman, and M. L. Brongersma, “Nanoscale spatial coherent control over the modal excitation of a coupled plasmonic resonator system,” Nano Lett. 15(11), 7666–7670 (2015).
[Crossref] [PubMed]

2014 (3)

Y. Zhong, K. Ueno, Y. Mori, X. Shi, T. Oshikiri, K. Murakoshi, H. Inoue, and H. Misawa, “Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy,” Angew. Chem. Int. Ed. Engl. 53(39), 10350–10354 (2014).
[Crossref] [PubMed]

Y. Zhang, Y. R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).
[PubMed]

C. Yan and O. J. F. Martin, “Periodicity-induced symmetry breaking in a Fano lattice: hybridization and tight-binding regimes,” ACS Nano 8(11), 11860–11868 (2014).
[Crossref] [PubMed]

2013 (2)

K. Ueno and H. Misawa, “Plasmon-enhanced photocurrent generation and water oxidation from visible to near-infrared wavelengths,” NPG Asia Mater. 5(9), e61 (2013).
[Crossref]

Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, “Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy,” Light Sci. Appl. 2(12), e118 (2013).
[Crossref]

2012 (4)

F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H. J. Elmers, and G. Schönhense, “Near field of strongly coupled plasmons: uncovering dark modes,” Nano Lett. 12(4), 1885–1890 (2012).
[Crossref] [PubMed]

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

M. Frimmer, T. Coenen, and A. F. Koenderink, “Signature of a Fano resonance in a plasmonic metamolecule’s local density of optical states,” Phys. Rev. Lett. 108(7), 077404 (2012).
[Crossref] [PubMed]

Y. Sonnefraud, A. L. Koh, D. W. McComb, and S. A. Maier, “Nanoplasmonics: engineering and observation of localized plasmon modes,” Laser Photonics Rev. 6(3), 277–295 (2012).
[Crossref]

2011 (3)

B. Gallinet and O. J. F. Martin, “Relation between near-field and far-field properties of plasmonic Fano resonances,” Opt. Express 19(22), 22167–22175 (2011).
[Crossref] [PubMed]

S. Gao, K. Ueno, and H. Misawa, “Plasmonic antenna effects on photochemical reactions,” Acc. Chem. Res. 44(4), 251–260 (2011).
[Crossref] [PubMed]

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

2010 (3)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

2009 (1)

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

2008 (2)

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties: far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B 149(3), 251–258 (2008).
[Crossref]

2005 (2)

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123(22), 221103 (2005).
[Crossref] [PubMed]

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[Crossref] [PubMed]

2003 (2)

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

2000 (1)

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

1985 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Aeschlimann, M.

Alivisatos, A. P.

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Aubard, J.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123(22), 221103 (2005).
[Crossref] [PubMed]

Aussenegg, F. R.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123(22), 221103 (2005).
[Crossref] [PubMed]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Brenny, B. J. M.

T. Coenen, D. T. Schoen, S. A. Mann, S. R. K. Rodriguez, B. J. M. Brenny, A. Polman, and M. L. Brongersma, “Nanoscale spatial coherent control over the modal excitation of a coupled plasmonic resonator system,” Nano Lett. 15(11), 7666–7670 (2015).
[Crossref] [PubMed]

Brongersma, M. L.

T. Coenen, D. T. Schoen, S. A. Mann, S. R. K. Rodriguez, B. J. M. Brenny, A. Polman, and M. L. Brongersma, “Nanoscale spatial coherent control over the modal excitation of a coupled plasmonic resonator system,” Nano Lett. 15(11), 7666–7670 (2015).
[Crossref] [PubMed]

Capasso, F.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Chang, W. S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Coenen, T.

T. Coenen, D. T. Schoen, S. A. Mann, S. R. K. Rodriguez, B. J. M. Brenny, A. Polman, and M. L. Brongersma, “Nanoscale spatial coherent control over the modal excitation of a coupled plasmonic resonator system,” Nano Lett. 15(11), 7666–7670 (2015).
[Crossref] [PubMed]

M. Frimmer, T. Coenen, and A. F. Koenderink, “Signature of a Fano resonance in a plasmonic metamolecule’s local density of optical states,” Phys. Rev. Lett. 108(7), 077404 (2012).
[Crossref] [PubMed]

Day, J. K.

