Abstract

Computer Generated Holograms (CGHs) are used for wavefront shaping and complex optics testing. Present technology allows for recording binary CGHs. We propose a Digital Micro-mirror Device (DMD) as a reconfigurable mask, to record rewritable binary and grayscale CGHs on a photochromic plate. Opaque at rest, this plate becomes transparent when it is illuminated with visible light of suitable wavelength. We have successfully recorded the very first amplitude grayscale CGH, with a contrast greater than 50, which was reconstructed with a high fidelity in shape, intensity, size and location. These results reveal the high potential of this method for generating programmable/rewritable grayscale CGHs, which combine DMDs and photochromic substrates.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic shaping of orbital-angular-momentum beams for information encoding

Xinyao Hu, Qian Zhao, Panpan Yu, Xuanling Li, Ziqiang Wang, Yinmei Li, and Lei Gong
Opt. Express 26(2) 1796-1808 (2018)

Photochromic polyurethanes for rewritable CGHs in optical testing

Giorgio Pariani, Chiara Bertarelli, Giovanni Dassa, Andrea Bianco, and Giuseppe Zerbi
Opt. Express 19(5) 4536-4541 (2011)

References

  • View by:
  • |
  • |
  • |

  1. C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43(11), 2534–2540 (2004).
    [Crossref]
  2. B. R. Brown and A. W. Lohmann, “Computer-generated Binary Holograms,” IBM J. Res. Develop. 13(2), 160–168 (1969).
    [Crossref]
  3. Y.-T. Lu, C.-S. Chu, and H.-Y. Lin, “Characterization of the gray-scale photolithography with high-resolution gray steps for precise fabrication of diffrative optics,” Opt. Eng. 43(11), 2666–2670 (2004).
    [Crossref]
  4. N. Luo, Y. Gao, S. He, and Y. Rao, “Research on exposure model for DMD-based digital gray-tone mask,” Proc. SPIE 7657, 765712 (2010).
  5. F. Zamkotsian, P. Spano, P. Lanzoni, H. Ramarijaona, M. Moschetti, and M. Riva, “BATMAN: a DMD-based Multi-Object Spectrograph on Galileo telescope,” in Proceedings of the SPIE conference on Astronomical Instrumentation (2014).
  6. R. S. Nesbitt, S. L. Smith, R. A. Molnar, and S. A. Benton, “Holographic recording using a digital micromirror device,” Proc. SPIE 3637, 343767 (1999).
    [Crossref]
  7. M.-C. Park, B.-R. Lee, J.-Y. Son, and O. Chernyshov, “Properties of DMDs for holographic displays,” J. Mod. Opt. 62(19), 1600–1607 (2015).
    [Crossref]
  8. C. Bertarelli, A. Bianco, R. Castagna, and G. Pariani, “Photochromism into optics: Opportunities to develop light-triggered optical elements,” J. Photochem. Photobiol. 12(2), 106–125 (2011).
    [Crossref]
  9. N. Xie, Y. Chen, B. Yao, and M. Lie, “Photochromic diarylethene for reversible holographic recording,” Mater. Sci. Eng. B 138(3), 210–213 (2007).
    [Crossref]
  10. Y. Chen, C. Wang, M. Fan, B. Yao, and N. Menke, “Photochromic fulgide for holographic recording,” Opt. Mater. 26(1), 75–77 (2004).
    [Crossref]
  11. Y. Kobayashi and J. Abe, “Real-time dynamic hologram of a 3D object with fast photochromic molecules,” Adv. Opt. Mater. 4(9), 1354–1357 (2016).
    [Crossref]
  12. N. Ishii, T. Kato, and J. Abe, “A real-time dynamic holographic material using a fast photochromic molecule,” Sci. Rep. 2, 819 (2012).
    [Crossref] [PubMed]
  13. G. Pariani, C. Bertarelli, G. Dassa, A. Bianco, and G. Zerbi, “Photochromic polyurethanes for rewritable CGHs in optical testing,” Opt. Express 19(5), 4536–4541 (2011).
    [Crossref] [PubMed]
  14. G. Pariani, A. Bianco, R. Castagna, and C. Bertarelli, “Kinetics of photochromic conversion at the solid state: Quantum yield of dithienylethene-based films,” J. Phys. Chem. A 115(44), 12184–12193 (2011).
    [Crossref] [PubMed]
  15. F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048x1080 DMD,” in Proceedings of the SPIE conference on MOEMS 2011 (2011).
  16. G. Pariani, R. Castagna, G. Dassa, S. Hermes, C. Vailati, A. Bianco, and C. Bertarelli, “Diarylethene-based photochromic polyurethanes for multistate optical memories,” J. Mater. Chem. 21(35), 13223–13231 (2011).
    [Crossref]
  17. L. Denis, PhD Thesis, “Traitement et analyse quantitative d'hologrammes numériques. Interface homme-machine, ” Université Jean Monnet - Saint-Etienne, France (2006), hal.archives-ouvertes.fr/tel-00282661 .

