M. Sofos, J. Goldberger, D. A. Stone, J. E. Allen, Q. Ma, D. J. Herman, W. W. Tsai, L. J. Lauhon, and S. I. Stupp, “A synergistic assembly of nanoscale lamellar photoconductor hybrids,” Nat. Mater. 8(1), 68–75 (2009).
[Crossref]
[PubMed]
B. Arredondo, B. Romero, J. M. Pena, A. Fernández-Pacheco, E. Alonso, R. Vergaz, and C. de Dios, “Visible light communication system using an organic bulk heterojunction photodetector,” Sensors (Basel) 13(9), 12266–12276 (2013).
[Crossref]
[PubMed]
B. Arredondo, B. Romero, J. M. Pena, A. Fernández-Pacheco, E. Alonso, R. Vergaz, and C. de Dios, “Visible light communication system using an organic bulk heterojunction photodetector,” Sensors (Basel) 13(9), 12266–12276 (2013).
[Crossref]
[PubMed]
B. Arredondo, C. de Dios, R. Vergaz, A. R. Criado, B. Romero, B. Zimmermann, and U. Würfel, “Performance of ITO-free inverted organic bulk heterojunction photodetectors: Comparison with standard device architecture,” Org. Elec. 14(10), 2484–2490 (2013).
[Crossref]
G. Azzellino, A. Grimoldi, M. Binda, M. Caironi, D. Natali, and M. Sampietro, “Fully inkjet-printed organic photodetectors with high quantum yield,” Adv. Mater. 25(47), 6829–6833 (2013).
[Crossref]
[PubMed]
K. J. Baeg, M. Binda, D. Natali, M. Caironi, and Y. Y. Noh, “Organic light detectors: photodiodes and phototransistors,” Adv. Mater. 25(31), 4267–4295 (2013).
[Crossref]
[PubMed]
Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref]
[PubMed]
F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[Crossref]
[PubMed]
K. J. Baeg, M. Binda, D. Natali, M. Caironi, and Y. Y. Noh, “Organic light detectors: photodiodes and phototransistors,” Adv. Mater. 25(31), 4267–4295 (2013).
[Crossref]
[PubMed]
G. Azzellino, A. Grimoldi, M. Binda, M. Caironi, D. Natali, and M. Sampietro, “Fully inkjet-printed organic photodetectors with high quantum yield,” Adv. Mater. 25(47), 6829–6833 (2013).
[Crossref]
[PubMed]
B. D. Boruah, D. B. Ferry, A. Mukherjee, and A. Misra, “Few-layer graphene/ZnO nanowires based high performance UV photodetector,” Nanotechnology 26(23), 235703 (2015).
[Crossref]
[PubMed]
Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref]
[PubMed]
P. Peumans, V. Bulović, and S. R. Forrest, “Efficient, high-bandwidth organic multilayer photodetectors,” Appl. Phys. Lett. 76(26), 3855–3857 (2000).
[Crossref]
K. J. Baeg, M. Binda, D. Natali, M. Caironi, and Y. Y. Noh, “Organic light detectors: photodiodes and phototransistors,” Adv. Mater. 25(31), 4267–4295 (2013).
[Crossref]
[PubMed]
G. Azzellino, A. Grimoldi, M. Binda, M. Caironi, D. Natali, and M. Sampietro, “Fully inkjet-printed organic photodetectors with high quantum yield,” Adv. Mater. 25(47), 6829–6833 (2013).
[Crossref]
[PubMed]
S. Cho, K. D. Kim, J. Heo, J. Y. Lee, G. Cha, B. Y. Seo, Y. D. Kim, Y. S. Kim, S. Y. Choi, and D. C. Lim, “Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells,” Sci. Rep. 4, 4306 (2014).
[Crossref]
[PubMed]
B. Chen, X. Qiao, C.-M. Liu, C. Zhao, H.-C. Chen, K.-H. Wei, and B. Hu, “Effects of bulk and interfacial charge accumulation on fill factor in organic solar cells,” Appl. Phys. Lett. 102(19), 193302 (2013).
[Crossref]
[PubMed]
F.-C. Chen, S.-C. Chien, and G.-L. Cious, “Highly sensitive, low-voltage, organic photomultiple photodetectors exhibiting broadband response,” Appl. Phys. Lett. 97(10), 103301 (2010).
[Crossref]
B. Chen, X. Qiao, C.-M. Liu, C. Zhao, H.-C. Chen, K.-H. Wei, and B. Hu, “Effects of bulk and interfacial charge accumulation on fill factor in organic solar cells,” Appl. Phys. Lett. 102(19), 193302 (2013).
[Crossref]
[PubMed]
C. Zhang, L. Qi, Q. Chen, L. Lv, Y. Ning, Y. Hu, Y. Hou, and F. Teng, “Plasma treatment of ITO cathode to fabricate free electron selective layer in inverted polymer solar cells,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8715–8722 (2014).
[Crossref]
Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref]
[PubMed]
F.-C. Chen, S.-C. Chien, and G.-L. Cious, “Highly sensitive, low-voltage, organic photomultiple photodetectors exhibiting broadband response,” Appl. Phys. Lett. 97(10), 103301 (2010).