Y. Zhang, Y. R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).
[PubMed]

Ditlbacher, H.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Elmers, H. J.

F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H. J. Elmers, and G. Schönhense, “Near field of strongly coupled plasmons: uncovering dark modes,” Nano Lett. 12(4), 1885–1890 (2012).
[Crossref] [PubMed]

El-Sayed, I. H.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

El-Sayed, M. A.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

Fan, J. A.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Félidj, N.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123(22), 221103 (2005).
[Crossref] [PubMed]

Frimmer, M.

M. Frimmer, T. Coenen, and A. F. Koenderink, “Signature of a Fano resonance in a plasmonic metamolecule’s local density of optical states,” Phys. Rev. Lett. 108(7), 077404 (2012).
[Crossref] [PubMed]

Gallinet, B.

Gao, S.

S. Gao, K. Ueno, and H. Misawa, “Plasmonic antenna effects on photochemical reactions,” Acc. Chem. Res. 44(4), 251–260 (2011).
[Crossref] [PubMed]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Gunnarsson, L.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Halas, N. J.

Y. Zhang, Y. R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).
[PubMed]

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Hao, F.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Hao, Z. Q.

B. Y. Ji, J. Qin, H. Y. Tao, Z. Q. Hao, and J. Q. Lin, “Subwavelength imaging and control of ultrafast optical near-field under resonant- and off-resonant excitation of bowtie nanostructures,” New J. Phys. 18(9), 093046 (2016).
[Crossref]

Haynes, C. L.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Hentschel, M.

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Hohenau, A.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123(22), 221103 (2005).
[Crossref] [PubMed]

Huang, X.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

Inoue, H.

Y. Zhong, K. Ueno, Y. Mori, X. Shi, T. Oshikiri, K. Murakoshi, H. Inoue, and H. Misawa, “Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy,” Angew. Chem. Int. Ed. Engl. 53(39), 10350–10354 (2014).
[Crossref] [PubMed]

Jain, P. K.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

Ji, B. Y.

B. Y. Ji, J. Qin, H. Y. Tao, Z. Q. Hao, and J. Q. Lin, “Subwavelength imaging and control of ultrafast optical near-field under resonant- and off-resonant excitation of bowtie nanostructures,” New J. Phys. 18(9), 093046 (2016).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jung, Y. S.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[Crossref] [PubMed]

Kall, M.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Kasemo, B.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Kilbane, D.

Kim, H. K.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[Crossref] [PubMed]

Koenderink, A. F.

M. Frimmer, T. Coenen, and A. F. Koenderink, “Signature of a Fano resonance in a plasmonic metamolecule’s local density of optical states,” Phys. Rev. Lett. 108(7), 077404 (2012).
[Crossref] [PubMed]

Koh, A. L.

Y. Sonnefraud, A. L. Koh, D. W. McComb, and S. A. Maier, “Nanoplasmonics: engineering and observation of localized plasmon modes,” Laser Photonics Rev. 6(3), 277–295 (2012).
[Crossref]

Könenkamp, R.

Kreiter, M.

F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H. J. Elmers, and G. Schönhense, “Near field of strongly coupled plasmons: uncovering dark modes,” Nano Lett. 12(4), 1885–1890 (2012).
[Crossref] [PubMed]

Krenn, J. R.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123(22), 221103 (2005).
[Crossref] [PubMed]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Kubo, A.

H. Yu, Q. Sun, K. Ueno, T. Oshikiri, A. Kubo, Y. Matsuo, and H. Misawa, “Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy,” ACS Nano 10(11), 10373–10381 (2016).
[Crossref] [PubMed]

Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, “Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy,” ACS Nano 10(3), 3835–3842 (2016).
[Crossref] [PubMed]

Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, “Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy,” Light Sci. Appl. 2(12), e118 (2013).
[Crossref]

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[Crossref] [PubMed]

Kundu, J.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Lal, S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Lamprecht, B.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Lassiter, J. B.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Laurent, G.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123(22), 221103 (2005).
[Crossref] [PubMed]

Lechner, R. T.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Leitner, A.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Lévi, G.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123(22), 221103 (2005).
[Crossref] [PubMed]

Liao, P. F.