2016 (1)

Y. Kobayashi and J. Abe, “Real-time dynamic hologram of a 3D object with fast photochromic molecules,” Adv. Opt. Mater. 4(9), 1354–1357 (2016).
[Crossref]

2015 (1)

M.-C. Park, B.-R. Lee, J.-Y. Son, and O. Chernyshov, “Properties of DMDs for holographic displays,” J. Mod. Opt. 62(19), 1600–1607 (2015).
[Crossref]

2012 (1)

N. Ishii, T. Kato, and J. Abe, “A real-time dynamic holographic material using a fast photochromic molecule,” Sci. Rep. 2, 819 (2012).
[Crossref] [PubMed]

2011 (4)

G. Pariani, C. Bertarelli, G. Dassa, A. Bianco, and G. Zerbi, “Photochromic polyurethanes for rewritable CGHs in optical testing,” Opt. Express 19(5), 4536–4541 (2011).
[Crossref] [PubMed]

G. Pariani, A. Bianco, R. Castagna, and C. Bertarelli, “Kinetics of photochromic conversion at the solid state: Quantum yield of dithienylethene-based films,” J. Phys. Chem. A 115(44), 12184–12193 (2011).
[Crossref] [PubMed]

G. Pariani, R. Castagna, G. Dassa, S. Hermes, C. Vailati, A. Bianco, and C. Bertarelli, “Diarylethene-based photochromic polyurethanes for multistate optical memories,” J. Mater. Chem. 21(35), 13223–13231 (2011).
[Crossref]

C. Bertarelli, A. Bianco, R. Castagna, and G. Pariani, “Photochromism into optics: Opportunities to develop light-triggered optical elements,” J. Photochem. Photobiol. 12(2), 106–125 (2011).
[Crossref]

2010 (1)

N. Luo, Y. Gao, S. He, and Y. Rao, “Research on exposure model for DMD-based digital gray-tone mask,” Proc. SPIE 7657, 765712 (2010).

2007 (1)

N. Xie, Y. Chen, B. Yao, and M. Lie, “Photochromic diarylethene for reversible holographic recording,” Mater. Sci. Eng. B 138(3), 210–213 (2007).
[Crossref]

2004 (3)

Y. Chen, C. Wang, M. Fan, B. Yao, and N. Menke, “Photochromic fulgide for holographic recording,” Opt. Mater. 26(1), 75–77 (2004).
[Crossref]

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43(11), 2534–2540 (2004).
[Crossref]

Y.-T. Lu, C.-S. Chu, and H.-Y. Lin, “Characterization of the gray-scale photolithography with high-resolution gray steps for precise fabrication of diffrative optics,” Opt. Eng. 43(11), 2666–2670 (2004).
[Crossref]

1999 (1)

R. S. Nesbitt, S. L. Smith, R. A. Molnar, and S. A. Benton, “Holographic recording using a digital micromirror device,” Proc. SPIE 3637, 343767 (1999).
[Crossref]

1969 (1)

B. R. Brown and A. W. Lohmann, “Computer-generated Binary Holograms,” IBM J. Res. Develop. 13(2), 160–168 (1969).
[Crossref]

Abe, J.

Y. Kobayashi and J. Abe, “Real-time dynamic hologram of a 3D object with fast photochromic molecules,” Adv. Opt. Mater. 4(9), 1354–1357 (2016).
[Crossref]

N. Ishii, T. Kato, and J. Abe, “A real-time dynamic holographic material using a fast photochromic molecule,” Sci. Rep. 2, 819 (2012).
[Crossref] [PubMed]

Barette, R.

