Abstract

The fluorescence spectra of titanium doped sapphire (Ti:Sapphire) crystals were measured for temperature ranging from 300K to 77K. The resulting gain cross-section line shapes were calculated and used in a three-dimensional amplification model to illustrate the importance of the precise knowledge of these fluorescence spectra for the design of cryogenic cooled Ti:Sapphire based chirped-pulse laser amplifiers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of a thin disk amplifier with extraction during pumping for high peak and average power Ti:Sa systems (EDP-TD)

Vladimir Chvykov, Roland S. Nagymihaly, Huabao Cao, Mikhail Kalashnikov, and Karoly Osvay
Opt. Express 24(4) 3721-3733 (2016)

Design of a high gain single stage and single pass Nd:YVO4 passive picosecond amplifier

Xavier Délen, François Balembois, and Patrick Georges
J. Opt. Soc. Am. B 29(9) 2339-2346 (2012)

Temperature dependent emission and absorption cross section of Yb3+ doped yttrium lanthanum oxide (YLO) ceramic and its application in diode pumped amplifier

Saumyabrata Banerjee, Joerg Koerner, Mathias Siebold, Qiuhong Yang, Klaus Ertel, Paul D. Mason, P. Jonathan Phillips, Markus Loeser, Haojia Zhang, Shenzhou Lu, Joachim Hein, Ulrich Schramm, Malte C. Kaluza, and John L. Collier
Opt. Express 21(S4) A726-A734 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
    [Crossref]
  2. J. Seres, A. Müller, E. Seres, K. O’Keeffe, M. Lenner, R. F. Herzog, D. Kaplan, C. Spielmann, and F. Krausz, “Sub-10-fs, terawatt-scale Ti:sapphire laser system,” Opt. Lett. 28(19), 1832–1834 (2003).
    [Crossref] [PubMed]
  3. S.-W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, and V. Yanovsky, “Generation and characterization of the highest laser intensities (10(22) W/cm2),” Opt. Lett. 29(24), 2837–2839 (2004).
    [Crossref] [PubMed]
  4. M. Aoyama, K. Yamakawa, Y. Akahane, J. Ma, N. Inoue, H. Ueda, and H. Kiriyama, “0.85-PW, 33-fs Ti:sapphire laser,” Opt. Lett. 28(17), 1594–1596 (2003).
    [Crossref] [PubMed]
  5. V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, “Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate,” Opt. Express 16(3), 2109–2114 (2008).
    [Crossref] [PubMed]
  6. J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, “0.1 Hz 1.0 PW Ti:sapphire laser,” Opt. Lett. 35(18), 3021–3023 (2010).
    [Crossref] [PubMed]
  7. S. Backus, R. Bartels, S. Thompson, R. Dollinger, H. C. Kapteyn, and M. M. Murnane, “High-efficiency, single-stage 7-kHz high-average-power ultrafast laser system,” Opt. Lett. 26(7), 465–467 (2001).
    [Crossref] [PubMed]
  8. M. Pittman, S. Ferré, J.-P. Rousseau, L. Notebaert, J.-P. Chambaret, and G. Cheriaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
    [Crossref]
  9. V. Ramanathan, J. Lee, S. Xu, X. Wang, L. Williams, W. Malphurs, and D. H. Reitze, “Analysis of thermal aberrations in a high average power single-stage Ti:sapphire regenerative chirped pulse amplifier: Simulation and experiment,” Rev. Scient. Instrum. 77, 103103 (2006).
  10. T. A. Planchon, W. Amir, C. Childress, J. A. Squier, and C. G. Durfee, “Measurement of pump-induced transient lensing in a cryogenically-cooled high average power Ti:sapphire amplifier,” Opt. Express 16(23), 18557–18564 (2008).