Lin, J. Q.

B. Y. Ji, J. Qin, H. Y. Tao, Z. Q. Hao, and J. Q. Lin, “Subwavelength imaging and control of ultrafast optical near-field under resonant- and off-resonant excitation of bowtie nanostructures,” New J. Phys. 18(9), 093046 (2016).
[Crossref]

Link, S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Liu, N.

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Maier, S. A.

Y. Sonnefraud, A. L. Koh, D. W. McComb, and S. A. Maier, “Nanoplasmonics: engineering and observation of localized plasmon modes,” Laser Photonics Rev. 6(3), 277–295 (2012).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Mann, S. A.

T. Coenen, D. T. Schoen, S. A. Mann, S. R. K. Rodriguez, B. J. M. Brenny, A. Polman, and M. L. Brongersma, “Nanoscale spatial coherent control over the modal excitation of a coupled plasmonic resonator system,” Nano Lett. 15(11), 7666–7670 (2015).
[Crossref] [PubMed]

Martin, O. J. F.

C. Yan and O. J. F. Martin, “Periodicity-induced symmetry breaking in a Fano lattice: hybridization and tight-binding regimes,” ACS Nano 8(11), 11860–11868 (2014).
[Crossref] [PubMed]

B. Gallinet and O. J. F. Martin, “Relation between near-field and far-field properties of plasmonic Fano resonances,” Opt. Express 19(22), 22167–22175 (2011).
[Crossref] [PubMed]

Matsuo, Y.

Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, “Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy,” ACS Nano 10(3), 3835–3842 (2016).
[Crossref] [PubMed]

H. Yu, Q. Sun, K. Ueno, T. Oshikiri, A. Kubo, Y. Matsuo, and H. Misawa, “Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy,” ACS Nano 10(11), 10373–10381 (2016).
[Crossref] [PubMed]

Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, “Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy,” Light Sci. Appl. 2(12), e118 (2013).
[Crossref]

McComb, D. W.

Y. Sonnefraud, A. L. Koh, D. W. McComb, and S. A. Maier, “Nanoplasmonics: engineering and observation of localized plasmon modes,” Laser Photonics Rev. 6(3), 277–295 (2012).
[Crossref]

McFarland, A. D.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Meier, M.

Melchior, P.

Misawa, H.

H. Yu, Q. Sun, K. Ueno, T. Oshikiri, A. Kubo, Y. Matsuo, and H. Misawa, “Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy,” ACS Nano 10(11), 10373–10381 (2016).
[Crossref] [PubMed]

Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, “Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy,” ACS Nano 10(3), 3835–3842 (2016).
[Crossref] [PubMed]

T. Oshikiri, K. Ueno, and H. Misawa, “Selective dinitrogen conversion to ammonia using water and visible light via plasmon-induced charge separation,” Angew. Chem. Int. Ed. Engl. 55(12), 3942–3946 (2016).
[Crossref] [PubMed]

Y. Zhong, K. Ueno, Y. Mori, X. Shi, T. Oshikiri, K. Murakoshi, H. Inoue, and H. Misawa, “Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy,” Angew. Chem. Int. Ed. Engl. 53(39), 10350–10354 (2014).
[Crossref] [PubMed]

K. Ueno and H. Misawa, “Plasmon-enhanced photocurrent generation and water oxidation from visible to near-infrared wavelengths,” NPG Asia Mater. 5(9), e61 (2013).
[Crossref]

Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, “Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy,” Light Sci. Appl. 2(12), e118 (2013).
[Crossref]

S. Gao, K. Ueno, and H. Misawa, “Plasmonic antenna effects on photochemical reactions,” Acc. Chem. Res. 44(4), 251–260 (2011).
[Crossref] [PubMed]

Mohammadi, R.

F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H. J. Elmers, and G. Schönhense, “Near field of strongly coupled plasmons: uncovering dark modes,” Nano Lett. 12(4), 1885–1890 (2012).
[Crossref] [PubMed]

Mori, Y.