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048x1080 DMD,” in Proceedings of the SPIE conference on MOEMS 2011 (2011).

Benton, S. A.

R. S. Nesbitt, S. L. Smith, R. A. Molnar, and S. A. Benton, “Holographic recording using a digital micromirror device,” Proc. SPIE 3637, 343767 (1999).
[Crossref]

Bertarelli, C.

C. Bertarelli, A. Bianco, R. Castagna, and G. Pariani, “Photochromism into optics: Opportunities to develop light-triggered optical elements,” J. Photochem. Photobiol. 12(2), 106–125 (2011).
[Crossref]

G. Pariani, A. Bianco, R. Castagna, and C. Bertarelli, “Kinetics of photochromic conversion at the solid state: Quantum yield of dithienylethene-based films,” J. Phys. Chem. A 115(44), 12184–12193 (2011).
[Crossref] [PubMed]

G. Pariani, R. Castagna, G. Dassa, S. Hermes, C. Vailati, A. Bianco, and C. Bertarelli, “Diarylethene-based photochromic polyurethanes for multistate optical memories,” J. Mater. Chem. 21(35), 13223–13231 (2011).
[Crossref]

G. Pariani, C. Bertarelli, G. Dassa, A. Bianco, and G. Zerbi, “Photochromic polyurethanes for rewritable CGHs in optical testing,” Opt. Express 19(5), 4536–4541 (2011).
[Crossref] [PubMed]

Bianco, A.

G. Pariani, C. Bertarelli, G. Dassa, A. Bianco, and G. Zerbi, “Photochromic polyurethanes for rewritable CGHs in optical testing,” Opt. Express 19(5), 4536–4541 (2011).
[Crossref] [PubMed]

G. Pariani, A. Bianco, R. Castagna, and C. Bertarelli, “Kinetics of photochromic conversion at the solid state: Quantum yield of dithienylethene-based films,” J. Phys. Chem. A 115(44), 12184–12193 (2011).
[Crossref] [PubMed]

C. Bertarelli, A. Bianco, R. Castagna, and G. Pariani, “Photochromism into optics: Opportunities to develop light-triggered optical elements,” J. Photochem. Photobiol. 12(2), 106–125 (2011).
[Crossref]

G. Pariani, R. Castagna, G. Dassa, S. Hermes, C. Vailati, A. Bianco, and C. Bertarelli, “Diarylethene-based photochromic polyurethanes for multistate optical memories,” J. Mater. Chem. 21(35), 13223–13231 (2011).
[Crossref]

Brown, B. R.

B. R. Brown and A. W. Lohmann, “Computer-generated Binary Holograms,” IBM J. Res. Develop. 13(2), 160–168 (1969).
[Crossref]

Castagna, R.

C. Bertarelli, A. Bianco, R. Castagna, and G. Pariani, “Photochromism into optics: Opportunities to develop light-triggered optical elements,” J. Photochem. Photobiol. 12(2), 106–125 (2011).
[Crossref]

G. Pariani, A. Bianco, R. Castagna, and C. Bertarelli, “Kinetics of photochromic conversion at the solid state: Quantum yield of dithienylethene-based films,” J. Phys. Chem. A 115(44), 12184–12193 (2011).
[Crossref] [PubMed]

G. Pariani, R. Castagna, G. Dassa, S. Hermes, C. Vailati, A. Bianco, and C. Bertarelli, “Diarylethene-based photochromic polyurethanes for multistate optical memories,” J. Mater. Chem. 21(35), 13223–13231 (2011).
[Crossref]

Chen, Y.

N. Xie, Y. Chen, B. Yao, and M. Lie, “Photochromic diarylethene for reversible holographic recording,” Mater. Sci. Eng. B 138(3), 210–213 (2007).
[Crossref]

Y. Chen, C. Wang, M. Fan, B. Yao, and N. Menke, “Photochromic fulgide for holographic recording,” Opt. Mater. 26(1), 75–77 (2004).
[Crossref]

Chernyshov, O.