    [Crossref] [PubMed]
  11. H. Eilers, U. Hömmerich, and W. M. Yen, “Temperature-dependant beam-deflection spectroscopy of Ti3+ - doped sapphire,” J. Opt. Soc. Am. B 10(4), 584–586 (1993).
    [Crossref]
  12. S. Burghartz and B. Schulz, “Thermophysical properties of sapphire, AIN and MgAl2O4 down to 70K,” J. Nucl. Mater. 212–215, 1065–1068 (1994).
    [Crossref]
  13. A. C. DeFranzo and B. G. Pazol, “Index of refraction measurement on sapphire at low temperatures and visible wavelengths,” Appl. Opt. 32, 2224–2234 (1993).
  14. C. E. Byvik and A. M. Buoncristiani, “Analysis of Vibronic Transitions in Titanium Doped Sapphire Using the Temperature of the Fluorescence Spectra,” J. Quantum Electron. 21(10), 1619–1624 (1985).
    [Crossref]
  15. P. Albers, E. Stark, and G. Huber, “Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,” JOSA B 3(1), 134–139 (1986).
    [Crossref]
  16. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3(1), 125–133 (1986).
    [Crossref]
  17. B. F. Gächter and J. A. Koningstein, “Zero phonon transitions and interacting Jahn-Teller phonon energies from the fluorescence spectrum of alpha-Al2O3:Ti3+,” J. Chem. Phys. 60(5), 2003–2006 (1974).
    [Crossref]
  18. P. Lacovara, L. Esterowitz, and M. Kokta, “Growth, Spectroscopy, and Lasing of Titanium-Doped Sapphire,” J. Quantum Electron. 21(10), 1614–1618 (1985).
    [Crossref]
  19. R. Powell, J. Caslavsky, Z. AlShaieb, and J. M. Bowen, “Growth, characterization, and optical spectroscopy of Al2O3:Ti3+,” J. Appl. Phys. 58(6), 2331–2336 (1985).
    [Crossref]
  20. L. G. DeShazer, J. M. Eggleston, and K. W. Kangas, “Oscillator and amplifier performance of Ti:Sapphire,” in Tunable Solid-State Lasers II (Springer, 1986) pp. 228–234.
  21. A. E. Siegman, Lasers, (University Science Books, 1986), Chaps. 3 and 7.
  22. L. M. Frantz and J. S. Nodvik, “Theory of Pulse Propagation in a laser amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
    [Crossref]
  23. R. Bellman, G. Birnbaum, and W. G. Wagner, “Transmission of monochromatic radiation in a two-level material,” J. Appl. Phys. 34(4), 780–782 (1963).
    [Crossref]
  24. W. H. Lowdermilk and J. E. Murray, “The multipass amplifier: Theory and numerical analysis,” J. Appl. Phys. 51(5), 2436–2444 (1980).
    [Crossref]
  25. C. Le Blanc, P. Curley, and F. Salin, “Gain-narrowing and gain-shifting of ultra-short pulses in Ti:sapphire amplifiers,” Opt. Commun. 131(4-6), 391–398 (1996).
    [Crossref]
  26. Y. H. Cha, Y. I. Kang, and C. H. Nam, “Generation of a broad amplified spectrum in a femtosecond terawatt Ti:sapphire laser by a long-wavelength injection method,” J. Opt. Soc. Am. B 16(8), 1220–1223 (1999).
    [Crossref]
  27. T. A. Planchon, F. Burgy, J. P. Rousseau, and J. P. Chambaret, “3D Modeling of amplification processes in CPA laser amplifiers,” Appl. Phys. B 80(6), 661–667 (2005).
    [Crossref]

2010 (1)

2008 (2)

2006 (1)

V. Ramanathan, J. Lee, S. Xu, X. Wang, L. Williams, W. Malphurs, and D. H. Reitze, “Analysis of thermal aberrations in a high average power single-stage Ti:sapphire regenerative chirped pulse amplifier: Simulation and experiment,” Rev. Scient. Instrum. 77, 103103 (2006).