[Crossref]
S. Cho, K. D. Kim, J. Heo, J. Y. Lee, G. Cha, B. Y. Seo, Y. D. Kim, Y. S. Kim, S. Y. Choi, and D. C. Lim, “Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells,” Sci. Rep. 4, 4306 (2014).
[Crossref]
[PubMed]
S. Cho, K. D. Kim, J. Heo, J. Y. Lee, G. Cha, B. Y. Seo, Y. D. Kim, Y. S. Kim, S. Y. Choi, and D. C. Lim, “Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells,” Sci. Rep. 4, 4306 (2014).
[Crossref]
[PubMed]
M. Punke, S. Valouch, S. W. Kettlitz, N. Christ, C. Gärtner, M. Gerken, and U. Lemmer, “Dynamic characterization of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(7), 071118 (2007).
[Crossref]
F.-C. Chen, S.-C. Chien, and G.-L. Cious, “Highly sensitive, low-voltage, organic photomultiple photodetectors exhibiting broadband response,” Appl. Phys. Lett. 97(10), 103301 (2010).
[Crossref]
J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors,” Nat. Nanotechnol. 4(1), 40–44 (2009).
[Crossref]
[PubMed]
W. Tress, S. Corvers, K. Leo, and M. Riede, “Investigation of driving forces for charge extraction in organic solar cells: transient photocurrent measurements on solar cells showing s-shaped current–voltage characteristics,” Adv. Energy Mater. 3(7), 873–880 (2013).
[Crossref]
B. Arredondo, C. de Dios, R. Vergaz, A. R. Criado, B. Romero, B. Zimmermann, and U. Würfel, “Performance of ITO-free inverted organic bulk heterojunction photodetectors: Comparison with standard device architecture,” Org. Elec. 14(10), 2484–2490 (2013).
[Crossref]
B. Arredondo, C. de Dios, R. Vergaz, A. R. Criado, B. Romero, B. Zimmermann, and U. Würfel, “Performance of ITO-free inverted organic bulk heterojunction photodetectors: Comparison with standard device architecture,” Org. Elec. 14(10), 2484–2490 (2013).
[Crossref]
B. Arredondo, B. Romero, J. M. Pena, A. Fernández-Pacheco, E. Alonso, R. Vergaz, and C. de Dios, “Visible light communication system using an organic bulk heterojunction photodetector,” Sensors (Basel) 13(9), 12266–12276 (2013).
[Crossref]
[PubMed]
R. Nie, Y. Wang, and X. Deng, “Aligned Nanofibers as an Interfacial Layer for Achieving High-Detectivity and fast-response organic photodetectors,” ACS Appl. Mater. Interfaces 6(10), 7032–7037 (2014).
[Crossref]
[PubMed]
Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref]
[PubMed]
F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[Crossref]
[PubMed]
H. Wei, Y. Fang, Y. Yuan, L. Shen, and J. Huang, “Trap Engineering of CdTe Nanoparticle for High Gain, Fast Response, and Low Noise P3HT:CdTe Nanocomposite Photodetectors,” Adv. Mater. 27(34), 4975–4981 (2015).
[Crossref]
[PubMed]
Y. Fang, F. Guo, Z. Xiao, and J. Huang, “Large gain, low noise nanocomposite ultraviolet photodetectors with a linear dynamic range of 120 db,” Adv. Opt. Mater 2(4), 348–353 (2014).
[Crossref]
Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref]
[PubMed]
B. Arredondo, B. Romero, J. M. Pena, A. Fernández-Pacheco, E. Alonso, R. Vergaz, and C. de Dios, “Visible light communication system using an organic bulk heterojunction photodetector,” Sensors (Basel) 13(9), 12266–12276 (2013).
[Crossref]
[PubMed]
B. D. Boruah, D. B. Ferry, A. Mukherjee, and A. Misra, “Few-layer graphene/ZnO nanowires based high performance UV photodetector,” Nanotechnology 26(23), 235703 (2015).
[Crossref]
[PubMed]
G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, “Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states,” Nano Lett. 8(5), 1446–1450 (2008).
[Crossref]
[PubMed]
P. Peumans, V. Bulović, and S. R. Forrest, “Efficient, high-bandwidth organic multilayer photodetectors,” Appl. Phys. Lett. 76(26), 3855–3857 (2000).
[Crossref]
P. E. Keivanidis, P. K. H. Ho, R. H. Friend, and N. C. Greenham, “The Dependence of Device Dark Current on the Active-Layer Morphology of Solution-Processed Organic Photodetectors,” Adv. Funct. Mater. 20(22), 3895–3903 (2010).
[Crossref]
Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref]
[PubMed]
M. Punke, S. Valouch, S. W. Kettlitz, N. Christ, C. Gärtner, M. Gerken, and U. Lemmer, “Dynamic characterization of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(7), 071118 (2007).
[Crossref]
M. Punke, S. Valouch, S. W. Kettlitz, N. Christ, C. Gärtner, M. Gerken, and U. Lemmer, “Dynamic characterization of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(7), 071118 (2007).