M.-C. Park, B.-R. Lee, J.-Y. Son, and O. Chernyshov, “Properties of DMDs for holographic displays,” J. Mod. Opt. 62(19), 1600–1607 (2015).
[Crossref]

Chu, C.-S.

Y.-T. Lu, C.-S. Chu, and H.-Y. Lin, “Characterization of the gray-scale photolithography with high-resolution gray steps for precise fabrication of diffrative optics,” Opt. Eng. 43(11), 2666–2670 (2004).
[Crossref]

Dassa, G.

G. Pariani, R. Castagna, G. Dassa, S. Hermes, C. Vailati, A. Bianco, and C. Bertarelli, “Diarylethene-based photochromic polyurethanes for multistate optical memories,” J. Mater. Chem. 21(35), 13223–13231 (2011).
[Crossref]

G. Pariani, C. Bertarelli, G. Dassa, A. Bianco, and G. Zerbi, “Photochromic polyurethanes for rewritable CGHs in optical testing,” Opt. Express 19(5), 4536–4541 (2011).
[Crossref] [PubMed]

Duvet, L.

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048x1080 DMD,” in Proceedings of the SPIE conference on MOEMS 2011 (2011).

Fabron, C.

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048x1080 DMD,” in Proceedings of the SPIE conference on MOEMS 2011 (2011).

Fan, M.

Y. Chen, C. Wang, M. Fan, B. Yao, and N. Menke, “Photochromic fulgide for holographic recording,” Opt. Mater. 26(1), 75–77 (2004).
[Crossref]

Gao, Y.

N. Luo, Y. Gao, S. He, and Y. Rao, “Research on exposure model for DMD-based digital gray-tone mask,” Proc. SPIE 7657, 765712 (2010).

Grassi, E.

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048x1080 DMD,” in Proceedings of the SPIE conference on MOEMS 2011 (2011).

He, S.

N. Luo, Y. Gao, S. He, and Y. Rao, “Research on exposure model for DMD-based digital gray-tone mask,” Proc. SPIE 7657, 765712 (2010).

Hermes, S.

G. Pariani, R. Castagna, G. Dassa, S. Hermes, C. Vailati, A. Bianco, and C. Bertarelli, “Diarylethene-based photochromic polyurethanes for multistate optical memories,” J. Mater. Chem. 21(35), 13223–13231 (2011).
[Crossref]

Ishii, N.

N. Ishii, T. Kato, and J. Abe, “A real-time dynamic holographic material using a fast photochromic molecule,” Sci. Rep. 2, 819 (2012).
[Crossref] [PubMed]

Kato, T.

N. Ishii, T. Kato, and J. Abe, “A real-time dynamic holographic material using a fast photochromic molecule,” Sci. Rep. 2, 819 (2012).
[Crossref] [PubMed]

Kobayashi, Y.

Y. Kobayashi and J. Abe, “Real-time dynamic hologram of a 3D object with fast photochromic molecules,” Adv. Opt. Mater. 4(9), 1354–1357 (2016).
[Crossref]

Lanzoni, P.

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048x1080 DMD,” in Proceedings of the SPIE conference on MOEMS 2011 (2011).

F. Zamkotsian, P. Spano, P. Lanzoni, H. Ramarijaona, M. Moschetti, and M. Riva, “BATMAN: a DMD-based Multi-Object Spectrograph on Galileo telescope,” in Proceedings of the SPIE conference on Astronomical Instrumentation (2014).

Lee, B.-R.

M.-C. Park, B.-R. Lee, J.-Y. Son, and O. Chernyshov, “Properties of DMDs for holographic displays,” J. Mod. Opt. 62(19), 1600–1607 (2015).
[Crossref]

Lie, M.

N. Xie, Y. Chen, B. Yao, and M. Lie, “Photochromic diarylethene for reversible holographic recording,” Mater. Sci. Eng. B 138(3), 210–213 (2007).
[Crossref]

Lin, H.-Y.

Y.-T. Lu, C.-S. Chu, and H.-Y. Lin, “Characterization of the gray-scale photolithography with high-resolution gray steps for precise fabrication of diffrative optics,” Opt. Eng. 43(11), 2666–2670 (2004).
[Crossref]

Lohmann, A. W.