Y. Zhong, K. Ueno, Y. Mori, X. Shi, T. Oshikiri, K. Murakoshi, H. Inoue, and H. Misawa, “Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy,” Angew. Chem. Int. Ed. Engl. 53(39), 10350–10354 (2014).
[Crossref] [PubMed]

Moshchalkov, V. V.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Murakoshi, K.

Y. Zhong, K. Ueno, Y. Mori, X. Shi, T. Oshikiri, K. Murakoshi, H. Inoue, and H. Misawa, “Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy,” Angew. Chem. Int. Ed. Engl. 53(39), 10350–10354 (2014).
[Crossref] [PubMed]

Neumann, O.

Y. Zhang, Y. R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).
[PubMed]

Nordlander, P.

Y. Zhang, Y. R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).
[PubMed]

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Onda, K.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[Crossref] [PubMed]

Oshikiri, T.

H. Yu, Q. Sun, K. Ueno, T. Oshikiri, A. Kubo, Y. Matsuo, and H. Misawa, “Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy,” ACS Nano 10(11), 10373–10381 (2016).
[Crossref] [PubMed]

T. Oshikiri, K. Ueno, and H. Misawa, “Selective dinitrogen conversion to ammonia using water and visible light via plasmon-induced charge separation,” Angew. Chem. Int. Ed. Engl. 55(12), 3942–3946 (2016).
[Crossref] [PubMed]

Y. Zhong, K. Ueno, Y. Mori, X. Shi, T. Oshikiri, K. Murakoshi, H. Inoue, and H. Misawa, “Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy,” Angew. Chem. Int. Ed. Engl. 53(39), 10350–10354 (2014).
[Crossref] [PubMed]

Petek, H.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[Crossref] [PubMed]

Pinchuk, A. O.

A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties: far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B 149(3), 251–258 (2008).
[Crossref]

Polman, A.

T. Coenen, D. T. Schoen, S. A. Mann, S. R. K. Rodriguez, B. J. M. Brenny, A. Polman, and M. L. Brongersma, “Nanoscale spatial coherent control over the modal excitation of a coupled plasmonic resonator system,” Nano Lett. 15(11), 7666–7670 (2015).
[Crossref] [PubMed]

P. Melchior, D. Kilbane, E. J. Vesseur, A. Polman, and M. Aeschlimann, “Photoelectron imaging of modal interference in plasmonic whispering gallery cavities,” Opt. Express 23(25), 31619–31626 (2015).
[Crossref] [PubMed]

Prikulis, J.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Qin, J.

B. Y. Ji, J. Qin, H. Y. Tao, Z. Q. Hao, and J. Q. Lin, “Subwavelength imaging and control of ultrafast optical near-field under resonant- and off-resonant excitation of bowtie nanostructures,” New J. Phys. 18(9), 093046 (2016).
[Crossref]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Rodriguez, S. R. K.

T. Coenen, D. T. Schoen, S. A. Mann, S. R. K. Rodriguez, B. J. M. Brenny, A. Polman, and M. L. Brongersma, “Nanoscale spatial coherent control over the modal excitation of a coupled plasmonic resonator system,” Nano Lett. 15(11), 7666–7670 (2015).
[Crossref] [PubMed]

Saliba, M.

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Schatz, G. C.

A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties: far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B 149(3), 251–258 (2008).
[Crossref]

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Schertz, F.

F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H. J. Elmers, and G. Schönhense, “Near field of strongly coupled plasmons: uncovering dark modes,” Nano Lett. 12(4), 1885–1890 (2012).
[Crossref] [PubMed]

Schider, G.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Schmelzeisen, M.

F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H. J. Elmers, and G. Schönhense, “Near field of strongly coupled plasmons: uncovering dark modes,” Nano Lett. 12(4), 1885–1890 (2012).
[Crossref] [PubMed]

Schoen, D. T.

T. Coenen, D. T. Schoen, S. A. Mann, S. R. K. Rodriguez, B. J. M. Brenny, A. Polman, and M. L. Brongersma, “Nanoscale spatial coherent control over the modal excitation of a coupled plasmonic resonator system,” Nano Lett. 15(11), 7666–7670 (2015).
[Crossref] [PubMed]

Schönhense, G.

