Abstract

A quasi-supercontinuum source in the extreme ultraviolet (XUV) is demonstrated using a table-top femtosecond laser and a tunable optical parametric amplifier (OPA) as a driver for high-harmonic generation (HHG). The harmonic radiation, which is usually a comb of odd multiples of the fundamental frequency, is generated by near-infrared (NIR) laser pulses from the OPA. A quasi-continuous XUV spectrum in the range of 30 to 100 eV is realized by averaging over multiple harmonic comb spectra with slightly different fundamental frequencies and thus different spectral spacing between the individual harmonics. The driving laser wavelength is swept automatically during an averaging time period. With a total photon flux of 4×109 photons/s in the range of 30 eV to 100 eV and 1×107photons/s in the range of 100 eV to 200 eV, the resulting quasi-supercontinuum XUV source is suited for applications such as XUV coherence tomography (XCT) or near-edge absorption fine structure spectroscopy (NEXAFS).

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quasi-phase-matched high-harmonic generation in gas-filled hollow-core photonic crystal fiber

Florian Wiegandt, Patrick N. Anderson, Fei Yu, Daniel J. Treacher, David T. Lloyd, Peter J. Mosley, Simon M. Hooker, and Ian A. Walmsley
Optica 6(4) 442-447 (2019)

High average power coherent vuv generation at 10 MHz repetition frequency by intracavity high harmonic generation

Akira Ozawa, Zhigang Zhao, Makoto Kuwata-Gonokami, and Yohei Kobayashi
Opt. Express 23(12) 15107-15118 (2015)

Compact extreme ultraviolet source at megahertz pulse repetition rate with a low-noise ultrafast thin-disk laser oscillator

Florian Emaury, Andreas Diebold, Clara J. Saraceno, and Ursula Keller
Optica 2(11) 980-984 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. K. Sumimura, Y. Genda, T. Ohta, K. Itoh, and N. Nishizawa, “Quasi-supercontinuum generation using 1.06 μm ultrashort-pulse laser system for ultrahigh-resolution optical-coherence tomography,” Opt. Lett. 35(21), 3631–3633 (2010).
    [Crossref] [PubMed]
  3. S. Fuchs, A. Blinne, C. Rödel, U. Zastrau, V. Hilbert, M. Wünsche, J. Bierbach, E. Frumker, E. Förster, and G. G. Paulus, “Optical coherence tomography using broad-bandwidth XUV and soft X-ray radiation,” Appl. Phys. B 106(4), 789–795 (2012).
    [Crossref]
  4. S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefhaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Sci. Rep. 6, 20658 (2016).
    [Crossref] [PubMed]
  5. J. Stöhr, NEXAFS Spectroscopy, Springer Series in Surface Science, Vol. 25 (2013).
  6. A. Kuznetsova, I. Popova, J. T. Yates, M. J. Bronikowski, C. B. Huffman, J. Liu, R. E. Smalley, H. H. Hwu, and J. G. Chen, “Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies,” J. Am. Chem. Soc. 123(43), 10699–10704 (2001).
    [Crossref] [PubMed]
  7. E. Umbach, J. Taborski, P. Väterlein, H. Dietz, and U. Zimmermann, “NEXAFS investigations on ordered adsorbate layers of large aromatic molecules,” J. Electron Spectrosc. Relat. Phenom. 75, 129–147 (1995).
    [Crossref]
  8. M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. At. Mol. Opt. Phys. 21(3), L31–L35 (1988).
    [Crossref]
  9. J. Rothhardt, M. Krebs, S. Hädrich, S. Demmler, J. Limpert, and A. Tünnermann, “Absorption-limited and phase-matched high-harmonic generation in the tight focusing regime,” New J. Phys. 16(3), 033022 (2014).
    [Crossref]
  10. R. Klas, S. Demmler, M. Tschernajew, S. Hädrich, Y. Shamir, A. Tünnermann, J. Rothhardt, and J. Limpert, “Table-top milliwatt-class extreme ultraviolet high-harmonic light source,” Optica 3(11), 1167–1170 (2016).
    [Crossref]
  11. B. Shan, S. Ghimire, and Z. Chang, “Generation of the attosecond extreme ultraviolet super-continuum by a polarization gating,” J. Mod. Opt. 52(2-3), 277–283 (2005).
    [Crossref]
  12. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314(5798), 443–446 (2006).
    [Crossref] [PubMed]
  13. A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helmi, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
    [Crossref]
  14. G. Sansone, L. Poletto, and M. Nisoli, “High-energy attosecond light sources,” Nat. Photonics 5(11), 655–664 (2011).
    [Crossref]
  15. M. Chini, K. Zhao, and Z. H. Chang, “The generation, characterization and applications of broadband isolated attosecond pulses,” Nat. Photonics 8(3), 178–186 (2014).
    [Crossref]
  16. M. Wünsche, S. Fuchs, C. Rödel, and G. G. Paulus, “Verfahren und Vorrichtung zur Erzeugung von Laserlicht mit definierten Spektraleigenschaften,” DE patent 10 2014 018 511 A1 (2014).
  17. B. E. Schmidt, A. D. Shiner, M. Giguère, P. Lassonde, C. A. Trallero-Herrero, J. C. Kieffer, P. B. Corkum, D. M. Villeneuve, and F. Légaré, “High harmonic generation with long-wavelength few-cycle laser pulses,” J. Phys. B 45(7), 074008 (2012).
    [Crossref]
  18. S. L. Johnson, P. A. Heimann, A. M. Lindenberg, H. O. Jeschke, M. E. Garcia, Z. Chang, R. W. Lee, J. J. Rehr, and R. W. Falcone, “Properties of liquid silicon observed by time-resolved X-ray absorption spectroscopy,” Phys. Rev. Lett. 91(15), 157403 (2003).
    [Crossref] [PubMed]
  19. I. Waki and Y. Hirai, “The silicon L-edge photoabsorption spectrum of silicon carbide,” J. Phys. Condens. Matter 1(37), 6755–6762 (1989).
    [Crossref]
  20. M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of High-Harmonic Generation by Low-Frequency Laser Fields,” Phys. Rev. A 49(3), 2117–2132 (1994).
    [Crossref] [PubMed]
  21. P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3(6), 381–387 (2007).
    [Crossref]
  22. V. V. Yakovlev, B. Kohler, and K. R. Wilson, “Broadly tunable 30-fs pulses produced by optical parametric amplification,” Opt. Lett. 19(23), 2000–2002 (1994).
    [Crossref] [PubMed]
  23. S. Fuchs, C. Rödel, M. Krebs, S. Hädrich, J. Bierbach, A. E. Paz, S. Kuschel, M. Wünsche, V. Hilbert, U. Zastrau, E. Förster, J. Limpert, and G. G. Paulus, “Sensitivity calibration of an imaging extreme ultraviolet spectrometer-detector system for determining the efficiency of broadband extreme ultraviolet sources,” Rev. Sci. Instrum. 84(2), 023101 (2013).
    [Crossref] [PubMed]
  24. R. W. Schoenlein, S. Chattopadhyay, H. H. W. Chong, T. E. Glover, P. A. Heimann, C. V. Shank, A. A. Zholents, and M. S. Zolotorev, “Generation of femtosecond pulses of synchrotron radiation,” Science 287(5461), 2237–2240 (2000).
    [Crossref] [PubMed]
  25. Helmholtz Zentrum Berlin, “User Facilities – Electron storage ring BESSY II - description and function,” https://www.helmholtz-berlin.de/quellen/bessy/elektronenspeicherring/index_en.html (2016).