B. R. Brown and A. W. Lohmann, “Computer-generated Binary Holograms,” IBM J. Res. Develop. 13(2), 160–168 (1969).
[Crossref]

Lu, Y.-T.

Y.-T. Lu, C.-S. Chu, and H.-Y. Lin, “Characterization of the gray-scale photolithography with high-resolution gray steps for precise fabrication of diffrative optics,” Opt. Eng. 43(11), 2666–2670 (2004).
[Crossref]

Luo, N.

N. Luo, Y. Gao, S. He, and Y. Rao, “Research on exposure model for DMD-based digital gray-tone mask,” Proc. SPIE 7657, 765712 (2010).

Marchand, L.

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048x1080 DMD,” in Proceedings of the SPIE conference on MOEMS 2011 (2011).

Menke, N.

Y. Chen, C. Wang, M. Fan, B. Yao, and N. Menke, “Photochromic fulgide for holographic recording,” Opt. Mater. 26(1), 75–77 (2004).
[Crossref]

Molnar, R. A.

R. S. Nesbitt, S. L. Smith, R. A. Molnar, and S. A. Benton, “Holographic recording using a digital micromirror device,” Proc. SPIE 3637, 343767 (1999).
[Crossref]

Moschetti, M.

F. Zamkotsian, P. Spano, P. Lanzoni, H. Ramarijaona, M. Moschetti, and M. Riva, “BATMAN: a DMD-based Multi-Object Spectrograph on Galileo telescope,” in Proceedings of the SPIE conference on Astronomical Instrumentation (2014).

Nesbitt, R. S.

R. S. Nesbitt, S. L. Smith, R. A. Molnar, and S. A. Benton, “Holographic recording using a digital micromirror device,” Proc. SPIE 3637, 343767 (1999).
[Crossref]

Osten, W.

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43(11), 2534–2540 (2004).
[Crossref]

Pariani, G.

C. Bertarelli, A. Bianco, R. Castagna, and G. Pariani, “Photochromism into optics: Opportunities to develop light-triggered optical elements,” J. Photochem. Photobiol. 12(2), 106–125 (2011).
[Crossref]

G. Pariani, A. Bianco, R. Castagna, and C. Bertarelli, “Kinetics of photochromic conversion at the solid state: Quantum yield of dithienylethene-based films,” J. Phys. Chem. A 115(44), 12184–12193 (2011).
[Crossref] [PubMed]

G. Pariani, R. Castagna, G. Dassa, S. Hermes, C. Vailati, A. Bianco, and C. Bertarelli, “Diarylethene-based photochromic polyurethanes for multistate optical memories,” J. Mater. Chem. 21(35), 13223–13231 (2011).
[Crossref]

G. Pariani, C. Bertarelli, G. Dassa, A. Bianco, and G. Zerbi, “Photochromic polyurethanes for rewritable CGHs in optical testing,” Opt. Express 19(5), 4536–4541 (2011).
[Crossref] [PubMed]

Park, M.-C.

M.-C. Park, B.-R. Lee, J.-Y. Son, and O. Chernyshov, “Properties of DMDs for holographic displays,” J. Mod. Opt. 62(19), 1600–1607 (2015).
[Crossref]

Pruss, C.

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43(11), 2534–2540 (2004).
[Crossref]

Ramarijaona, H.

F. Zamkotsian, P. Spano, P. Lanzoni, H. Ramarijaona, M. Moschetti, and M. Riva, “BATMAN: a DMD-based Multi-Object Spectrograph on Galileo telescope,” in Proceedings of the SPIE conference on Astronomical Instrumentation (2014).

Rao, Y.

N. Luo, Y. Gao, S. He, and Y. Rao, “Research on exposure model for DMD-based digital gray-tone mask,” Proc. SPIE 7657, 765712 (2010).

Reichelt, S.

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43(11), 2534–2540 (2004).
[Crossref]

Riva, M.

F. Zamkotsian, P. Spano, P. Lanzoni, H. Ramarijaona, M. Moschetti, and M. Riva, “BATMAN: a DMD-based Multi-Object Spectrograph on Galileo telescope,” in Proceedings of the SPIE conference on Astronomical Instrumentation (2014).

Smith, S. L.