2005 (1)

T. A. Planchon, F. Burgy, J. P. Rousseau, and J. P. Chambaret, “3D Modeling of amplification processes in CPA laser amplifiers,” Appl. Phys. B 80(6), 661–667 (2005).
[Crossref]

2004 (1)

2003 (2)

2002 (1)

M. Pittman, S. Ferré, J.-P. Rousseau, L. Notebaert, J.-P. Chambaret, and G. Cheriaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[Crossref]

2001 (1)

1999 (1)

1998 (1)

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[Crossref]

1996 (1)

C. Le Blanc, P. Curley, and F. Salin, “Gain-narrowing and gain-shifting of ultra-short pulses in Ti:sapphire amplifiers,” Opt. Commun. 131(4-6), 391–398 (1996).
[Crossref]

1994 (1)

S. Burghartz and B. Schulz, “Thermophysical properties of sapphire, AIN and MgAl2O4 down to 70K,” J. Nucl. Mater. 212–215, 1065–1068 (1994).
[Crossref]

1993 (2)

1986 (2)

P. Albers, E. Stark, and G. Huber, “Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,” JOSA B 3(1), 134–139 (1986).
[Crossref]

P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3(1), 125–133 (1986).
[Crossref]

1985 (3)

C. E. Byvik and A. M. Buoncristiani, “Analysis of Vibronic Transitions in Titanium Doped Sapphire Using the Temperature of the Fluorescence Spectra,” J. Quantum Electron. 21(10), 1619–1624 (1985).
[Crossref]

P. Lacovara, L. Esterowitz, and M. Kokta, “Growth, Spectroscopy, and Lasing of Titanium-Doped Sapphire,” J. Quantum Electron. 21(10), 1614–1618 (1985).
[Crossref]

R. Powell, J. Caslavsky, Z. AlShaieb, and J. M. Bowen, “Growth, characterization, and optical spectroscopy of Al2O3:Ti3+,” J. Appl. Phys. 58(6), 2331–2336 (1985).
[Crossref]

1980 (1)

W. H. Lowdermilk and J. E. Murray, “The multipass amplifier: Theory and numerical analysis,” J. Appl. Phys. 51(5), 2436–2444 (1980).
[Crossref]

1974 (1)

B. F. Gächter and J. A. Koningstein, “Zero phonon transitions and interacting Jahn-Teller phonon energies from the fluorescence spectrum of alpha-Al2O3:Ti3+,” J. Chem. Phys. 60(5), 2003–2006 (1974).
[Crossref]

1963 (2)

L. M. Frantz and J. S. Nodvik, “Theory of Pulse Propagation in a laser amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[Crossref]

R. Bellman, G. Birnbaum, and W. G. Wagner, “Transmission of monochromatic radiation in a two-level material,” J. Appl. Phys. 34(4), 780–782 (1963).
[Crossref]

Akahane, Y.

Albers, P.

P. Albers, E. Stark, and G. Huber, “Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,” JOSA B 3(1), 134–139 (1986).
[Crossref]

AlShaieb, Z.

R. Powell, J. Caslavsky, Z. AlShaieb, and J. M. Bowen, “Growth, characterization, and optical spectroscopy of Al2O3:Ti3+,” J. Appl. Phys. 58(6), 2331–2336 (1985).
[Crossref]

Amir, W.

Aoyama, M.

Backus, S.

Bahk, S.-W.

Bartels, R.

Bellman, R.

R. Bellman, G. Birnbaum, and W. G. Wagner, “Transmission of monochromatic radiation in a two-level material,” J. Appl. Phys. 34(4), 780–782 (1963).
[Crossref]

Birnbaum, G.

R. Bellman, G. Birnbaum, and W. G. Wagner, “Transmission of monochromatic radiation in a two-level material,” J. Appl. Phys. 34(4), 780–782 (1963).
[Crossref]

Bowen, J. M.

R. Powell, J. Caslavsky, Z. AlShaieb, and J. M. Bowen, “Growth, characterization, and optical spectroscopy of Al2O3:Ti3+,” J. Appl. Phys. 58(6), 2331–2336 (1985).
[Crossref]

Buoncristiani, A. M.