2016 (2)

S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefhaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Sci. Rep. 6, 20658 (2016).
[Crossref] [PubMed]

R. Klas, S. Demmler, M. Tschernajew, S. Hädrich, Y. Shamir, A. Tünnermann, J. Rothhardt, and J. Limpert, “Table-top milliwatt-class extreme ultraviolet high-harmonic light source,” Optica 3(11), 1167–1170 (2016).
[Crossref]

2014 (2)

M. Chini, K. Zhao, and Z. H. Chang, “The generation, characterization and applications of broadband isolated attosecond pulses,” Nat. Photonics 8(3), 178–186 (2014).
[Crossref]

J. Rothhardt, M. Krebs, S. Hädrich, S. Demmler, J. Limpert, and A. Tünnermann, “Absorption-limited and phase-matched high-harmonic generation in the tight focusing regime,” New J. Phys. 16(3), 033022 (2014).
[Crossref]

2013 (1)

S. Fuchs, C. Rödel, M. Krebs, S. Hädrich, J. Bierbach, A. E. Paz, S. Kuschel, M. Wünsche, V. Hilbert, U. Zastrau, E. Förster, J. Limpert, and G. G. Paulus, “Sensitivity calibration of an imaging extreme ultraviolet spectrometer-detector system for determining the efficiency of broadband extreme ultraviolet sources,” Rev. Sci. Instrum. 84(2), 023101 (2013).
[Crossref] [PubMed]

2012 (2)

S. Fuchs, A. Blinne, C. Rödel, U. Zastrau, V. Hilbert, M. Wünsche, J. Bierbach, E. Frumker, E. Förster, and G. G. Paulus, “Optical coherence tomography using broad-bandwidth XUV and soft X-ray radiation,” Appl. Phys. B 106(4), 789–795 (2012).
[Crossref]

B. E. Schmidt, A. D. Shiner, M. Giguère, P. Lassonde, C. A. Trallero-Herrero, J. C. Kieffer, P. B. Corkum, D. M. Villeneuve, and F. Légaré, “High harmonic generation with long-wavelength few-cycle laser pulses,” J. Phys. B 45(7), 074008 (2012).
[Crossref]

2011 (1)

G. Sansone, L. Poletto, and M. Nisoli, “High-energy attosecond light sources,” Nat. Photonics 5(11), 655–664 (2011).
[Crossref]

2010 (1)

2007 (2)

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helmi, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3(6), 381–387 (2007).
[Crossref]

2006 (1)

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314(5798), 443–446 (2006).
[Crossref] [PubMed]

2005 (1)

B. Shan, S. Ghimire, and Z. Chang, “Generation of the attosecond extreme ultraviolet super-continuum by a polarization gating,” J. Mod. Opt. 52(2-3), 277–283 (2005).
[Crossref]

2003 (1)

S. L. Johnson, P. A. Heimann, A. M. Lindenberg, H. O. Jeschke, M. E. Garcia, Z. Chang, R. W. Lee, J. J. Rehr, and R. W. Falcone, “Properties of liquid silicon observed by time-resolved X-ray absorption spectroscopy,” Phys. Rev. Lett. 91(15), 157403 (2003).
[Crossref] [PubMed]

2001 (1)

A. Kuznetsova, I. Popova, J. T. Yates, M. J. Bronikowski, C. B. Huffman, J. Liu, R. E. Smalley, H. H. Hwu, and J. G. Chen, “Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies,” J. Am. Chem. Soc. 123(43), 10699–10704 (2001).
[Crossref] [PubMed]

2000 (1)

R. W. Schoenlein, S. Chattopadhyay, H. H. W. Chong, T. E. Glover, P. A. Heimann, C. V. Shank, A. A. Zholents, and M. S. Zolotorev, “Generation of femtosecond pulses of synchrotron radiation,” Science 287(5461), 2237–2240 (2000).
[Crossref] [PubMed]

1995 (1)

E. Umbach, J. Taborski, P. Väterlein, H. Dietz, and U. Zimmermann, “NEXAFS investigations on ordered adsorbate layers of large aromatic molecules,” J. Electron Spectrosc. Relat. Phenom. 75, 129–147 (1995).
[Crossref]

1994 (2)

V. V. Yakovlev, B. Kohler, and K. R. Wilson, “Broadly tunable 30-fs pulses produced by optical parametric amplification,” Opt. Lett. 19(23), 2000–2002 (1994).
[Crossref] [PubMed]

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of High-Harmonic Generation by Low-Frequency Laser Fields,” Phys. Rev. A 49(3), 2117–2132 (1994).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1989 (1)

I. Waki and Y. Hirai, “The silicon L-edge photoabsorption spectrum of silicon carbide,” J. Phys. Condens. Matter 1(37), 6755–6762 (1989).
[Crossref]

1988 (1)

M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. At. Mol. Opt. Phys. 21(3), L31–L35 (1988).
[Crossref]

Altucci, C.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314(5798), 443–446 (2006).
[Crossref] [PubMed]

Apolonski, A.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helmi, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

Avaldi, L.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314(5798), 443–446 (2006).
[Crossref] [PubMed]

Balcou, P.

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of High-Harmonic Generation by Low-Frequency Laser Fields,” Phys. Rev. A 49(3), 2117–2132 (1994).
[Crossref] [PubMed]

Benedetti, E.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314(5798), 443–446 (2006).
[Crossref] [PubMed]

Bierbach, J.

S. Fuchs, C. Rödel, M. Krebs, S. Hädrich, J. Bierbach, A. E. Paz, S. Kuschel, M. Wünsche, V. Hilbert, U. Zastrau, E. Förster, J. Limpert, and G. G. Paulus, “Sensitivity calibration of an imaging extreme ultraviolet spectrometer-detector system for determining the efficiency of broadband extreme ultraviolet sources,” Rev. Sci. Instrum. 84(2), 023101 (2013).
[Crossref] [PubMed]

S. Fuchs, A. Blinne, C. Rödel, U. Zastrau, V. Hilbert, M. Wünsche, J. Bierbach, E. Frumker, E. Förster, and G. G. Paulus, “Optical coherence tomography using broad-bandwidth XUV and soft X-ray radiation,” Appl. Phys. B 106(4), 789–795 (2012).
[Crossref]

Blinne, A.

S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefhaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Sci. Rep. 6, 20658 (2016).
[Crossref] [PubMed]

S. Fuchs, A. Blinne, C. Rödel, U. Zastrau, V. Hilbert, M. Wünsche, J. Bierbach, E. Frumker, E. Förster, and G. G. Paulus, “Optical coherence tomography using broad-bandwidth XUV and soft X-ray radiation,” Appl. Phys. B 106(4), 789–795 (2012).
[Crossref]

Bronikowski, M. J.

A. Kuznetsova, I. Popova, J. T. Yates, M. J. Bronikowski, C. B. Huffman, J. Liu, R. E. Smalley, H. H. Hwu, and J. G. Chen, “Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies,” J. Am. Chem. Soc. 123(43), 10699–10704 (2001).
[Crossref] [PubMed]

Calegari, F.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314(5798), 443–446 (2006).
[Crossref] [PubMed]

Cavalieri, A. L.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helmi, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chang, Z.