[Crossref]
Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref]
[PubMed]
M. Sofos, J. Goldberger, D. A. Stone, J. E. Allen, Q. Ma, D. J. Herman, W. W. Tsai, L. J. Lauhon, and S. I. Stupp, “A synergistic assembly of nanoscale lamellar photoconductor hybrids,” Nat. Mater. 8(1), 68–75 (2009).
[Crossref]
[PubMed]
Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref]
[PubMed]
P. E. Keivanidis, P. K. H. Ho, R. H. Friend, and N. C. Greenham, “The Dependence of Device Dark Current on the Active-Layer Morphology of Solution-Processed Organic Photodetectors,” Adv. Funct. Mater. 20(22), 3895–3903 (2010).
[Crossref]
I. Hwang, C. R. McNeill, and N. C. Greenham, “Drift-diffusion modeling of photocurrent transients in bulk heterojunction solar cells,” J. Appl. Phys. 106(9), 094506 (2009).
[Crossref]
C. R. McNeill, I. Hwang, and N. C. Greenham, “Photocurrent transients in all-polymer solar cells: Trapping and detrapping effects,” J. Appl. Phys. 106(2), 024507 (2009).
[Crossref]
G. Azzellino, A. Grimoldi, M. Binda, M. Caironi, D. Natali, and M. Sampietro, “Fully inkjet-printed organic photodetectors with high quantum yield,” Adv. Mater. 25(47), 6829–6833 (2013).
[Crossref]
[PubMed]
Y. Fang, F. Guo, Z. Xiao, and J. Huang, “Large gain, low noise nanocomposite ultraviolet photodetectors with a linear dynamic range of 120 db,” Adv. Opt. Mater 2(4), 348–353 (2014).
[Crossref]
F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[Crossref]
[PubMed]
W. T. Hammond and J. G. Xue, “Organic heterojunction photodiodes exhibiting low voltage, imaging-speed photocurrent gain,” Appl. Phys. Lett. 97(7), 073302 (2010).
[Crossref]
Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref]
[PubMed]
S. Cho, K. D. Kim, J. Heo, J. Y. Lee, G. Cha, B. Y. Seo, Y. D. Kim, Y. S. Kim, S. Y. Choi, and D. C. Lim, “Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells,” Sci. Rep. 4, 4306 (2014).
[Crossref]
[PubMed]
M. Sofos, J. Goldberger, D. A. Stone, J. E. Allen, Q. Ma, D. J. Herman, W. W. Tsai, L. J. Lauhon, and S. I. Stupp, “A synergistic assembly of nanoscale lamellar photoconductor hybrids,” Nat. Mater. 8(1), 68–75 (2009).
[Crossref]
[PubMed]
P. E. Keivanidis, P. K. H. Ho, R. H. Friend, and N. C. Greenham, “The Dependence of Device Dark Current on the Active-Layer Morphology of Solution-Processed Organic Photodetectors,” Adv. Funct. Mater. 20(22), 3895–3903 (2010).
[Crossref]
J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors,” Nat. Nanotechnol. 4(1), 40–44 (2009).
[Crossref]
[PubMed]
L. Lv, Q. Lu, Y. Ning, Z. Lu, X. Wang, Z. Lou, A. Tang, Y. Hu, F. Teng, Y. Yin, and Y. Hou, “Self-Assembled TiO2 Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells,” Chem. Mater. 27(1), 44–52 (2015).
[Crossref]
C. Zhang, L. Qi, Q. Chen, L. Lv, Y. Ning, Y. Hu, Y. Hou, and F. Teng, “Plasma treatment of ITO cathode to fabricate free electron selective layer in inverted polymer solar cells,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8715–8722 (2014).
[Crossref]
B. Chen, X. Qiao, C.-M. Liu, C. Zhao, H.-C. Chen, K.-H. Wei, and B. Hu, “Effects of bulk and interfacial charge accumulation on fill factor in organic solar cells,” Appl. Phys. Lett. 102(19), 193302 (2013).
[Crossref]
[PubMed]
L. Lv, Q. Lu, Y. Ning, Z. Lu, X. Wang, Z. Lou, A. Tang, Y. Hu, F. Teng, Y. Yin, and Y. Hou, “Self-Assembled TiO2 Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells,” Chem. Mater. 27(1), 44–52 (2015).
[Crossref]
C. Zhang, L. Qi, Q. Chen, L. Lv, Y. Ning, Y. Hu, Y. Hou, and F. Teng, “Plasma treatment of ITO cathode to fabricate free electron selective layer in inverted polymer solar cells,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8715–8722 (2014).
[Crossref]
H. Wei, Y. Fang, Y. Yuan, L. Shen, and J. Huang, “Trap Engineering of CdTe Nanoparticle for High Gain, Fast Response, and Low Noise P3HT:CdTe Nanocomposite Photodetectors,” Adv. Mater. 27(34), 4975–4981 (2015).
[Crossref]
[PubMed]
Y. Fang, F. Guo, Z. Xiao, and J. Huang, “Large gain, low noise nanocomposite ultraviolet photodetectors with a linear dynamic range of 120 db,” Adv. Opt. Mater 2(4), 348–353 (2014).