C. E. Byvik and A. M. Buoncristiani, “Analysis of Vibronic Transitions in Titanium Doped Sapphire Using the Temperature of the Fluorescence Spectra,” J. Quantum Electron. 21(10), 1619–1624 (1985).
[Crossref]

Burghartz, S.

S. Burghartz and B. Schulz, “Thermophysical properties of sapphire, AIN and MgAl2O4 down to 70K,” J. Nucl. Mater. 212–215, 1065–1068 (1994).
[Crossref]

Burgy, F.

T. A. Planchon, F. Burgy, J. P. Rousseau, and J. P. Chambaret, “3D Modeling of amplification processes in CPA laser amplifiers,” Appl. Phys. B 80(6), 661–667 (2005).
[Crossref]

Byvik, C. E.

C. E. Byvik and A. M. Buoncristiani, “Analysis of Vibronic Transitions in Titanium Doped Sapphire Using the Temperature of the Fluorescence Spectra,” J. Quantum Electron. 21(10), 1619–1624 (1985).
[Crossref]

Caslavsky, J.

R. Powell, J. Caslavsky, Z. AlShaieb, and J. M. Bowen, “Growth, characterization, and optical spectroscopy of Al2O3:Ti3+,” J. Appl. Phys. 58(6), 2331–2336 (1985).
[Crossref]

Cha, Y. H.

Chambaret, J. P.

T. A. Planchon, F. Burgy, J. P. Rousseau, and J. P. Chambaret, “3D Modeling of amplification processes in CPA laser amplifiers,” Appl. Phys. B 80(6), 661–667 (2005).
[Crossref]

Chambaret, J.-P.

M. Pittman, S. Ferré, J.-P. Rousseau, L. Notebaert, J.-P. Chambaret, and G. Cheriaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[Crossref]

Cheriaux, G.

V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, “Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate,” Opt. Express 16(3), 2109–2114 (2008).
[Crossref] [PubMed]

M. Pittman, S. Ferré, J.-P. Rousseau, L. Notebaert, J.-P. Chambaret, and G. Cheriaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[Crossref]

Childress, C.

Chvykov, V.

Curley, P.

C. Le Blanc, P. Curley, and F. Salin, “Gain-narrowing and gain-shifting of ultra-short pulses in Ti:sapphire amplifiers,” Opt. Commun. 131(4-6), 391–398 (1996).
[Crossref]

DeFranzo, A. C.

Dollinger, R.

Durfee, C. G.

Eilers, H.

Esterowitz, L.

P. Lacovara, L. Esterowitz, and M. Kokta, “Growth, Spectroscopy, and Lasing of Titanium-Doped Sapphire,” J. Quantum Electron. 21(10), 1614–1618 (1985).
[Crossref]

Ferré, S.

M. Pittman, S. Ferré, J.-P. Rousseau, L. Notebaert, J.-P. Chambaret, and G. Cheriaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[Crossref]

Frantz, L. M.

L. M. Frantz and J. S. Nodvik, “Theory of Pulse Propagation in a laser amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[Crossref]

Gächter, B. F.

B. F. Gächter and J. A. Koningstein, “Zero phonon transitions and interacting Jahn-Teller phonon energies from the fluorescence spectrum of alpha-Al2O3:Ti3+,” J. Chem. Phys. 60(5), 2003–2006 (1974).
[Crossref]

Herzog, R. F.

Hömmerich, U.

Huber, G.

P. Albers, E. Stark, and G. Huber, “Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,” JOSA B 3(1), 134–139 (1986).
[Crossref]

Inoue, N.

Jeong, T. M.

Kalinchenko, G.

Kalintchenko, G.

Kang, Y. I.

Kaplan, D.

Kapteyn, H. C.

Kiriyama, H.

Kokta, M.

P. Lacovara, L. Esterowitz, and M. Kokta, “Growth, Spectroscopy, and Lasing of Titanium-Doped Sapphire,” J. Quantum Electron. 21(10), 1614–1618 (1985).
[Crossref]

Koningstein, J. A.