B. Shan, S. Ghimire, and Z. Chang, “Generation of the attosecond extreme ultraviolet super-continuum by a polarization gating,” J. Mod. Opt. 52(2-3), 277–283 (2005).
[Crossref]

S. L. Johnson, P. A. Heimann, A. M. Lindenberg, H. O. Jeschke, M. E. Garcia, Z. Chang, R. W. Lee, J. J. Rehr, and R. W. Falcone, “Properties of liquid silicon observed by time-resolved X-ray absorption spectroscopy,” Phys. Rev. Lett. 91(15), 157403 (2003).
[Crossref] [PubMed]

Chang, Z. H.

M. Chini, K. Zhao, and Z. H. Chang, “The generation, characterization and applications of broadband isolated attosecond pulses,” Nat. Photonics 8(3), 178–186 (2014).
[Crossref]

Chattopadhyay, S.

R. W. Schoenlein, S. Chattopadhyay, H. H. W. Chong, T. E. Glover, P. A. Heimann, C. V. Shank, A. A. Zholents, and M. S. Zolotorev, “Generation of femtosecond pulses of synchrotron radiation,” Science 287(5461), 2237–2240 (2000).
[Crossref] [PubMed]

Chen, J. G.

A. Kuznetsova, I. Popova, J. T. Yates, M. J. Bronikowski, C. B. Huffman, J. Liu, R. E. Smalley, H. H. Hwu, and J. G. Chen, “Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies,” J. Am. Chem. Soc. 123(43), 10699–10704 (2001).
[Crossref] [PubMed]

Chini, M.

M. Chini, K. Zhao, and Z. H. Chang, “The generation, characterization and applications of broadband isolated attosecond pulses,” Nat. Photonics 8(3), 178–186 (2014).
[Crossref]

Chong, H. H. W.

R. W. Schoenlein, S. Chattopadhyay, H. H. W. Chong, T. E. Glover, P. A. Heimann, C. V. Shank, A. A. Zholents, and M. S. Zolotorev, “Generation of femtosecond pulses of synchrotron radiation,” Science 287(5461), 2237–2240 (2000).
[Crossref] [PubMed]

Corkum, P.

S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefhaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Sci. Rep. 6, 20658 (2016).
[Crossref] [PubMed]

Corkum, P. B.

B. E. Schmidt, A. D. Shiner, M. Giguère, P. Lassonde, C. A. Trallero-Herrero, J. C. Kieffer, P. B. Corkum, D. M. Villeneuve, and F. Légaré, “High harmonic generation with long-wavelength few-cycle laser pulses,” J. Phys. B 45(7), 074008 (2012).
[Crossref]

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3(6), 381–387 (2007).
[Crossref]

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of High-Harmonic Generation by Low-Frequency Laser Fields,” Phys. Rev. A 49(3), 2117–2132 (1994).
[Crossref] [PubMed]

De Silvestri, S.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314(5798), 443–446 (2006).
[Crossref] [PubMed]

Demmler, S.

R. Klas, S. Demmler, M. Tschernajew, S. Hädrich, Y. Shamir, A. Tünnermann, J. Rothhardt, and J. Limpert, “Table-top milliwatt-class extreme ultraviolet high-harmonic light source,” Optica 3(11), 1167–1170 (2016).
[Crossref]

J. Rothhardt, M. Krebs, S. Hädrich, S. Demmler, J. Limpert, and A. Tünnermann, “Absorption-limited and phase-matched high-harmonic generation in the tight focusing regime,” New J. Phys. 16(3), 033022 (2014).
[Crossref]

Dietz, H.

E. Umbach, J. Taborski, P. Väterlein, H. Dietz, and U. Zimmermann, “NEXAFS investigations on ordered adsorbate layers of large aromatic molecules,” J. Electron Spectrosc. Relat. Phenom. 75, 129–147 (1995).
[Crossref]

Falcone, R. W.

S. L. Johnson, P. A. Heimann, A. M. Lindenberg, H. O. Jeschke, M. E. Garcia, Z. Chang, R. W. Lee, J. J. Rehr, and R. W. Falcone, “Properties of liquid silicon observed by time-resolved X-ray absorption spectroscopy,” Phys. Rev. Lett. 91(15), 157403 (2003).
[Crossref] [PubMed]

Ferray, M.

M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. At. Mol. Opt. Phys. 21(3), L31–L35 (1988).
[Crossref]

Fieß, M.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helmi, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

Flammini, R.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314(5798), 443–446 (2006).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Förster, E.

S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefhaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Sci. Rep. 6, 20658 (2016).
[Crossref] [PubMed]

S. Fuchs, C. Rödel, M. Krebs, S. Hädrich, J. Bierbach, A. E. Paz, S. Kuschel, M. Wünsche, V. Hilbert, U. Zastrau, E. Förster, J. Limpert, and G. G. Paulus, “Sensitivity calibration of an imaging extreme ultraviolet spectrometer-detector system for determining the efficiency of broadband extreme ultraviolet sources,” Rev. Sci. Instrum. 84(2), 023101 (2013).
[Crossref] [PubMed]

S. Fuchs, A. Blinne, C. Rödel, U. Zastrau, V. Hilbert, M. Wünsche, J. Bierbach, E. Frumker, E. Förster, and G. G. Paulus, “Optical coherence tomography using broad-bandwidth XUV and soft X-ray radiation,” Appl. Phys. B 106(4), 789–795 (2012).
[Crossref]

Frumker, E.

S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefhaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Sci. Rep. 6, 20658 (2016).
[Crossref] [PubMed]

S. Fuchs, A. Blinne, C. Rödel, U. Zastrau, V. Hilbert, M. Wünsche, J. Bierbach, E. Frumker, E. Förster, and G. G. Paulus, “Optical coherence tomography using broad-bandwidth XUV and soft X-ray radiation,” Appl. Phys. B 106(4), 789–795 (2012).
[Crossref]

Fuchs, S.

S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefhaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Sci. Rep. 6, 20658 (2016).
[Crossref] [PubMed]

S. Fuchs, C. Rödel, M. Krebs, S. Hädrich, J. Bierbach, A. E. Paz, S. Kuschel, M. Wünsche, V. Hilbert, U. Zastrau, E. Förster, J. Limpert, and G. G. Paulus, “Sensitivity calibration of an imaging extreme ultraviolet spectrometer-detector system for determining the efficiency of broadband extreme ultraviolet sources,” Rev. Sci. Instrum. 84(2), 023101 (2013).
[Crossref] [PubMed]

S. Fuchs, A. Blinne, C. Rödel, U. Zastrau, V. Hilbert, M. Wünsche, J. Bierbach, E. Frumker, E. Förster, and G. G. Paulus, “Optical coherence tomography using broad-bandwidth XUV and soft X-ray radiation,” Appl. Phys. B 106(4), 789–795 (2012).
[Crossref]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Garcia, M. E.