[Crossref]
F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[Crossref]
[PubMed]
J. Huang and Y. Yang, “Origin of photomultiplication in C60 based devices,” Appl. Phys. Lett. 91(20), 784 (2007).
I. Hwang, C. R. McNeill, and N. C. Greenham, “Drift-diffusion modeling of photocurrent transients in bulk heterojunction solar cells,” J. Appl. Phys. 106(9), 094506 (2009).
[Crossref]
C. R. McNeill, I. Hwang, and N. C. Greenham, “Photocurrent transients in all-polymer solar cells: Trapping and detrapping effects,” J. Appl. Phys. 106(2), 024507 (2009).
[Crossref]
J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors,” Nat. Nanotechnol. 4(1), 40–44 (2009).
[Crossref]
[PubMed]
Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref]
[PubMed]
P. E. Keivanidis, P. K. H. Ho, R. H. Friend, and N. C. Greenham, “The Dependence of Device Dark Current on the Active-Layer Morphology of Solution-Processed Organic Photodetectors,” Adv. Funct. Mater. 20(22), 3895–3903 (2010).
[Crossref]
M. Punke, S. Valouch, S. W. Kettlitz, N. Christ, C. Gärtner, M. Gerken, and U. Lemmer, “Dynamic characterization of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(7), 071118 (2007).
[Crossref]
Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref]
[PubMed]
Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref]
[PubMed]
S. Cho, K. D. Kim, J. Heo, J. Y. Lee, G. Cha, B. Y. Seo, Y. D. Kim, Y. S. Kim, S. Y. Choi, and D. C. Lim, “Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells,” Sci. Rep. 4, 4306 (2014).
[Crossref]
[PubMed]
S. Cho, K. D. Kim, J. Heo, J. Y. Lee, G. Cha, B. Y. Seo, Y. D. Kim, Y. S. Kim, S. Y. Choi, and D. C. Lim, “Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells,” Sci. Rep. 4, 4306 (2014).
[Crossref]
[PubMed]
S. Cho, K. D. Kim, J. Heo, J. Y. Lee, G. Cha, B. Y. Seo, Y. D. Kim, Y. S. Kim, S. Y. Choi, and D. C. Lim, “Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells,” Sci. Rep. 4, 4306 (2014).
[Crossref]
[PubMed]
Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref]
[PubMed]
J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors,” Nat. Nanotechnol. 4(1), 40–44 (2009).
[Crossref]
[PubMed]
G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, “Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states,” Nano Lett. 8(5), 1446–1450 (2008).
[Crossref]
[PubMed]
G. Konstantatos and E. H. Sargent, “PbS colloidal quantum dot photoconductive photodetectors: Transport, traps, and gain,” Appl. Phys. Lett. 91(17), 173505 (2007).
[Crossref]
M. Sofos, J. Goldberger, D. A. Stone, J. E. Allen, Q. Ma, D. J. Herman, W. W. Tsai, L. J. Lauhon, and S. I. Stupp, “A synergistic assembly of nanoscale lamellar photoconductor hybrids,” Nat. Mater. 8(1), 68–75 (2009).
[Crossref]
[PubMed]
S. Cho, K. D. Kim, J. Heo, J. Y. Lee, G. Cha, B. Y. Seo, Y. D. Kim, Y. S. Kim, S. Y. Choi, and D. C. Lim, “Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells,” Sci. Rep. 4, 4306 (2014).
[Crossref]
[PubMed]
M. Punke, S. Valouch, S. W. Kettlitz, N. Christ, C. Gärtner, M. Gerken, and U. Lemmer, “Dynamic characterization of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(7), 071118 (2007).
[Crossref]
W. Tress, K. Leo, and M. Riede, “Photoconductivity as loss mechanism in organic solar cells,” (RRL) Phys. Status Solidi 7(6), 401–405 (2013).
[Crossref]
W. Tress, S. Corvers, K. Leo, and M. Riede, “Investigation of driving forces for charge extraction in organic solar cells: transient photocurrent measurements on solar cells showing s-shaped current–voltage characteristics,” Adv. Energy Mater. 3(7), 873–880 (2013).
[Crossref]
W. Tress, K. Leo, and M. Riede, “Influence of hole-transport layers and donor materials on open-circuit voltage and shape of i-v curves of organic solar cells,” Adv. Funct. Mater. 21(11), 2140–2149 (2011).
[Crossref]
J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors,” Nat. Nanotechnol. 4(1), 40–44 (2009).
[Crossref]
[PubMed]
G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, “Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states,” Nano Lett. 8(5), 1446–1450 (2008).
[Crossref]
[PubMed]
Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref]
[PubMed]
X. Li, S. Wang, Y. Xiao, and X. Li, “A trap-assisted ultrasensitive near-infrared organic photomultiple photodetector based on y-type titanylphthalocyanine nanoparticles,” J. Mater. Chem. C 4(24), 5584–5592 (2016).
X. Li, S. Wang, Y. Xiao, and X. Li, “A trap-assisted ultrasensitive near-infrared organic photomultiple photodetector based on y-type titanylphthalocyanine nanoparticles,” J. Mater. Chem. C 4(24), 5584–5592 (2016).