F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H. J. Elmers, and G. Schönhense, “Near field of strongly coupled plasmons: uncovering dark modes,” Nano Lett. 12(4), 1885–1890 (2012).
[Crossref] [PubMed]

Shi, X.

Y. Zhong, K. Ueno, Y. Mori, X. Shi, T. Oshikiri, K. Murakoshi, H. Inoue, and H. Misawa, “Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy,” Angew. Chem. Int. Ed. Engl. 53(39), 10350–10354 (2014).
[Crossref] [PubMed]

Sobhani, H.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Sonnefraud, Y.

Y. Sonnefraud, A. L. Koh, D. W. McComb, and S. A. Maier, “Nanoplasmonics: engineering and observation of localized plasmon modes,” Laser Photonics Rev. 6(3), 277–295 (2012).
[Crossref]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Sun, Q.

Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, “Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy,” ACS Nano 10(3), 3835–3842 (2016).
[Crossref] [PubMed]

H. Yu, Q. Sun, K. Ueno, T. Oshikiri, A. Kubo, Y. Matsuo, and H. Misawa, “Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy,” ACS Nano 10(11), 10373–10381 (2016).
[Crossref] [PubMed]

Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, “Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy,” Light Sci. Appl. 2(12), e118 (2013).
[Crossref]

Sun, Z.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[Crossref] [PubMed]

Tao, H. Y.

B. Y. Ji, J. Qin, H. Y. Tao, Z. Q. Hao, and J. Q. Lin, “Subwavelength imaging and control of ultrafast optical near-field under resonant- and off-resonant excitation of bowtie nanostructures,” New J. Phys. 18(9), 093046 (2016).
[Crossref]

Ueno, K.

Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, “Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy,” ACS Nano 10(3), 3835–3842 (2016).
[Crossref] [PubMed]

H. Yu, Q. Sun, K. Ueno, T. Oshikiri, A. Kubo, Y. Matsuo, and H. Misawa, “Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy,” ACS Nano 10(11), 10373–10381 (2016).
[Crossref] [PubMed]

T. Oshikiri, K. Ueno, and H. Misawa, “Selective dinitrogen conversion to ammonia using water and visible light via plasmon-induced charge separation,” Angew. Chem. Int. Ed. Engl. 55(12), 3942–3946 (2016).
[Crossref] [PubMed]

Y. Zhong, K. Ueno, Y. Mori, X. Shi, T. Oshikiri, K. Murakoshi, H. Inoue, and H. Misawa, “Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy,” Angew. Chem. Int. Ed. Engl. 53(39), 10350–10354 (2014).
[Crossref] [PubMed]

K. Ueno and H. Misawa, “Plasmon-enhanced photocurrent generation and water oxidation from visible to near-infrared wavelengths,” NPG Asia Mater. 5(9), e61 (2013).
[Crossref]

Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, “Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy,” Light Sci. Appl. 2(12), e118 (2013).
[Crossref]

S. Gao, K. Ueno, and H. Misawa, “Plasmonic antenna effects on photochemical reactions,” Acc. Chem. Res. 44(4), 251–260 (2011).
[Crossref] [PubMed]

Van Dorpe, P.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Van Duyne, R. P.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Verellen, N.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Vesseur, E. J.

Vogelgesang, R.

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Wen, F.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

Wokaun, A.

Word, R. C.

Yan, C.

C. Yan and O. J. F. Martin, “Periodicity-induced symmetry breaking in a Fano lattice: hybridization and tight-binding regimes,” ACS Nano 8(11), 11860–11868 (2014).
[Crossref] [PubMed]

Ye, J.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

Yu, H.

Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, “Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy,” ACS Nano 10(3), 3835–3842 (2016).
[Crossref] [PubMed]

H. Yu, Q. Sun, K. Ueno, T. Oshikiri, A. Kubo, Y. Matsuo, and H. Misawa, “Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy,” ACS Nano 10(11), 10373–10381 (2016).
[Crossref] [PubMed]

Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, “Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy,” Light Sci. Appl. 2(12), e118 (2013).
[Crossref]

Zhang, Y.