S. L. Johnson, P. A. Heimann, A. M. Lindenberg, H. O. Jeschke, M. E. Garcia, Z. Chang, R. W. Lee, J. J. Rehr, and R. W. Falcone, “Properties of liquid silicon observed by time-resolved X-ray absorption spectroscopy,” Phys. Rev. Lett. 91(15), 157403 (2003).
[Crossref] [PubMed]

Genda, Y.

Ghimire, S.

B. Shan, S. Ghimire, and Z. Chang, “Generation of the attosecond extreme ultraviolet super-continuum by a polarization gating,” J. Mod. Opt. 52(2-3), 277–283 (2005).
[Crossref]

Giguère, M.

B. E. Schmidt, A. D. Shiner, M. Giguère, P. Lassonde, C. A. Trallero-Herrero, J. C. Kieffer, P. B. Corkum, D. M. Villeneuve, and F. Légaré, “High harmonic generation with long-wavelength few-cycle laser pulses,” J. Phys. B 45(7), 074008 (2012).
[Crossref]

Glaser, L.

S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefhaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Sci. Rep. 6, 20658 (2016).
[Crossref] [PubMed]

Glover, T. E.

R. W. Schoenlein, S. Chattopadhyay, H. H. W. Chong, T. E. Glover, P. A. Heimann, C. V. Shank, A. A. Zholents, and M. S. Zolotorev, “Generation of femtosecond pulses of synchrotron radiation,” Science 287(5461), 2237–2240 (2000).
[Crossref] [PubMed]

Goulielmakis, E.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helmi, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hädrich, S.

R. Klas, S. Demmler, M. Tschernajew, S. Hädrich, Y. Shamir, A. Tünnermann, J. Rothhardt, and J. Limpert, “Table-top milliwatt-class extreme ultraviolet high-harmonic light source,” Optica 3(11), 1167–1170 (2016).
[Crossref]

J. Rothhardt, M. Krebs, S. Hädrich, S. Demmler, J. Limpert, and A. Tünnermann, “Absorption-limited and phase-matched high-harmonic generation in the tight focusing regime,” New J. Phys. 16(3), 033022 (2014).
[Crossref]

S. Fuchs, C. Rödel, M. Krebs, S. Hädrich, J. Bierbach, A. E. Paz, S. Kuschel, M. Wünsche, V. Hilbert, U. Zastrau, E. Förster, J. Limpert, and G. G. Paulus, “Sensitivity calibration of an imaging extreme ultraviolet spectrometer-detector system for determining the efficiency of broadband extreme ultraviolet sources,” Rev. Sci. Instrum. 84(2), 023101 (2013).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Heimann, P. A.

S. L. Johnson, P. A. Heimann, A. M. Lindenberg, H. O. Jeschke, M. E. Garcia, Z. Chang, R. W. Lee, J. J. Rehr, and R. W. Falcone, “Properties of liquid silicon observed by time-resolved X-ray absorption spectroscopy,” Phys. Rev. Lett. 91(15), 157403 (2003).
[Crossref] [PubMed]

R. W. Schoenlein, S. Chattopadhyay, H. H. W. Chong, T. E. Glover, P. A. Heimann, C. V. Shank, A. A. Zholents, and M. S. Zolotorev, “Generation of femtosecond pulses of synchrotron radiation,” Science 287(5461), 2237–2240 (2000).
[Crossref] [PubMed]

Helmi, W.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helmi, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

Hilbert, V.

S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefhaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Sci. Rep. 6, 20658 (2016).
[Crossref] [PubMed]

S. Fuchs, C. Rödel, M. Krebs, S. Hädrich, J. Bierbach, A. E. Paz, S. Kuschel, M. Wünsche, V. Hilbert, U. Zastrau, E. Förster, J. Limpert, and G. G. Paulus, “Sensitivity calibration of an imaging extreme ultraviolet spectrometer-detector system for determining the efficiency of broadband extreme ultraviolet sources,” Rev. Sci. Instrum. 84(2), 023101 (2013).
[Crossref] [PubMed]

S. Fuchs, A. Blinne, C. Rödel, U. Zastrau, V. Hilbert, M. Wünsche, J. Bierbach, E. Frumker, E. Förster, and G. G. Paulus, “Optical coherence tomography using broad-bandwidth XUV and soft X-ray radiation,” Appl. Phys. B 106(4), 789–795 (2012).
[Crossref]

Hirai, Y.

I. Waki and Y. Hirai, “The silicon L-edge photoabsorption spectrum of silicon carbide,” J. Phys. Condens. Matter 1(37), 6755–6762 (1989).
[Crossref]

Horvath, B.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helmi, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huffman, C. B.

A. Kuznetsova, I. Popova, J. T. Yates, M. J. Bronikowski, C. B. Huffman, J. Liu, R. E. Smalley, H. H. Hwu, and J. G. Chen, “Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies,” J. Am. Chem. Soc. 123(43), 10699–10704 (2001).
[Crossref] [PubMed]

Hwu, H. H.

A. Kuznetsova, I. Popova, J. T. Yates, M. J. Bronikowski, C. B. Huffman, J. Liu, R. E. Smalley, H. H. Hwu, and J. G. Chen, “Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies,” J. Am. Chem. Soc. 123(43), 10699–10704 (2001).
[Crossref] [PubMed]

Itoh, K.

Ivanov, M. Y.

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of High-Harmonic Generation by Low-Frequency Laser Fields,” Phys. Rev. A 49(3), 2117–2132 (1994).
[Crossref] [PubMed]

Jeschke, H. O.

S. L. Johnson, P. A. Heimann, A. M. Lindenberg, H. O. Jeschke, M. E. Garcia, Z. Chang, R. W. Lee, J. J. Rehr, and R. W. Falcone, “Properties of liquid silicon observed by time-resolved X-ray absorption spectroscopy,” Phys. Rev. Lett. 91(15), 157403 (2003).
[Crossref] [PubMed]

Johnson, S. L.

S. L. Johnson, P. A. Heimann, A. M. Lindenberg, H. O. Jeschke, M. E. Garcia, Z. Chang, R. W. Lee, J. J. Rehr, and R. W. Falcone, “Properties of liquid silicon observed by time-resolved X-ray absorption spectroscopy,” Phys. Rev. Lett. 91(15), 157403 (2003).
[Crossref] [PubMed]

Kieffer, J. C.

B. E. Schmidt, A. D. Shiner, M. Giguère, P. Lassonde, C. A. Trallero-Herrero, J. C. Kieffer, P. B. Corkum, D. M. Villeneuve, and F. Légaré, “High harmonic generation with long-wavelength few-cycle laser pulses,” J. Phys. B 45(7), 074008 (2012).
[Crossref]

Kienberger, R.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helmi, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

Klas, R.

Kohler, B.

Krausz, F.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helmi, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3(6), 381–387 (2007).
[Crossref]

Krebs, M.

J. Rothhardt, M. Krebs, S. Hädrich, S. Demmler, J. Limpert, and A. Tünnermann, “Absorption-limited and phase-matched high-harmonic generation in the tight focusing regime,” New J. Phys. 16(3), 033022 (2014).
[Crossref]

S. Fuchs, C. Rödel, M. Krebs, S. Hädrich, J. Bierbach, A. E. Paz, S. Kuschel, M. Wünsche, V. Hilbert, U. Zastrau, E. Förster, J. Limpert, and G. G. Paulus, “Sensitivity calibration of an imaging extreme ultraviolet spectrometer-detector system for determining the efficiency of broadband extreme ultraviolet sources,” Rev. Sci. Instrum. 84(2), 023101 (2013).
[Crossref] [PubMed]

Kuschel, S.