S. Cho, K. D. Kim, J. Heo, J. Y. Lee, G. Cha, B. Y. Seo, Y. D. Kim, Y. S. Kim, S. Y. Choi, and D. C. Lim, “Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells,” Sci. Rep. 4, 4306 (2014).
[Crossref]
[PubMed]
B. Chen, X. Qiao, C.-M. Liu, C. Zhao, H.-C. Chen, K.-H. Wei, and B. Hu, “Effects of bulk and interfacial charge accumulation on fill factor in organic solar cells,” Appl. Phys. Lett. 102(19), 193302 (2013).
[Crossref]
[PubMed]
L. Lv, Q. Lu, Y. Ning, Z. Lu, X. Wang, Z. Lou, A. Tang, Y. Hu, F. Teng, Y. Yin, and Y. Hou, “Self-Assembled TiO2 Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells,” Chem. Mater. 27(1), 44–52 (2015).
[Crossref]
L. Lv, Q. Lu, Y. Ning, Z. Lu, X. Wang, Z. Lou, A. Tang, Y. Hu, F. Teng, Y. Yin, and Y. Hou, “Self-Assembled TiO2 Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells,” Chem. Mater. 27(1), 44–52 (2015).
[Crossref]
L. Lv, Q. Lu, Y. Ning, Z. Lu, X. Wang, Z. Lou, A. Tang, Y. Hu, F. Teng, Y. Yin, and Y. Hou, “Self-Assembled TiO2 Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells,” Chem. Mater. 27(1), 44–52 (2015).
[Crossref]
L. Lv, Q. Lu, Y. Ning, Z. Lu, X. Wang, Z. Lou, A. Tang, Y. Hu, F. Teng, Y. Yin, and Y. Hou, “Self-Assembled TiO2 Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells,” Chem. Mater. 27(1), 44–52 (2015).
[Crossref]
C. Zhang, L. Qi, Q. Chen, L. Lv, Y. Ning, Y. Hu, Y. Hou, and F. Teng, “Plasma treatment of ITO cathode to fabricate free electron selective layer in inverted polymer solar cells,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8715–8722 (2014).
[Crossref]
D. Yang, K. Xu, X. Zhou, Y. Wang, and D. Ma, “Comprehensive studies of response characteristics of organic photodetectors based on rubrene and C60,” J. Appl. Phys. 115(24), 244506 (2014).
[Crossref]
D. Z. Yang, X. K. Zhou, and D. G. Ma, “Fast response organic photodetectors with high detectivity based on rubrene and C60,” Org. Elec. 14(11), 3019–3023 (2013).
[Crossref]
M. Sofos, J. Goldberger, D. A. Stone, J. E. Allen, Q. Ma, D. J. Herman, W. W. Tsai, L. J. Lauhon, and S. I. Stupp, “A synergistic assembly of nanoscale lamellar photoconductor hybrids,” Nat. Mater. 8(1), 68–75 (2009).
[Crossref]
[PubMed]
Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref]
[PubMed]
C. R. McNeill, I. Hwang, and N. C. Greenham, “Photocurrent transients in all-polymer solar cells: Trapping and detrapping effects,” J. Appl. Phys. 106(2), 024507 (2009).
[Crossref]
I. Hwang, C. R. McNeill, and N. C. Greenham, “Drift-diffusion modeling of photocurrent transients in bulk heterojunction solar cells,” J. Appl. Phys. 106(9), 094506 (2009).
[Crossref]
J. M. Melancon and S. R. Živanović, “Broadband gain in poly(3-hexylthiophene):phenyl-C61-butyric-acid-methyl-ester photodetectors enabled by a semicontinuous gold interlayer,” Appl. Phys. Lett. 105(16), 163301 (2014).
[Crossref]
Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref]
[PubMed]
B. D. Boruah, D. B. Ferry, A. Mukherjee, and A. Misra, “Few-layer graphene/ZnO nanowires based high performance UV photodetector,” Nanotechnology 26(23), 235703 (2015).
[Crossref]
[PubMed]
B. D. Boruah, D. B. Ferry, A. Mukherjee, and A. Misra, “Few-layer graphene/ZnO nanowires based high performance UV photodetector,” Nanotechnology 26(23), 235703 (2015).
[Crossref]
[PubMed]
J. D. Myers and J. G. Xue, “Organic Semiconductors and their Applications in Photovoltaic Devices,” Polym. Rev. (Phila. Pa.) 52(1), 1–37 (2012).
[Crossref]
Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref]
[PubMed]
K. J. Baeg, M. Binda, D. Natali, M. Caironi, and Y. Y. Noh, “Organic light detectors: photodiodes and phototransistors,” Adv. Mater. 25(31), 4267–4295 (2013).
[Crossref]
[PubMed]
G. Azzellino, A. Grimoldi, M. Binda, M. Caironi, D. Natali, and M. Sampietro, “Fully inkjet-printed organic photodetectors with high quantum yield,” Adv. Mater. 25(47), 6829–6833 (2013).
[Crossref]
[PubMed]
R. Nie, Y. Wang, and X. Deng, “Aligned Nanofibers as an Interfacial Layer for Achieving High-Detectivity and fast-response organic photodetectors,” ACS Appl. Mater. Interfaces 6(10), 7032–7037 (2014).