Y. Zhang, Y. R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).
[PubMed]

Zhao, L. L.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zhen, Y. R.

Y. Zhang, Y. R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).
[PubMed]

Zhong, Y.

Y. Zhong, K. Ueno, Y. Mori, X. Shi, T. Oshikiri, K. Murakoshi, H. Inoue, and H. Misawa, “Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy,” Angew. Chem. Int. Ed. Engl. 53(39), 10350–10354 (2014).
[Crossref] [PubMed]

Acc. Chem. Res. (2)

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

S. Gao, K. Ueno, and H. Misawa, “Plasmonic antenna effects on photochemical reactions,” Acc. Chem. Res. 44(4), 251–260 (2011).
[Crossref] [PubMed]

ACS Nano (3)

C. Yan and O. J. F. Martin, “Periodicity-induced symmetry breaking in a Fano lattice: hybridization and tight-binding regimes,” ACS Nano 8(11), 11860–11868 (2014).
[Crossref] [PubMed]

H. Yu, Q. Sun, K. Ueno, T. Oshikiri, A. Kubo, Y. Matsuo, and H. Misawa, “Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy,” ACS Nano 10(11), 10373–10381 (2016).
[Crossref] [PubMed]

Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, “Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy,” ACS Nano 10(3), 3835–3842 (2016).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (2)

T. Oshikiri, K. Ueno, and H. Misawa, “Selective dinitrogen conversion to ammonia using water and visible light via plasmon-induced charge separation,” Angew. Chem. Int. Ed. Engl. 55(12), 3942–3946 (2016).
[Crossref] [PubMed]

Y. Zhong, K. Ueno, Y. Mori, X. Shi, T. Oshikiri, K. Murakoshi, H. Inoue, and H. Misawa, “Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy,” Angew. Chem. Int. Ed. Engl. 53(39), 10350–10354 (2014).
[Crossref] [PubMed]

Chem. Rev. (1)

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

J. Chem. Phys. (1)

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123(22), 221103 (2005).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Laser Photonics Rev. (1)

Y. Sonnefraud, A. L. Koh, D. W. McComb, and S. A. Maier, “Nanoplasmonics: engineering and observation of localized plasmon modes,” Laser Photonics Rev. 6(3), 277–295 (2012).
[Crossref]

Light Sci. Appl. (1)

Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, “Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy,” Light Sci. Appl. 2(12), e118 (2013).
[Crossref]

Mater. Sci. Eng. B (1)

A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties: far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B 149(3), 251–258 (2008).
[Crossref]

Nano Lett. (7)

F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H. J. Elmers, and G. Schönhense, “Near field of strongly coupled plasmons: uncovering dark modes,” Nano Lett. 12(4), 1885–1890 (2012).
[Crossref] [PubMed]

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[Crossref] [PubMed]

T. Coenen, D. T. Schoen, S. A. Mann, S. R. K. Rodriguez, B. J. M. Brenny, A. Polman, and M. L. Brongersma, “Nanoscale spatial coherent control over the modal excitation of a coupled plasmonic resonator system,” Nano Lett. 15(11), 7666–7670 (2015).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. Zhang, Y. R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).
[PubMed]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

New J. Phys. (1)

B. Y. Ji, J. Qin, H. Y. Tao, Z. Q. Hao, and J. Q. Lin, “Subwavelength imaging and control of ultrafast optical near-field under resonant- and off-resonant excitation of bowtie nanostructures,” New J. Phys. 18(9), 093046 (2016).
[Crossref]

NPG Asia Mater. (1)

K. Ueno and H. Misawa, “Plasmon-enhanced photocurrent generation and water oxidation from visible to near-infrared wavelengths,” NPG Asia Mater. 5(9), e61 (2013).
[Crossref]

Opt. Express (3)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (2)