S. Fuchs, C. Rödel, M. Krebs, S. Hädrich, J. Bierbach, A. E. Paz, S. Kuschel, M. Wünsche, V. Hilbert, U. Zastrau, E. Förster, J. Limpert, and G. G. Paulus, “Sensitivity calibration of an imaging extreme ultraviolet spectrometer-detector system for determining the efficiency of broadband extreme ultraviolet sources,” Rev. Sci. Instrum. 84(2), 023101 (2013).
[Crossref] [PubMed]

Kuznetsova, A.

A. Kuznetsova, I. Popova, J. T. Yates, M. J. Bronikowski, C. B. Huffman, J. Liu, R. E. Smalley, H. H. Hwu, and J. G. Chen, “Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies,” J. Am. Chem. Soc. 123(43), 10699–10704 (2001).
[Crossref] [PubMed]

L’Huillier, A.

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of High-Harmonic Generation by Low-Frequency Laser Fields,” Phys. Rev. A 49(3), 2117–2132 (1994).
[Crossref] [PubMed]

M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. At. Mol. Opt. Phys. 21(3), L31–L35 (1988).
[Crossref]

Lassonde, P.

B. E. Schmidt, A. D. Shiner, M. Giguère, P. Lassonde, C. A. Trallero-Herrero, J. C. Kieffer, P. B. Corkum, D. M. Villeneuve, and F. Légaré, “High harmonic generation with long-wavelength few-cycle laser pulses,” J. Phys. B 45(7), 074008 (2012).
[Crossref]

Lee, R. W.

S. L. Johnson, P. A. Heimann, A. M. Lindenberg, H. O. Jeschke, M. E. Garcia, Z. Chang, R. W. Lee, J. J. Rehr, and R. W. Falcone, “Properties of liquid silicon observed by time-resolved X-ray absorption spectroscopy,” Phys. Rev. Lett. 91(15), 157403 (2003).
[Crossref] [PubMed]

Légaré, F.

B. E. Schmidt, A. D. Shiner, M. Giguère, P. Lassonde, C. A. Trallero-Herrero, J. C. Kieffer, P. B. Corkum, D. M. Villeneuve, and F. Légaré, “High harmonic generation with long-wavelength few-cycle laser pulses,” J. Phys. B 45(7), 074008 (2012).
[Crossref]

Lewenstein, M.

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of High-Harmonic Generation by Low-Frequency Laser Fields,” Phys. Rev. A 49(3), 2117–2132 (1994).
[Crossref] [PubMed]

Li, X. F.

M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. At. Mol. Opt. Phys. 21(3), L31–L35 (1988).
[Crossref]

Limpert, J.

R. Klas, S. Demmler, M. Tschernajew, S. Hädrich, Y. Shamir, A. Tünnermann, J. Rothhardt, and J. Limpert, “Table-top milliwatt-class extreme ultraviolet high-harmonic light source,” Optica 3(11), 1167–1170 (2016).
[Crossref]

J. Rothhardt, M. Krebs, S. Hädrich, S. Demmler, J. Limpert, and A. Tünnermann, “Absorption-limited and phase-matched high-harmonic generation in the tight focusing regime,” New J. Phys. 16(3), 033022 (2014).
[Crossref]

S. Fuchs, C. Rödel, M. Krebs, S. Hädrich, J. Bierbach, A. E. Paz, S. Kuschel, M. Wünsche, V. Hilbert, U. Zastrau, E. Förster, J. Limpert, and G. G. Paulus, “Sensitivity calibration of an imaging extreme ultraviolet spectrometer-detector system for determining the efficiency of broadband extreme ultraviolet sources,” Rev. Sci. Instrum. 84(2), 023101 (2013).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lindenberg, A. M.

S. L. Johnson, P. A. Heimann, A. M. Lindenberg, H. O. Jeschke, M. E. Garcia, Z. Chang, R. W. Lee, J. J. Rehr, and R. W. Falcone, “Properties of liquid silicon observed by time-resolved X-ray absorption spectroscopy,” Phys. Rev. Lett. 91(15), 157403 (2003).
[Crossref] [PubMed]

Liu, J.

A. Kuznetsova, I. Popova, J. T. Yates, M. J. Bronikowski, C. B. Huffman, J. Liu, R. E. Smalley, H. H. Hwu, and J. G. Chen, “Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies,” J. Am. Chem. Soc. 123(43), 10699–10704 (2001).
[Crossref] [PubMed]

Lompre, L. A.

M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. At. Mol. Opt. Phys. 21(3), L31–L35 (1988).
[Crossref]

Mainfray, G.

M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. At. Mol. Opt. Phys. 21(3), L31–L35 (1988).
[Crossref]

Manus, C.

M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. At. Mol. Opt. Phys. 21(3), L31–L35 (1988).
[Crossref]

Nishizawa, N.

Nisoli, M.

G. Sansone, L. Poletto, and M. Nisoli, “High-energy attosecond light sources,” Nat. Photonics 5(11), 655–664 (2011).
[Crossref]

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314(5798), 443–446 (2006).
[Crossref] [PubMed]

Ohta, T.

Paulus, G. G.

S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefhaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Sci. Rep. 6, 20658 (2016).
[Crossref] [PubMed]

S. Fuchs, C. Rödel, M. Krebs, S. Hädrich, J. Bierbach, A. E. Paz, S. Kuschel, M. Wünsche, V. Hilbert, U. Zastrau, E. Förster, J. Limpert, and G. G. Paulus, “Sensitivity calibration of an imaging extreme ultraviolet spectrometer-detector system for determining the efficiency of broadband extreme ultraviolet sources,” Rev. Sci. Instrum. 84(2), 023101 (2013).
[Crossref] [PubMed]

S. Fuchs, A. Blinne, C. Rödel, U. Zastrau, V. Hilbert, M. Wünsche, J. Bierbach, E. Frumker, E. Förster, and G. G. Paulus, “Optical coherence tomography using broad-bandwidth XUV and soft X-ray radiation,” Appl. Phys. B 106(4), 789–795 (2012).
[Crossref]

Paz, A. E.

S. Fuchs, C. Rödel, M. Krebs, S. Hädrich, J. Bierbach, A. E. Paz, S. Kuschel, M. Wünsche, V. Hilbert, U. Zastrau, E. Förster, J. Limpert, and G. G. Paulus, “Sensitivity calibration of an imaging extreme ultraviolet spectrometer-detector system for determining the efficiency of broadband extreme ultraviolet sources,” Rev. Sci. Instrum. 84(2), 023101 (2013).
[Crossref] [PubMed]

Pervak, V.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helmi, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

Poletto, L.

G. Sansone, L. Poletto, and M. Nisoli, “High-energy attosecond light sources,” Nat. Photonics 5(11), 655–664 (2011).
[Crossref]

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314(5798), 443–446 (2006).
[Crossref] [PubMed]

Popova, I.

A. Kuznetsova, I. Popova, J. T. Yates, M. J. Bronikowski, C. B. Huffman, J. Liu, R. E. Smalley, H. H. Hwu, and J. G. Chen, “Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies,” J. Am. Chem. Soc. 123(43), 10699–10704 (2001).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Rehr, J. J.

