Abstract

Most organic photodetectors utilize a bulk heterojunction (BHJ) photo-active film due to its high exciton dissociation efficiency. However, the low dark current density, a key role in determining the overall performance of photodetectors, is hardly achieved in the BHJ structure since both the donor and acceptor domains are in contact with the same electrode. The most popular strategy to overcome this problem is by fabricating bilayer or multilayer devices. However, the complicated fabrication process is a challenge for printing electronics. In this work, we demonstrate a solution processed polymer photodetector based on a poly (3-hexylthiophene) (P3HT): (phenyl-C61-butyric-acid-methyl-ester) (PC61BM) blend film with polyethylenimine ethoxylated (PEIE) modified ITO electrode. The transparent PEIE efficiently blocks the unnecessary electronic charge injection between the active film and the electrode, which dramatically decrease the dark current. Under illumination, the photoexcited charges accumulated in the PEIE modified ITO region finally can tunnel through the barrier with the help of the applied reverse bias, leading to a large photocurrent. Therefore, the resulting polymer photodetector shows a 2.48 × 104 signal-to-noise ratio (SNR) under −0.3 V bias and an 11.4 MHz bandwidth across the visible spectra under a small reverse bias of 0.5 V. The maximum EQE of 3250% in the visible wavelength is obtained for the polymer photodetector at −1 V under 370 nm (3.07 μW/cm2) illumination. This solution processed polymer photodetector manufacturing is highly compatible with the flexible, low-cost, and large area organic electronic technologies.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Solution processed organic photodetector utilizing an interdiffused polymer/fullerene bilayer

Shafidah Shafian, Yoonhee Jang, and Kyungkon Kim
Opt. Express 23(15) A936-A946 (2015)

Homogeneous PCBM layers fabricated by horizontal-dip coating for efficient bilayer heterojunction organic photovoltaic cells

Yoon Ho Huh, In-Gon Bae, Hong Goo Jeon, and Byoungchoo Park
Opt. Express 24(22) A1321-A1335 (2016)

Bulk-heterojunction polymers in optically-induced dielectrophoretic devices for the manipulation of microparticles