[Crossref]
[PubMed]
L. Lv, Q. Lu, Y. Ning, Z. Lu, X. Wang, Z. Lou, A. Tang, Y. Hu, F. Teng, Y. Yin, and Y. Hou, “Self-Assembled TiO2 Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells,” Chem. Mater. 27(1), 44–52 (2015).
[Crossref]
C. Zhang, L. Qi, Q. Chen, L. Lv, Y. Ning, Y. Hu, Y. Hou, and F. Teng, “Plasma treatment of ITO cathode to fabricate free electron selective layer in inverted polymer solar cells,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8715–8722 (2014).
[Crossref]
K. J. Baeg, M. Binda, D. Natali, M. Caironi, and Y. Y. Noh, “Organic light detectors: photodiodes and phototransistors,” Adv. Mater. 25(31), 4267–4295 (2013).
[Crossref]
[PubMed]
Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref]
[PubMed]
B. Arredondo, B. Romero, J. M. Pena, A. Fernández-Pacheco, E. Alonso, R. Vergaz, and C. de Dios, “Visible light communication system using an organic bulk heterojunction photodetector,” Sensors (Basel) 13(9), 12266–12276 (2013).
[Crossref]
[PubMed]
P. Peumans, V. Bulović, and S. R. Forrest, “Efficient, high-bandwidth organic multilayer photodetectors,” Appl. Phys. Lett. 76(26), 3855–3857 (2000).
[Crossref]
M. Punke, S. Valouch, S. W. Kettlitz, N. Christ, C. Gärtner, M. Gerken, and U. Lemmer, “Dynamic characterization of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(7), 071118 (2007).
[Crossref]
C. Zhang, L. Qi, Q. Chen, L. Lv, Y. Ning, Y. Hu, Y. Hou, and F. Teng, “Plasma treatment of ITO cathode to fabricate free electron selective layer in inverted polymer solar cells,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8715–8722 (2014).
[Crossref]
B. Chen, X. Qiao, C.-M. Liu, C. Zhao, H.-C. Chen, K.-H. Wei, and B. Hu, “Effects of bulk and interfacial charge accumulation on fill factor in organic solar cells,” Appl. Phys. Lett. 102(19), 193302 (2013).
[Crossref]
[PubMed]
W. Tress, S. Corvers, K. Leo, and M. Riede, “Investigation of driving forces for charge extraction in organic solar cells: transient photocurrent measurements on solar cells showing s-shaped current–voltage characteristics,” Adv. Energy Mater. 3(7), 873–880 (2013).
[Crossref]
W. Tress, K. Leo, and M. Riede, “Photoconductivity as loss mechanism in organic solar cells,” (RRL) Phys. Status Solidi 7(6), 401–405 (2013).
[Crossref]
W. Tress, K. Leo, and M. Riede, “Influence of hole-transport layers and donor materials on open-circuit voltage and shape of i-v curves of organic solar cells,” Adv. Funct. Mater. 21(11), 2140–2149 (2011).
[Crossref]
B. Arredondo, C. de Dios, R. Vergaz, A. R. Criado, B. Romero, B. Zimmermann, and U. Würfel, “Performance of ITO-free inverted organic bulk heterojunction photodetectors: Comparison with standard device architecture,” Org. Elec. 14(10), 2484–2490 (2013).
[Crossref]
B. Arredondo, B. Romero, J. M. Pena, A. Fernández-Pacheco, E. Alonso, R. Vergaz, and C. de Dios, “Visible light communication system using an organic bulk heterojunction photodetector,” Sensors (Basel) 13(9), 12266–12276 (2013).
[Crossref]
[PubMed]
G. Azzellino, A. Grimoldi, M. Binda, M. Caironi, D. Natali, and M. Sampietro, “Fully inkjet-printed organic photodetectors with high quantum yield,” Adv. Mater. 25(47), 6829–6833 (2013).
[Crossref]
[PubMed]
J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors,” Nat. Nanotechnol. 4(1), 40–44 (2009).
[Crossref]
[PubMed]
G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, “Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states,” Nano Lett. 8(5), 1446–1450 (2008).
[Crossref]
[PubMed]
G. Konstantatos and E. H. Sargent, “PbS colloidal quantum dot photoconductive photodetectors: Transport, traps, and gain,” Appl. Phys. Lett. 91(17), 173505 (2007).
[Crossref]
S. Cho, K. D. Kim, J. Heo, J. Y. Lee, G. Cha, B. Y. Seo, Y. D. Kim, Y. S. Kim, S. Y. Choi, and D. C. Lim, “Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells,” Sci. Rep. 4, 4306 (2014).
[Crossref]
[PubMed]
H. Wei, Y. Fang, Y. Yuan, L. Shen, and J. Huang, “Trap Engineering of CdTe Nanoparticle for High Gain, Fast Response, and Low Noise P3HT:CdTe Nanocomposite Photodetectors,” Adv. Mater. 27(34), 4975–4981 (2015).