S. L. Johnson, P. A. Heimann, A. M. Lindenberg, H. O. Jeschke, M. E. Garcia, Z. Chang, R. W. Lee, J. J. Rehr, and R. W. Falcone, “Properties of liquid silicon observed by time-resolved X-ray absorption spectroscopy,” Phys. Rev. Lett. 91(15), 157403 (2003).
[Crossref] [PubMed]

Rödel, C.

S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefhaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Sci. Rep. 6, 20658 (2016).
[Crossref] [PubMed]

S. Fuchs, C. Rödel, M. Krebs, S. Hädrich, J. Bierbach, A. E. Paz, S. Kuschel, M. Wünsche, V. Hilbert, U. Zastrau, E. Förster, J. Limpert, and G. G. Paulus, “Sensitivity calibration of an imaging extreme ultraviolet spectrometer-detector system for determining the efficiency of broadband extreme ultraviolet sources,” Rev. Sci. Instrum. 84(2), 023101 (2013).
[Crossref] [PubMed]

S. Fuchs, A. Blinne, C. Rödel, U. Zastrau, V. Hilbert, M. Wünsche, J. Bierbach, E. Frumker, E. Förster, and G. G. Paulus, “Optical coherence tomography using broad-bandwidth XUV and soft X-ray radiation,” Appl. Phys. B 106(4), 789–795 (2012).
[Crossref]

Rothhardt, J.

R. Klas, S. Demmler, M. Tschernajew, S. Hädrich, Y. Shamir, A. Tünnermann, J. Rothhardt, and J. Limpert, “Table-top milliwatt-class extreme ultraviolet high-harmonic light source,” Optica 3(11), 1167–1170 (2016).
[Crossref]

J. Rothhardt, M. Krebs, S. Hädrich, S. Demmler, J. Limpert, and A. Tünnermann, “Absorption-limited and phase-matched high-harmonic generation in the tight focusing regime,” New J. Phys. 16(3), 033022 (2014).
[Crossref]

Sansone, G.

G. Sansone, L. Poletto, and M. Nisoli, “High-energy attosecond light sources,” Nat. Photonics 5(11), 655–664 (2011).
[Crossref]

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314(5798), 443–446 (2006).
[Crossref] [PubMed]

Schmidt, B. E.

B. E. Schmidt, A. D. Shiner, M. Giguère, P. Lassonde, C. A. Trallero-Herrero, J. C. Kieffer, P. B. Corkum, D. M. Villeneuve, and F. Légaré, “High harmonic generation with long-wavelength few-cycle laser pulses,” J. Phys. B 45(7), 074008 (2012).
[Crossref]

Schoenlein, R. W.

R. W. Schoenlein, S. Chattopadhyay, H. H. W. Chong, T. E. Glover, P. A. Heimann, C. V. Shank, A. A. Zholents, and M. S. Zolotorev, “Generation of femtosecond pulses of synchrotron radiation,” Science 287(5461), 2237–2240 (2000).
[Crossref] [PubMed]

Schultze, M.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helmi, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Shamir, Y.

Shan, B.

B. Shan, S. Ghimire, and Z. Chang, “Generation of the attosecond extreme ultraviolet super-continuum by a polarization gating,” J. Mod. Opt. 52(2-3), 277–283 (2005).
[Crossref]

Shank, C. V.

R. W. Schoenlein, S. Chattopadhyay, H. H. W. Chong, T. E. Glover, P. A. Heimann, C. V. Shank, A. A. Zholents, and M. S. Zolotorev, “Generation of femtosecond pulses of synchrotron radiation,” Science 287(5461), 2237–2240 (2000).
[Crossref] [PubMed]

Shiner, A. D.

B. E. Schmidt, A. D. Shiner, M. Giguère, P. Lassonde, C. A. Trallero-Herrero, J. C. Kieffer, P. B. Corkum, D. M. Villeneuve, and F. Légaré, “High harmonic generation with long-wavelength few-cycle laser pulses,” J. Phys. B 45(7), 074008 (2012).
[Crossref]

Smalley, R. E.

A. Kuznetsova, I. Popova, J. T. Yates, M. J. Bronikowski, C. B. Huffman, J. Liu, R. E. Smalley, H. H. Hwu, and J. G. Chen, “Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies,” J. Am. Chem. Soc. 123(43), 10699–10704 (2001).
[Crossref] [PubMed]

Stagira, S.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314(5798), 443–446 (2006).
[Crossref] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sumimura, K.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Taborski, J.

E. Umbach, J. Taborski, P. Väterlein, H. Dietz, and U. Zimmermann, “NEXAFS investigations on ordered adsorbate layers of large aromatic molecules,” J. Electron Spectrosc. Relat. Phenom. 75, 129–147 (1995).
[Crossref]

Trallero-Herrero, C. A.

B. E. Schmidt, A. D. Shiner, M. Giguère, P. Lassonde, C. A. Trallero-Herrero, J. C. Kieffer, P. B. Corkum, D. M. Villeneuve, and F. Légaré, “High harmonic generation with long-wavelength few-cycle laser pulses,” J. Phys. B 45(7), 074008 (2012).
[Crossref]

Tschernajew, M.

Tünnermann, A.

R. Klas, S. Demmler, M. Tschernajew, S. Hädrich, Y. Shamir, A. Tünnermann, J. Rothhardt, and J. Limpert, “Table-top milliwatt-class extreme ultraviolet high-harmonic light source,” Optica 3(11), 1167–1170 (2016).
[Crossref]

J. Rothhardt, M. Krebs, S. Hädrich, S. Demmler, J. Limpert, and A. Tünnermann, “Absorption-limited and phase-matched high-harmonic generation in the tight focusing regime,” New J. Phys. 16(3), 033022 (2014).
[Crossref]

Uiberacker, M.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helmi, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

Umbach, E.

E. Umbach, J. Taborski, P. Väterlein, H. Dietz, and U. Zimmermann, “NEXAFS investigations on ordered adsorbate layers of large aromatic molecules,” J. Electron Spectrosc. Relat. Phenom. 75, 129–147 (1995).
[Crossref]

Väterlein, P.

E. Umbach, J. Taborski, P. Väterlein, H. Dietz, and U. Zimmermann, “NEXAFS investigations on ordered adsorbate layers of large aromatic molecules,” J. Electron Spectrosc. Relat. Phenom. 75, 129–147 (1995).
[Crossref]

Veisz, L.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helmi, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

Velotta, R.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314(5798), 443–446 (2006).
[Crossref] [PubMed]

Viefhaus, J.

S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefhaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Sci. Rep. 6, 20658 (2016).
[Crossref] [PubMed]

Villeneuve, D. M.

B. E. Schmidt, A. D. Shiner, M. Giguère, P. Lassonde, C. A. Trallero-Herrero, J. C. Kieffer, P. B. Corkum, D. M. Villeneuve, and F. Légaré, “High harmonic generation with long-wavelength few-cycle laser pulses,” J. Phys. B 45(7), 074008 (2012).
[Crossref]

Villoresi, P.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314(5798), 443–446 (2006).
[Crossref] [PubMed]

Vozzi, C.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314(5798), 443–446 (2006).
[Crossref] [PubMed]

Waki, I.