R. S. Nesbitt, S. L. Smith, R. A. Molnar, and S. A. Benton, “Holographic recording using a digital micromirror device,” Proc. SPIE 3637, 343767 (1999).
[Crossref]

Son, J.-Y.

M.-C. Park, B.-R. Lee, J.-Y. Son, and O. Chernyshov, “Properties of DMDs for holographic displays,” J. Mod. Opt. 62(19), 1600–1607 (2015).
[Crossref]

Spano, P.

F. Zamkotsian, P. Spano, P. Lanzoni, H. Ramarijaona, M. Moschetti, and M. Riva, “BATMAN: a DMD-based Multi-Object Spectrograph on Galileo telescope,” in Proceedings of the SPIE conference on Astronomical Instrumentation (2014).

Tangen, K.

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048x1080 DMD,” in Proceedings of the SPIE conference on MOEMS 2011 (2011).

Tiziani, H. J.

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43(11), 2534–2540 (2004).
[Crossref]

Vailati, C.

G. Pariani, R. Castagna, G. Dassa, S. Hermes, C. Vailati, A. Bianco, and C. Bertarelli, “Diarylethene-based photochromic polyurethanes for multistate optical memories,” J. Mater. Chem. 21(35), 13223–13231 (2011).
[Crossref]

Valenziano, L.

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048x1080 DMD,” in Proceedings of the SPIE conference on MOEMS 2011 (2011).

Wang, C.

Y. Chen, C. Wang, M. Fan, B. Yao, and N. Menke, “Photochromic fulgide for holographic recording,” Opt. Mater. 26(1), 75–77 (2004).
[Crossref]

Xie, N.

N. Xie, Y. Chen, B. Yao, and M. Lie, “Photochromic diarylethene for reversible holographic recording,” Mater. Sci. Eng. B 138(3), 210–213 (2007).
[Crossref]

Yao, B.

N. Xie, Y. Chen, B. Yao, and M. Lie, “Photochromic diarylethene for reversible holographic recording,” Mater. Sci. Eng. B 138(3), 210–213 (2007).
[Crossref]

Y. Chen, C. Wang, M. Fan, B. Yao, and N. Menke, “Photochromic fulgide for holographic recording,” Opt. Mater. 26(1), 75–77 (2004).
[Crossref]

Zamkotsian, F.

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048x1080 DMD,” in Proceedings of the SPIE conference on MOEMS 2011 (2011).

F. Zamkotsian, P. Spano, P. Lanzoni, H. Ramarijaona, M. Moschetti, and M. Riva, “BATMAN: a DMD-based Multi-Object Spectrograph on Galileo telescope,” in Proceedings of the SPIE conference on Astronomical Instrumentation (2014).

Zerbi, G.

Adv. Opt. Mater. (1)

Y. Kobayashi and J. Abe, “Real-time dynamic hologram of a 3D object with fast photochromic molecules,” Adv. Opt. Mater. 4(9), 1354–1357 (2016).
[Crossref]

IBM J. Res. Develop. (1)

B. R. Brown and A. W. Lohmann, “Computer-generated Binary Holograms,” IBM J. Res. Develop. 13(2), 160–168 (1969).
[Crossref]

J. Mater. Chem. (1)

G. Pariani, R. Castagna, G. Dassa, S. Hermes, C. Vailati, A. Bianco, and C. Bertarelli, “Diarylethene-based photochromic polyurethanes for multistate optical memories,” J. Mater. Chem. 21(35), 13223–13231 (2011).
[Crossref]

J. Mod. Opt. (1)

M.-C. Park, B.-R. Lee, J.-Y. Son, and O. Chernyshov, “Properties of DMDs for holographic displays,” J. Mod. Opt. 62(19), 1600–1607 (2015).
[Crossref]

J. Photochem. Photobiol. (1)

C. Bertarelli, A. Bianco, R. Castagna, and G. Pariani, “Photochromism into optics: Opportunities to develop light-triggered optical elements,” J. Photochem. Photobiol. 12(2), 106–125 (2011).
[Crossref]

J. Phys. Chem. A (1)

G. Pariani, A. Bianco, R. Castagna, and C. Bertarelli, “Kinetics of photochromic conversion at the solid state: Quantum yield of dithienylethene-based films,” J. Phys. Chem. A 115(44), 12184–12193 (2011).
[Crossref] [PubMed]