B. F. Gächter and J. A. Koningstein, “Zero phonon transitions and interacting Jahn-Teller phonon energies from the fluorescence spectrum of alpha-Al2O3:Ti3+,” J. Chem. Phys. 60(5), 2003–2006 (1974).
[Crossref]

Krausz, F.

Krushelnick, K.

Lacovara, P.

P. Lacovara, L. Esterowitz, and M. Kokta, “Growth, Spectroscopy, and Lasing of Titanium-Doped Sapphire,” J. Quantum Electron. 21(10), 1614–1618 (1985).
[Crossref]

Le Blanc, C.

C. Le Blanc, P. Curley, and F. Salin, “Gain-narrowing and gain-shifting of ultra-short pulses in Ti:sapphire amplifiers,” Opt. Commun. 131(4-6), 391–398 (1996).
[Crossref]

Lee, J.

J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, “0.1 Hz 1.0 PW Ti:sapphire laser,” Opt. Lett. 35(18), 3021–3023 (2010).
[Crossref] [PubMed]

V. Ramanathan, J. Lee, S. Xu, X. Wang, L. Williams, W. Malphurs, and D. H. Reitze, “Analysis of thermal aberrations in a high average power single-stage Ti:sapphire regenerative chirped pulse amplifier: Simulation and experiment,” Rev. Scient. Instrum. 77, 103103 (2006).

Lee, S. K.

Lenner, M.

Lowdermilk, W. H.

W. H. Lowdermilk and J. E. Murray, “The multipass amplifier: Theory and numerical analysis,” J. Appl. Phys. 51(5), 2436–2444 (1980).
[Crossref]

Ma, J.

Maksimchuk, A.

Malphurs, W.

V. Ramanathan, J. Lee, S. Xu, X. Wang, L. Williams, W. Malphurs, and D. H. Reitze, “Analysis of thermal aberrations in a high average power single-stage Ti:sapphire regenerative chirped pulse amplifier: Simulation and experiment,” Rev. Scient. Instrum. 77, 103103 (2006).

Matsuoka, T.

Moulton, P. F.

Mourou, G.

Mourou, G. A.

Müller, A.

Murnane, M. M.

Murray, J. E.

W. H. Lowdermilk and J. E. Murray, “The multipass amplifier: Theory and numerical analysis,” J. Appl. Phys. 51(5), 2436–2444 (1980).
[Crossref]

Nam, C. H.

Nees, J.

Nodvik, J. S.

L. M. Frantz and J. S. Nodvik, “Theory of Pulse Propagation in a laser amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[Crossref]

Notebaert, L.

M. Pittman, S. Ferré, J.-P. Rousseau, L. Notebaert, J.-P. Chambaret, and G. Cheriaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[Crossref]

O’Keeffe, K.

Pazol, B. G.

Pittman, M.

M. Pittman, S. Ferré, J.-P. Rousseau, L. Notebaert, J.-P. Chambaret, and G. Cheriaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[Crossref]

Planchon, T.

Planchon, T. A.

Powell, R.

R. Powell, J. Caslavsky, Z. AlShaieb, and J. M. Bowen, “Growth, characterization, and optical spectroscopy of Al2O3:Ti3+,” J. Appl. Phys. 58(6), 2331–2336 (1985).
[Crossref]

Ramanathan, V.

V. Ramanathan, J. Lee, S. Xu, X. Wang, L. Williams, W. Malphurs, and D. H. Reitze, “Analysis of thermal aberrations in a high average power single-stage Ti:sapphire regenerative chirped pulse amplifier: Simulation and experiment,” Rev. Scient. Instrum. 77, 103103 (2006).

Reitze, D. H.

V. Ramanathan, J. Lee, S. Xu, X. Wang, L. Williams, W. Malphurs, and D. H. Reitze, “Analysis of thermal aberrations in a high average power single-stage Ti:sapphire regenerative chirped pulse amplifier: Simulation and experiment,” Rev. Scient. Instrum. 77, 103103 (2006).

Rousseau, J. P.