[Crossref]
[PubMed]
Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref]
[PubMed]
M. Sofos, J. Goldberger, D. A. Stone, J. E. Allen, Q. Ma, D. J. Herman, W. W. Tsai, L. J. Lauhon, and S. I. Stupp, “A synergistic assembly of nanoscale lamellar photoconductor hybrids,” Nat. Mater. 8(1), 68–75 (2009).
[Crossref]
[PubMed]
Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref]
[PubMed]
M. Sofos, J. Goldberger, D. A. Stone, J. E. Allen, Q. Ma, D. J. Herman, W. W. Tsai, L. J. Lauhon, and S. I. Stupp, “A synergistic assembly of nanoscale lamellar photoconductor hybrids,” Nat. Mater. 8(1), 68–75 (2009).
[Crossref]
[PubMed]
M. Sofos, J. Goldberger, D. A. Stone, J. E. Allen, Q. Ma, D. J. Herman, W. W. Tsai, L. J. Lauhon, and S. I. Stupp, “A synergistic assembly of nanoscale lamellar photoconductor hybrids,” Nat. Mater. 8(1), 68–75 (2009).
[Crossref]
[PubMed]
L. Lv, Q. Lu, Y. Ning, Z. Lu, X. Wang, Z. Lou, A. Tang, Y. Hu, F. Teng, Y. Yin, and Y. Hou, “Self-Assembled TiO2 Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells,” Chem. Mater. 27(1), 44–52 (2015).
[Crossref]
L. Lv, Q. Lu, Y. Ning, Z. Lu, X. Wang, Z. Lou, A. Tang, Y. Hu, F. Teng, Y. Yin, and Y. Hou, “Self-Assembled TiO2 Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells,” Chem. Mater. 27(1), 44–52 (2015).
[Crossref]
C. Zhang, L. Qi, Q. Chen, L. Lv, Y. Ning, Y. Hu, Y. Hou, and F. Teng, “Plasma treatment of ITO cathode to fabricate free electron selective layer in inverted polymer solar cells,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8715–8722 (2014).
[Crossref]
W. Tress, S. Corvers, K. Leo, and M. Riede, “Investigation of driving forces for charge extraction in organic solar cells: transient photocurrent measurements on solar cells showing s-shaped current–voltage characteristics,” Adv. Energy Mater. 3(7), 873–880 (2013).
[Crossref]
W. Tress, K. Leo, and M. Riede, “Photoconductivity as loss mechanism in organic solar cells,” (RRL) Phys. Status Solidi 7(6), 401–405 (2013).
[Crossref]
W. Tress, K. Leo, and M. Riede, “Influence of hole-transport layers and donor materials on open-circuit voltage and shape of i-v curves of organic solar cells,” Adv. Funct. Mater. 21(11), 2140–2149 (2011).
[Crossref]
M. Sofos, J. Goldberger, D. A. Stone, J. E. Allen, Q. Ma, D. J. Herman, W. W. Tsai, L. J. Lauhon, and S. I. Stupp, “A synergistic assembly of nanoscale lamellar photoconductor hybrids,” Nat. Mater. 8(1), 68–75 (2009).
[Crossref]
[PubMed]
M. Punke, S. Valouch, S. W. Kettlitz, N. Christ, C. Gärtner, M. Gerken, and U. Lemmer, “Dynamic characterization of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(7), 071118 (2007).
[Crossref]
B. Arredondo, C. de Dios, R. Vergaz, A. R. Criado, B. Romero, B. Zimmermann, and U. Würfel, “Performance of ITO-free inverted organic bulk heterojunction photodetectors: Comparison with standard device architecture,” Org. Elec. 14(10), 2484–2490 (2013).
[Crossref]
B. Arredondo, B. Romero, J. M. Pena, A. Fernández-Pacheco, E. Alonso, R. Vergaz, and C. de Dios, “Visible light communication system using an organic bulk heterojunction photodetector,” Sensors (Basel) 13(9), 12266–12276 (2013).
[Crossref]
[PubMed]
X. Li, S. Wang, Y. Xiao, and X. Li, “A trap-assisted ultrasensitive near-infrared organic photomultiple photodetector based on y-type titanylphthalocyanine nanoparticles,” J. Mater. Chem. C 4(24), 5584–5592 (2016).
L. Lv, Q. Lu, Y. Ning, Z. Lu, X. Wang, Z. Lou, A. Tang, Y. Hu, F. Teng, Y. Yin, and Y. Hou, “Self-Assembled TiO2 Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells,” Chem. Mater. 27(1), 44–52 (2015).
[Crossref]
D. Yang, K. Xu, X. Zhou, Y. Wang, and D. Ma, “Comprehensive studies of response characteristics of organic photodetectors based on rubrene and C60,” J. Appl. Phys. 115(24), 244506 (2014).
[Crossref]
R. Nie, Y. Wang, and X. Deng, “Aligned Nanofibers as an Interfacial Layer for Achieving High-Detectivity and fast-response organic photodetectors,” ACS Appl. Mater. Interfaces 6(10), 7032–7037 (2014).
[Crossref]
[PubMed]
H. Wei, Y. Fang, Y. Yuan, L. Shen, and J. Huang, “Trap Engineering of CdTe Nanoparticle for High Gain, Fast Response, and Low Noise P3HT:CdTe Nanocomposite Photodetectors,” Adv. Mater. 27(34), 4975–4981 (2015).