I. Waki and Y. Hirai, “The silicon L-edge photoabsorption spectrum of silicon carbide,” J. Phys. Condens. Matter 1(37), 6755–6762 (1989).
[Crossref]

Wilson, K. R.

Wünsche, M.

S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefhaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Sci. Rep. 6, 20658 (2016).
[Crossref] [PubMed]

S. Fuchs, C. Rödel, M. Krebs, S. Hädrich, J. Bierbach, A. E. Paz, S. Kuschel, M. Wünsche, V. Hilbert, U. Zastrau, E. Förster, J. Limpert, and G. G. Paulus, “Sensitivity calibration of an imaging extreme ultraviolet spectrometer-detector system for determining the efficiency of broadband extreme ultraviolet sources,” Rev. Sci. Instrum. 84(2), 023101 (2013).
[Crossref] [PubMed]

S. Fuchs, A. Blinne, C. Rödel, U. Zastrau, V. Hilbert, M. Wünsche, J. Bierbach, E. Frumker, E. Förster, and G. G. Paulus, “Optical coherence tomography using broad-bandwidth XUV and soft X-ray radiation,” Appl. Phys. B 106(4), 789–795 (2012).
[Crossref]

Yakovlev, V. S.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helmi, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

Yakovlev, V. V.

Yates, J. T.

A. Kuznetsova, I. Popova, J. T. Yates, M. J. Bronikowski, C. B. Huffman, J. Liu, R. E. Smalley, H. H. Hwu, and J. G. Chen, “Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies,” J. Am. Chem. Soc. 123(43), 10699–10704 (2001).
[Crossref] [PubMed]

Zastrau, U.

S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefhaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Sci. Rep. 6, 20658 (2016).
[Crossref] [PubMed]

S. Fuchs, C. Rödel, M. Krebs, S. Hädrich, J. Bierbach, A. E. Paz, S. Kuschel, M. Wünsche, V. Hilbert, U. Zastrau, E. Förster, J. Limpert, and G. G. Paulus, “Sensitivity calibration of an imaging extreme ultraviolet spectrometer-detector system for determining the efficiency of broadband extreme ultraviolet sources,” Rev. Sci. Instrum. 84(2), 023101 (2013).
[Crossref] [PubMed]

S. Fuchs, A. Blinne, C. Rödel, U. Zastrau, V. Hilbert, M. Wünsche, J. Bierbach, E. Frumker, E. Förster, and G. G. Paulus, “Optical coherence tomography using broad-bandwidth XUV and soft X-ray radiation,” Appl. Phys. B 106(4), 789–795 (2012).
[Crossref]

Zhao, K.

M. Chini, K. Zhao, and Z. H. Chang, “The generation, characterization and applications of broadband isolated attosecond pulses,” Nat. Photonics 8(3), 178–186 (2014).
[Crossref]

Zholents, A. A.

R. W. Schoenlein, S. Chattopadhyay, H. H. W. Chong, T. E. Glover, P. A. Heimann, C. V. Shank, A. A. Zholents, and M. S. Zolotorev, “Generation of femtosecond pulses of synchrotron radiation,” Science 287(5461), 2237–2240 (2000).
[Crossref] [PubMed]

Zimmermann, U.

E. Umbach, J. Taborski, P. Väterlein, H. Dietz, and U. Zimmermann, “NEXAFS investigations on ordered adsorbate layers of large aromatic molecules,” J. Electron Spectrosc. Relat. Phenom. 75, 129–147 (1995).
[Crossref]

Zolotorev, M. S.

R. W. Schoenlein, S. Chattopadhyay, H. H. W. Chong, T. E. Glover, P. A. Heimann, C. V. Shank, A. A. Zholents, and M. S. Zolotorev, “Generation of femtosecond pulses of synchrotron radiation,” Science 287(5461), 2237–2240 (2000).
[Crossref] [PubMed]

Appl. Phys. B (1)

S. Fuchs, A. Blinne, C. Rödel, U. Zastrau, V. Hilbert, M. Wünsche, J. Bierbach, E. Frumker, E. Förster, and G. G. Paulus, “Optical coherence tomography using broad-bandwidth XUV and soft X-ray radiation,” Appl. Phys. B 106(4), 789–795 (2012).
[Crossref]

J. Am. Chem. Soc. (1)

A. Kuznetsova, I. Popova, J. T. Yates, M. J. Bronikowski, C. B. Huffman, J. Liu, R. E. Smalley, H. H. Hwu, and J. G. Chen, “Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies,” J. Am. Chem. Soc. 123(43), 10699–10704 (2001).
[Crossref] [PubMed]

J. Electron Spectrosc. Relat. Phenom. (1)

E. Umbach, J. Taborski, P. Väterlein, H. Dietz, and U. Zimmermann, “NEXAFS investigations on ordered adsorbate layers of large aromatic molecules,” J. Electron Spectrosc. Relat. Phenom. 75, 129–147 (1995).
[Crossref]

J. Mod. Opt. (1)

B. Shan, S. Ghimire, and Z. Chang, “Generation of the attosecond extreme ultraviolet super-continuum by a polarization gating,” J. Mod. Opt. 52(2-3), 277–283 (2005).
[Crossref]

J. Phys. At. Mol. Opt. Phys. (1)

M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. At. Mol. Opt. Phys. 21(3), L31–L35 (1988).
[Crossref]

J. Phys. B (1)

B. E. Schmidt, A. D. Shiner, M. Giguère, P. Lassonde, C. A. Trallero-Herrero, J. C. Kieffer, P. B. Corkum, D. M. Villeneuve, and F. Légaré, “High harmonic generation with long-wavelength few-cycle laser pulses,” J. Phys. B 45(7), 074008 (2012).
[Crossref]

J. Phys. Condens. Matter (1)

I. Waki and Y. Hirai, “The silicon L-edge photoabsorption spectrum of silicon carbide,” J. Phys. Condens. Matter 1(37), 6755–6762 (1989).
[Crossref]

Nat. Photonics (2)

G. Sansone, L. Poletto, and M. Nisoli, “High-energy attosecond light sources,” Nat. Photonics 5(11), 655–664 (2011).
[Crossref]

M. Chini, K. Zhao, and Z. H. Chang, “The generation, characterization and applications of broadband isolated attosecond pulses,” Nat. Photonics 8(3), 178–186 (2014).
[Crossref]

Nat. Phys. (1)

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3(6), 381–387 (2007).
[Crossref]

New J. Phys. (2)

J. Rothhardt, M. Krebs, S. Hädrich, S. Demmler, J. Limpert, and A. Tünnermann, “Absorption-limited and phase-matched high-harmonic generation in the tight focusing regime,” New J. Phys. 16(3), 033022 (2014).
[Crossref]

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helmi, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

Opt. Lett. (2)

Optica (1)

Phys. Rev. A (1)

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of High-Harmonic Generation by Low-Frequency Laser Fields,” Phys. Rev. A 49(3), 2117–2132 (1994).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

S. L. Johnson, P. A. Heimann, A. M. Lindenberg, H. O. Jeschke, M. E. Garcia, Z. Chang, R. W. Lee, J. J. Rehr, and R. W. Falcone, “Properties of liquid silicon observed by time-resolved X-ray absorption spectroscopy,” Phys. Rev. Lett. 91(15), 157403 (2003).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