T. A. Planchon, F. Burgy, J. P. Rousseau, and J. P. Chambaret, “3D Modeling of amplification processes in CPA laser amplifiers,” Appl. Phys. B 80(6), 661–667 (2005).
[Crossref]

Rousseau, J.-P.

M. Pittman, S. Ferré, J.-P. Rousseau, L. Notebaert, J.-P. Chambaret, and G. Cheriaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[Crossref]

Rousseau, P.

Salin, F.

C. Le Blanc, P. Curley, and F. Salin, “Gain-narrowing and gain-shifting of ultra-short pulses in Ti:sapphire amplifiers,” Opt. Commun. 131(4-6), 391–398 (1996).
[Crossref]

Schulz, B.

S. Burghartz and B. Schulz, “Thermophysical properties of sapphire, AIN and MgAl2O4 down to 70K,” J. Nucl. Mater. 212–215, 1065–1068 (1994).
[Crossref]

Seres, E.

Seres, J.

Spielmann, C.

Squier, J. A.

Stark, E.

P. Albers, E. Stark, and G. Huber, “Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,” JOSA B 3(1), 134–139 (1986).
[Crossref]

Sung, J. H.

Thompson, S.

Ueda, H.

Wagner, W. G.

R. Bellman, G. Birnbaum, and W. G. Wagner, “Transmission of monochromatic radiation in a two-level material,” J. Appl. Phys. 34(4), 780–782 (1963).
[Crossref]

Wang, X.

V. Ramanathan, J. Lee, S. Xu, X. Wang, L. Williams, W. Malphurs, and D. H. Reitze, “Analysis of thermal aberrations in a high average power single-stage Ti:sapphire regenerative chirped pulse amplifier: Simulation and experiment,” Rev. Scient. Instrum. 77, 103103 (2006).

Williams, L.

V. Ramanathan, J. Lee, S. Xu, X. Wang, L. Williams, W. Malphurs, and D. H. Reitze, “Analysis of thermal aberrations in a high average power single-stage Ti:sapphire regenerative chirped pulse amplifier: Simulation and experiment,” Rev. Scient. Instrum. 77, 103103 (2006).

Xu, S.

V. Ramanathan, J. Lee, S. Xu, X. Wang, L. Williams, W. Malphurs, and D. H. Reitze, “Analysis of thermal aberrations in a high average power single-stage Ti:sapphire regenerative chirped pulse amplifier: Simulation and experiment,” Rev. Scient. Instrum. 77, 103103 (2006).

Yamakawa, K.

Yanovsky, V.

Yen, W. M.

Yu, T. J.

Appl. Opt. (1)

Appl. Phys. B (2)

M. Pittman, S. Ferré, J.-P. Rousseau, L. Notebaert, J.-P. Chambaret, and G. Cheriaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[Crossref]

T. A. Planchon, F. Burgy, J. P. Rousseau, and J. P. Chambaret, “3D Modeling of amplification processes in CPA laser amplifiers,” Appl. Phys. B 80(6), 661–667 (2005).
[Crossref]

J. Appl. Phys. (4)

L. M. Frantz and J. S. Nodvik, “Theory of Pulse Propagation in a laser amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[Crossref]

R. Bellman, G. Birnbaum, and W. G. Wagner, “Transmission of monochromatic radiation in a two-level material,” J. Appl. Phys. 34(4), 780–782 (1963).
[Crossref]

W. H. Lowdermilk and J. E. Murray, “The multipass amplifier: Theory and numerical analysis,” J. Appl. Phys. 51(5), 2436–2444 (1980).
[Crossref]

R. Powell, J. Caslavsky, Z. AlShaieb, and J. M. Bowen, “Growth, characterization, and optical spectroscopy of Al2O3:Ti3+,” J. Appl. Phys. 58(6), 2331–2336 (1985).
[Crossref]

J. Chem. Phys. (1)

B. F. Gächter and J. A. Koningstein, “Zero phonon transitions and interacting Jahn-Teller phonon energies from the fluorescence spectrum of alpha-Al2O3:Ti3+,” J. Chem. Phys. 60(5), 2003–2006 (1974).
[Crossref]