[Crossref]
[PubMed]
B. Chen, X. Qiao, C.-M. Liu, C. Zhao, H.-C. Chen, K.-H. Wei, and B. Hu, “Effects of bulk and interfacial charge accumulation on fill factor in organic solar cells,” Appl. Phys. Lett. 102(19), 193302 (2013).
[Crossref]
[PubMed]
Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref]
[PubMed]
B. Arredondo, C. de Dios, R. Vergaz, A. R. Criado, B. Romero, B. Zimmermann, and U. Würfel, “Performance of ITO-free inverted organic bulk heterojunction photodetectors: Comparison with standard device architecture,” Org. Elec. 14(10), 2484–2490 (2013).
[Crossref]
X. Li, S. Wang, Y. Xiao, and X. Li, “A trap-assisted ultrasensitive near-infrared organic photomultiple photodetector based on y-type titanylphthalocyanine nanoparticles,” J. Mater. Chem. C 4(24), 5584–5592 (2016).
Y. Fang, F. Guo, Z. Xiao, and J. Huang, “Large gain, low noise nanocomposite ultraviolet photodetectors with a linear dynamic range of 120 db,” Adv. Opt. Mater 2(4), 348–353 (2014).
[Crossref]
F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[Crossref]
[PubMed]
D. Yang, K. Xu, X. Zhou, Y. Wang, and D. Ma, “Comprehensive studies of response characteristics of organic photodetectors based on rubrene and C60,” J. Appl. Phys. 115(24), 244506 (2014).
[Crossref]
J. D. Myers and J. G. Xue, “Organic Semiconductors and their Applications in Photovoltaic Devices,” Polym. Rev. (Phila. Pa.) 52(1), 1–37 (2012).
[Crossref]
W. T. Hammond and J. G. Xue, “Organic heterojunction photodiodes exhibiting low voltage, imaging-speed photocurrent gain,” Appl. Phys. Lett. 97(7), 073302 (2010).
[Crossref]
F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[Crossref]
[PubMed]
D. Yang, K. Xu, X. Zhou, Y. Wang, and D. Ma, “Comprehensive studies of response characteristics of organic photodetectors based on rubrene and C60,” J. Appl. Phys. 115(24), 244506 (2014).
[Crossref]
D. Z. Yang, X. K. Zhou, and D. G. Ma, “Fast response organic photodetectors with high detectivity based on rubrene and C60,” Org. Elec. 14(11), 3019–3023 (2013).
[Crossref]
J. Huang and Y. Yang, “Origin of photomultiplication in C60 based devices,” Appl. Phys. Lett. 91(20), 784 (2007).
L. Lv, Q. Lu, Y. Ning, Z. Lu, X. Wang, Z. Lou, A. Tang, Y. Hu, F. Teng, Y. Yin, and Y. Hou, “Self-Assembled TiO2 Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells,” Chem. Mater. 27(1), 44–52 (2015).
[Crossref]
H. Wei, Y. Fang, Y. Yuan, L. Shen, and J. Huang, “Trap Engineering of CdTe Nanoparticle for High Gain, Fast Response, and Low Noise P3HT:CdTe Nanocomposite Photodetectors,” Adv. Mater. 27(34), 4975–4981 (2015).
[Crossref]
[PubMed]
F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[Crossref]
[PubMed]
C. Zhang, L. Qi, Q. Chen, L. Lv, Y. Ning, Y. Hu, Y. Hou, and F. Teng, “Plasma treatment of ITO cathode to fabricate free electron selective layer in inverted polymer solar cells,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8715–8722 (2014).
[Crossref]
B. Chen, X. Qiao, C.-M. Liu, C. Zhao, H.-C. Chen, K.-H. Wei, and B. Hu, “Effects of bulk and interfacial charge accumulation on fill factor in organic solar cells,” Appl. Phys. Lett. 102(19), 193302 (2013).
[Crossref]
[PubMed]
D. Yang, K. Xu, X. Zhou, Y. Wang, and D. Ma, “Comprehensive studies of response characteristics of organic photodetectors based on rubrene and C60,” J. Appl. Phys. 115(24), 244506 (2014).
[Crossref]
D. Z. Yang, X. K. Zhou, and D. G. Ma, “Fast response organic photodetectors with high detectivity based on rubrene and C60,” Org. Elec. 14(11), 3019–3023 (2013).
[Crossref]
Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref]
[PubMed]
B. Arredondo, C. de Dios, R. Vergaz, A. R. Criado, B. Romero, B. Zimmermann, and U. Würfel, “Performance of ITO-free inverted organic bulk heterojunction photodetectors: Comparison with standard device architecture,” Org. Elec. 14(10), 2484–2490 (2013).
[Crossref]
J. M. Melancon and S. R. Živanović, “Broadband gain in poly(3-hexylthiophene):phenyl-C61-butyric-acid-methyl-ester photodetectors enabled by a semicontinuous gold interlayer,” Appl. Phys. Lett. 105(16), 163301 (2014).
[Crossref]