S. Fuchs, C. Rödel, M. Krebs, S. Hädrich, J. Bierbach, A. E. Paz, S. Kuschel, M. Wünsche, V. Hilbert, U. Zastrau, E. Förster, J. Limpert, and G. G. Paulus, “Sensitivity calibration of an imaging extreme ultraviolet spectrometer-detector system for determining the efficiency of broadband extreme ultraviolet sources,” Rev. Sci. Instrum. 84(2), 023101 (2013).
[Crossref] [PubMed]

Sci. Rep. (1)

S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefhaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Sci. Rep. 6, 20658 (2016).
[Crossref] [PubMed]

Science (3)

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314(5798), 443–446 (2006).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

R. W. Schoenlein, S. Chattopadhyay, H. H. W. Chong, T. E. Glover, P. A. Heimann, C. V. Shank, A. A. Zholents, and M. S. Zolotorev, “Generation of femtosecond pulses of synchrotron radiation,” Science 287(5461), 2237–2240 (2000).
[Crossref] [PubMed]

Other (3)

Helmholtz Zentrum Berlin, “User Facilities – Electron storage ring BESSY II - description and function,” https://www.helmholtz-berlin.de/quellen/bessy/elektronenspeicherring/index_en.html (2016).

M. Wünsche, S. Fuchs, C. Rödel, and G. G. Paulus, “Verfahren und Vorrichtung zur Erzeugung von Laserlicht mit definierten Spektraleigenschaften,” DE patent 10 2014 018 511 A1 (2014).

J. Stöhr, NEXAFS Spectroscopy, Springer Series in Surface Science, Vol. 25 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Example of a high-harmonic spectrum generated in neon using a Ti:Sa laser at 800 nm with a pulse energy of 1.7 mJ and a pulse duration of 35 fs. Due to the high-harmonic generation, the resulting XUV spectrum is strongly modulated with the fundamental frequency. The harmonic lines of the fundamental frequency have a small individual bandwidth of 0.4 eV (FWHM), such that there is a negligible photon flux between two harmonics. The modulation depth or contrast between the harmonic lines and their valleys describes the smoothness and thus the continuity of the XUV spectrum. This strongly modulated XUV spectrum has a contrast of M=0.99 .
Fig. 2
Fig. 2 The principle idea of generating an XUV quasi-supercontinuum by averaging over different high-harmonic spectra with different driver wavelengths is shown. For this, every single harmonic comb is calculated as a comb of Gaussian shaped harmonics with an individual harmonic bandwidth (FWHM) of 0.4 eV and a driver wavelength between 1260 nm and 1340 nm. Typically, a high-harmonic spectrum generated by a multi-cycle laser pulse is strongly modulated such that there is no photon flux between two harmonics (blue curve, driver wavelength is 1300 nm). To generate an XUV quasi-supercontinuum the average of different harmonic combs with different driver wavelengths should cover the spectral area between two neighbored harmonics. With a scan of the driving laser wavelength in the range of 1260 nm to 1340 nm and steps of 10 nm the resultant XUV spectrum (red curve) is quasi-supercontinuous and less modulated than a single harmonic comb. To evaluate a continuum the modulation depth or contrast M=( I max I min )/( I max + I min ) can be used. While, the contrast for the single harmonic comb is M=1 , it is reduced to M=0.35 for the averaged comb.
Fig. 3
Fig. 3 The OPA (colored in green) is pumped by a two-stage Ti:Sa system. The pump pulses enter the OPA with a pulse energy of 9 to 9.7 mJ and a pulse duration of 35 fs. After several beam splitters, the pump beam is focused via a lens (L1) into a sapphire plate (white light generation, WLG) where the supercontinuum radiation (white light continuum, WLC) from 0.5 µm to 4 µm is generated. A dispersive element (DC1) chirps the WLC afterwards. The chirped WLC is then overlapped with a second pump beam in a BBO crystal. The signal wave is selected by the adjustment of the temporal delay (Δt) of the second pump to the WLC via stepper motors. Together with the proper phase matching angle of the BBO crystal (Δφ), which is also set by stepper motors, the signal wave is amplified and the idler wave is generated in the BBO. Another dispersive element (DC2) compensates the chirp afterwards. After two additional OPA stages the signal and idler wave are separated by a dichroitic mirror (DM). In our experiment the output energy of the signal wave (here 1300 nm) is optimized to 2.5 mJ. By shifting the wavelength λ remotely with a computer to λ+Δλ(Δφ,Δt) , high-harmonics are generated for each driver wavelength λ respectively λ+Δλ(Δφ,Δt) . In comparison to the original harmonic spectrum of λ the one of the shifted wavelength λ+Δλ(Δφ,Δt) appears stretched or compressed along the photon energy.
Fig. 4
Fig. 4 The recorded high-harmonic XUV spectra generated in argon with individual driving wavelengths are shown in the aluminum transmission (left) and also in the zirconium transmission window (right). (left) Every single harmonic comb has a strong spectral modulation with a contrast up to M=0.55 . In comparison to each other, the different combs show slightly different modulation frequencies, so the spectral overlap of harmonics from different combs changes over the photon energy. For example, a harmonic of the 1260 nm (blue curve) and a harmonic of the 1320 nm (yellow curve) driving pulses are located around 42.4 eV (violet vertical line), while the positions of the nearby harmonics of the 1300 nm are shifted. In contrast, the harmonic radiation at 60.2 eV (green vertical line) is primarily generated by the 1260 nm driver. While the harmonic of the 1300 nm is shifted a bit and the spectrum of 1320 nm shows even a minimum between two harmonics. (right) High-harmonic spectra using the zirconium filter are plotted. The modulation depth is reduced to M=0.17 due to the insufficient spectrometer resolution. The cut-off energy is around 90 eV.
Fig. 5
Fig. 5 Different high-harmonic spectra generated in argon are averaged to a smooth averaged spectrum with a reduced spectral modulation of M=0.24 . (left) Exemplary, the single harmonic spectra of 1260 nm, 1300 nm and 1320 nm are plotted together with the mean spectrum of all involved wavelengths (violet curve). The modulation contrast shows a reduction by a factor of two in comparison to a single harmonic spectrum. (right) A frequency analysis of the modulated spectra is performed. In particular at the modulation frequency of the harmonic comb at 0.53eV=1/(20.95eV) (green vertical line), the modulation depth is strongly reduced.
Fig. 6
Fig. 6 Recorded harmonic spectra generated in argon (left) or in neon (right) while an automatic sweeping over the laser wavelength are shown. The scan is performed automatically from 1220 to 1320 nm in 10 nm steps. We get a modulation depth of M=0.08 for this scan in the Al window (left). Due to the reduced resolution of the spectrometer for higher photon energies with 0.25 eV round 80 eV and 1.4 eV around 200 eV an almost flat distribution in the Zr window is produced (right). The photon flux is up to 3× 10 8 photons per eVs around 40 eV and 2× 10 5 photons per eVs at 180 eV.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ω N =(2N1) ω L ,
M= I max I min I max + I min .
ω ˜ N =(2N1)( ω L +Δω)
ω ˜ N+1 = ω ˜ N +2 ω D
Δω=2 ω L /N

Metrics