M. Frimmer, T. Coenen, and A. F. Koenderink, “Signature of a Fano resonance in a plasmonic metamolecule’s local density of optical states,” Phys. Rev. Lett. 108(7), 077404 (2012).
[Crossref] [PubMed]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Far-field and near-field properties of Au dolmen structures. (a) Sketch of an Au dolmen structure that consists of a planar nanorod monomer and a planar nanorod dimer. The design parameters of the structure are as follows: L1 = 150 nm, W1 = 100 nm, G = 25 nm, L2 = 140 nm, W2 = 80 nm, D = 70 nm, and thickness H = 30 nm. (b) SEM image of the Au dolmen structures with the pitch size of 1000 nm. The scale bars are all 200 nm. (c) Experimental far-field extinction spectrum (black) and near-field spectrum (red) of the Au dolmen structures under excitation by horizontally polarized light. (d) PEEM images of a dolmen under the three characteristic excitation wavelengths marked in (c). The red dashed lines represent the geometry of the dolmen structures. The inserts in (d) present the simulated charge distribution (left) and near-field intensity distribution (right) at corresponding excitation wavelengths by FDTD simulations.
Fig. 2
Fig. 2 Experimental far-field and near-field spectra of Au dolmen structures for different pitch sizes. (a) Far-field extinction spectra of Au dolmen structures for 400 nm, 500 nm, 600 nm, 700 nm, 800 nm, 1000 nm, and 1200 nm pitches. For a clear view, each curve is normalized to the extinction strength of the curve for a pitch size of 400 nm in term of the same NP density, and an offset of 0.5 is applied. (b) Near–field spectra of the Au dolmen structures for different pitch sizes obtained using wavelength-dependent PEEM measurements. Each curve is normalized by its maximum photoemission intensity, and an offset of 1 is applied. The black dashed line shows the peak shift tendency as the pitch size varies.
Fig. 3
Fig. 3 FDTD simulations of far-field and near-field spectra of Au dolmen structures for different pitch sizes. (a) Simulated far-field spectra of Au dolmen structures for pitch sizes of 400 nm, 500 nm, 600 nm, 700 nm, 800 nm, 1000 nm, and 1200 nm. (b) Simulated near-field spectra of Au dolmen structures with different pitch sizes. The normalized integrated value, (I/I0)4, over an area of 320 nm × 320 nm at the interface between the dolmen structure and the substrate is shown for better comparison with the PEEM measurements, considering the nonlinearity of the multiphoton photoemission as 4. The simulated far-field and near-field spectra are all normalized by the maximum extinction or PE intensity of each curve, and an offset of 1 is applied.
Fig. 4
Fig. 4 (a) SEM image of the Au nanoblock structures. The scale bar is 100 nm. (b) Experimental far-field extinction spectrum (black) and near-field spectrum (red) of the Au nanoblocks for a pitch size of 400 nm. Experimental far-field spectra (c) and near-field spectra (d) of Au nanoblocks with different pitch sizes. The black dashed arrow in (d) highlights the peak shift tendency as the pitch size increases.
Fig. 5
Fig. 5 (a) SEM image of the Au heptamer structures. The scale bar is 200 nm. (b) Experimental far-field extinction spectra (black) and near-field spectra (red) of the Au heptamer structures for a pitch size of 1000 nm. Experimental far-field extinction spectra (c) and near-field spectra (d) of Au heptamer structures with different pitch sizes. In heptamer structures, to avoid near-field interaction between two adjacent units, the smallest pitch size was set to 800 nm. A pitch size of 1800 nm was also investigated.
Fig. 6
Fig. 6 Near-field peak wavelengths vs. pitch sizes for different types of Au nanostructure. (a) Experimental spectrum of near-field peak wavelengths as a function of the pitch size for four plasmon modes in three Au nanostructures, namely, the hybridized bonding mode in dolmens (black), the hybridized anti-bonding mode in dolmens (red), the bright dipole mode in nanoblocks (green), and the subradiant mode in heptamers (blue). In the anti-bonding mode (red curve) for pitch sizes of 600 nm and 800 nm, the resonance mode is suppressed and hard to identify; therefore, the corresponding data points are missing. (b) Numerical simulation results of the plasmon modes in (a). The gray dashed lines show the three modes of the grating effect: first-order grazing diffraction on the substrate, λ/n, first-order grazing diffraction in free space, λ, and second-order grazing diffraction in the substrate, 2λ/n.

Metrics