J. Nucl. Mater. (1)

S. Burghartz and B. Schulz, “Thermophysical properties of sapphire, AIN and MgAl2O4 down to 70K,” J. Nucl. Mater. 212–215, 1065–1068 (1994).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Quantum Electron. (2)

C. E. Byvik and A. M. Buoncristiani, “Analysis of Vibronic Transitions in Titanium Doped Sapphire Using the Temperature of the Fluorescence Spectra,” J. Quantum Electron. 21(10), 1619–1624 (1985).
[Crossref]

P. Lacovara, L. Esterowitz, and M. Kokta, “Growth, Spectroscopy, and Lasing of Titanium-Doped Sapphire,” J. Quantum Electron. 21(10), 1614–1618 (1985).
[Crossref]

JOSA B (1)

P. Albers, E. Stark, and G. Huber, “Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,” JOSA B 3(1), 134–139 (1986).
[Crossref]

Opt. Commun. (1)

C. Le Blanc, P. Curley, and F. Salin, “Gain-narrowing and gain-shifting of ultra-short pulses in Ti:sapphire amplifiers,” Opt. Commun. 131(4-6), 391–398 (1996).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Rev. Sci. Instrum. (1)

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[Crossref]

Rev. Scient. Instrum. (1)

V. Ramanathan, J. Lee, S. Xu, X. Wang, L. Williams, W. Malphurs, and D. H. Reitze, “Analysis of thermal aberrations in a high average power single-stage Ti:sapphire regenerative chirped pulse amplifier: Simulation and experiment,” Rev. Scient. Instrum. 77, 103103 (2006).

Other (2)

L. G. DeShazer, J. M. Eggleston, and K. W. Kangas, “Oscillator and amplifier performance of Ti:Sapphire,” in Tunable Solid-State Lasers II (Springer, 1986) pp. 228–234.

A. E. Siegman, Lasers, (University Science Books, 1986), Chaps. 3 and 7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Temperature increase in the Ti:Sa crystal with cooling stopped. The crosses correspond to the temperature values where fluorescence spectra were recorded
Fig. 2
Fig. 2 Measured emission fluorescence spectra as a function of crystal temperature. Measurements were performed every 10K. (a) Linear scale, (b) Logarithmic scale
Fig. 3
Fig. 3 Calculated gain cross-section line shapes as a function of crystal temperature (T) using measured emission fluorescence spectra. (a) Linear scale, (b) logarithmic scale
Fig. 4
Fig. 4 Evolution with crystal temperature of: (a) Gain cross-section maximum peak wavelength and (b) the Full Width Half Maximum (FWHM) of the gain cross-section. The dashed lines represent linear and quadratic fit whose values are given in Eqs. (1) and (2)
Fig. 5
Fig. 5 Gain Cross-Section: (a), (c) Lorentzian distribution fit, (b), (d) Poisson distribution fit
Fig. 6
Fig. 6 Evolution of the seed laser peak and FWHM spectrum value in high-gain pre-amplifier for three temperatures: 300K (black crosses), 120K (green circles), and 77K (blue squares)
Fig. 7
Fig. 7 Evolution of the seed laser peak and FWHM spectrum value in power amplifier for three temperatures: 300K (black crosses), 120K (green circles), and 77K (blue squares)

Tables (1)

Tables Icon

Table 1 Poisson distribution parameters m, ν0 and νp for selected temperatures

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λ peak (T)=(754nm)+(0.143nm. K 1 )T
Δλ(T)=(168nm)+(0.118nm. K 1 )T+( 2.41× 10 4 nm. K 2 ) T 2
σ g (λ)= m P P! = m P Γ( 1+P ) where P=( ν 0 ν ν p )
m(T)=1.8+0.013×T
ν ο (T)=14435+4.2572×T
ν p (T)=8621.60×T+0.00263× T 2

Metrics