Mater. Sci. Eng. B (1)

N. Xie, Y. Chen, B. Yao, and M. Lie, “Photochromic diarylethene for reversible holographic recording,” Mater. Sci. Eng. B 138(3), 210–213 (2007).
[Crossref]

Opt. Eng. (2)

Y.-T. Lu, C.-S. Chu, and H.-Y. Lin, “Characterization of the gray-scale photolithography with high-resolution gray steps for precise fabrication of diffrative optics,” Opt. Eng. 43(11), 2666–2670 (2004).
[Crossref]

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43(11), 2534–2540 (2004).
[Crossref]

Opt. Express (1)

Opt. Mater. (1)

Y. Chen, C. Wang, M. Fan, B. Yao, and N. Menke, “Photochromic fulgide for holographic recording,” Opt. Mater. 26(1), 75–77 (2004).
[Crossref]

Proc. SPIE (2)

N. Luo, Y. Gao, S. He, and Y. Rao, “Research on exposure model for DMD-based digital gray-tone mask,” Proc. SPIE 7657, 765712 (2010).

R. S. Nesbitt, S. L. Smith, R. A. Molnar, and S. A. Benton, “Holographic recording using a digital micromirror device,” Proc. SPIE 3637, 343767 (1999).
[Crossref]

Sci. Rep. (1)

N. Ishii, T. Kato, and J. Abe, “A real-time dynamic holographic material using a fast photochromic molecule,” Sci. Rep. 2, 819 (2012).
[Crossref] [PubMed]

Other (3)

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048x1080 DMD,” in Proceedings of the SPIE conference on MOEMS 2011 (2011).

L. Denis, PhD Thesis, “Traitement et analyse quantitative d'hologrammes numériques. Interface homme-machine, ” Université Jean Monnet - Saint-Etienne, France (2006), hal.archives-ouvertes.fr/tel-00282661 .

F. Zamkotsian, P. Spano, P. Lanzoni, H. Ramarijaona, M. Moschetti, and M. Riva, “BATMAN: a DMD-based Multi-Object Spectrograph on Galileo telescope,” in Proceedings of the SPIE conference on Astronomical Instrumentation (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Set-up for recording CGHs; it is based on an illumination unit towards the DMD, an imaging optical system based on a 1:1 magnification Offner relay from the DMD plane to the CGH plane, and a post-CGH imaging system. In red, the path of the optical beam.
Fig. 2
Fig. 2 (a) Original image to be encoded; a 200x200pixels “Z” (b) Magnitude of the 720x720 pixels calculated continuous complex CGH for an object dimension of 2x2mm2 at a focus of 2m.
Fig. 3
Fig. 3 (a) 720x720 pixels calculated binary CGH of a 200x200 pixels “Z” of 2x2mm2 at a focus of 2m (b) Simulated reconstruction of the object.
Fig. 4
Fig. 4 (a) 720x720 pixels calculated stepped CGH of a 200x200 pixels “Z” of 2x2mm2 at a focus of 2mn (b) Simulated reconstruction of the object.
Fig. 5
Fig. 5 (a) Close up view of the calibration pattern written on the photochromic substrate (b) close up view of a 720x720 pixels recorded binary CGH of a “Z” (10x10 pixels, 2x2mm2 at a focus of 2m) on the same photochromic substrate after the UV initialization.
Fig. 6
Fig. 6 (a) Illumination law of the photochromic plate (b) Exposure time of each mask for a CGH stepped in 20 levels (c) Linearity of the command law.
Fig. 7
Fig. 7 (a) 720x720 pixels recorded stepped CGH of a 200x200 pixels “Z” of 2x2mm2 at a focus of 2m stepped in 20 levels (b) Magnification of a part of the written CGH.
Fig. 8
Fig. 8 Reconstruction of the recorded stepped CGH of a 200x200 pixels “Z” of 2x2mm at a focus of 2m and stepped in 20 levels.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A z ( x,y )=  A 0 e ikz t* h z   where   h z ( x,y )=  1 iλz e (iπ x 2 +  y 2 λz ) .

Metrics