Wei Wang, Yen-Heng Lin, Ruei-Syuan Guan, Ten-Chin Wen, Tzung-Fang Guo, and Gwo-Bin Lee
Opt. Express 17(20) 17603-17613 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Myers and J. G. Xue, “Organic Semiconductors and their Applications in Photovoltaic Devices,” Polym. Rev. (Phila. Pa.) 52(1), 1–37 (2012).
    [Crossref]
  2. K. J. Baeg, M. Binda, D. Natali, M. Caironi, and Y. Y. Noh, “Organic light detectors: photodiodes and phototransistors,” Adv. Mater. 25(31), 4267–4295 (2013).
    [Crossref] [PubMed]
  3. H. Wei, Y. Fang, Y. Yuan, L. Shen, and J. Huang, “Trap Engineering of CdTe Nanoparticle for High Gain, Fast Response, and Low Noise P3HT:CdTe Nanocomposite Photodetectors,” Adv. Mater. 27(34), 4975–4981 (2015).
    [Crossref] [PubMed]
  4. S. Shafian, Y. Jang, and K. Kim, “Solution processed organic photodetector utilizing an interdiffused polymer/fullerene bilayer,” Opt. Express 23(15), A936–A946 (2015).
    [Crossref] [PubMed]
  5. D. Z. Yang, X. K. Zhou, and D. G. Ma, “Fast response organic photodetectors with high detectivity based on rubrene and C60,” Org. Elec. 14(11), 3019–3023 (2013).
    [Crossref]
  6. D. Yang, K. Xu, X. Zhou, Y. Wang, and D. Ma, “Comprehensive studies of response characteristics of organic photodetectors based on rubrene and C60,” J. Appl. Phys. 115(24), 244506 (2014).
    [Crossref]
  7. W. T. Hammond and J. G. Xue, “Organic heterojunction photodiodes exhibiting low voltage, imaging-speed photocurrent gain,” Appl. Phys. Lett. 97(7), 073302 (2010).
    [Crossref]
  8. J. M. Melancon and S. R. Živanović, “Broadband gain in poly(3-hexylthiophene):phenyl-C61-butyric-acid-methyl-ester photodetectors enabled by a semicontinuous gold interlayer,” Appl. Phys. Lett. 105(16), 163301 (2014).
    [Crossref]
  9. F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
    [Crossref] [PubMed]
  10. F.-C. Chen, S.-C. Chien, and G.-L. Cious, “Highly sensitive, low-voltage, organic photomultiple photodetectors exhibiting broadband response,” Appl. Phys. Lett. 97(10), 103301 (2010).
    [Crossref]
  11. R. Nie, Y. Wang, and X. Deng, “Aligned Nanofibers as an Interfacial Layer for Achieving High-Detectivity and fast-response organic photodetectors,” ACS Appl. Mater. Interfaces 6(10), 7032–7037 (2014).
    [Crossref] [PubMed]
  12. Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
    [Crossref] [PubMed]
  13. P. E. Keivanidis, P. K. H. Ho, R. H. Friend, and N. C. Greenham, “The Dependence of Device Dark Current on the Active-Layer Morphology of Solution-Processed Organic Photodetectors,” Adv. Funct. Mater. 20(22), 3895–3903 (2010).
    [Crossref]
  14. B. Chen, X. Qiao, C.-M. Liu, C. Zhao, H.-C. Chen, K.-H. Wei, and B. Hu, “Effects of bulk and interfacial charge accumulation on fill factor in organic solar cells,” Appl. Phys. Lett. 102(19), 193302 (2013).
    [Crossref] [PubMed]
  15. S. Cho, K. D. Kim, J. Heo, J. Y. Lee, G. Cha, B. Y. Seo, Y. D. Kim, Y. S. Kim, S. Y. Choi, and D. C. Lim, “Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells,” Sci. Rep. 4, 4306 (2014).
    [Crossref] [PubMed]
  16. W. Tress, K. Leo, and M. Riede, “Photoconductivity as loss mechanism in organic solar cells,” (RRL) Phys. Status Solidi 7(6), 401–405 (2013).
    [Crossref]
  17. Y. Fang, F. Guo, Z. Xiao, and J. Huang, “Large gain, low noise nanocomposite ultraviolet photodetectors with a linear dynamic range of 120 db,” Adv. Opt. Mater 2(4), 348–353 (2014).
    [Crossref]
  18. J. Huang and Y. Yang, “Origin of photomultiplication in C60 based devices,” Appl. Phys. Lett. 91(20), 784 (2007).
  19. L. Lv, Q. Lu, Y. Ning, Z. Lu, X. Wang, Z. Lou, A. Tang, Y. Hu, F. Teng, Y. Yin, and Y. Hou, “Self-Assembled TiO2 Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells,” Chem. Mater. 27(1), 44–52 (2015).
    [Crossref]
  20. C. Zhang, L. Qi, Q. Chen, L. Lv, Y. Ning, Y. Hu, Y. Hou, and F. Teng, “Plasma treatment of ITO cathode to fabricate free electron selective layer in inverted polymer solar cells,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8715–8722 (2014).
    [Crossref]
  21. C. R. McNeill, I. Hwang, and N. C. Greenham, “Photocurrent transients in all-polymer solar cells: Trapping and detrapping effects,” J. Appl. Phys. 106(2), 024507 (2009).
    [Crossref]
  22. I. Hwang, C. R. McNeill, and N. C. Greenham, “Drift-diffusion modeling of photocurrent transients in bulk heterojunction solar cells,” J. Appl. Phys. 106(9), 094506 (2009).
    [Crossref]
  23. W. Tress, K. Leo, and M. Riede, “Influence of hole-transport layers and donor materials on open-circuit voltage and shape of i-v curves of organic solar cells,” Adv. Funct. Mater. 21(11), 2140–2149 (2011).
    [Crossref]
  24. W. Tress, S. Corvers, K. Leo, and M. Riede, “Investigation of driving forces for charge extraction in organic solar cells: transient photocurrent measurements on solar cells showing s-shaped current–voltage characteristics,” Adv. Energy Mater. 3(7), 873–880 (2013).
    [Crossref]
  25. G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, “Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states,” Nano Lett. 8(5), 1446–1450 (2008).
    [Crossref] [PubMed]
  26. G. Konstantatos and E. H. Sargent, “PbS colloidal quantum dot photoconductive photodetectors: Transport, traps, and gain,” Appl. Phys. Lett. 91(17), 173505 (2007).
    [Crossref]
  27. J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors,” Nat. Nanotechnol. 4(1), 40–44 (2009).
    [Crossref] [PubMed]
  28. B. D. Boruah, D. B. Ferry, A. Mukherjee, and A. Misra, “Few-layer graphene/ZnO nanowires based high performance UV photodetector,” Nanotechnology 26(23), 235703 (2015).
    [Crossref] [PubMed]
  29. G. Azzellino, A. Grimoldi, M. Binda, M. Caironi, D. Natali, and M. Sampietro, “Fully inkjet-printed organic photodetectors with high quantum yield,” Adv. Mater. 25(47), 6829–6833 (2013).
    [Crossref] [PubMed]
  30. B. Arredondo, B. Romero, J. M. Pena, A. Fernández-Pacheco, E. Alonso, R. Vergaz, and C. de Dios, “Visible light communication system using an organic bulk heterojunction photodetector,” Sensors (Basel) 13(9), 12266–12276 (2013).
    [Crossref] [PubMed]
  31. B. Arredondo, C. de Dios, R. Vergaz, A. R. Criado, B. Romero, B. Zimmermann, and U. Würfel, “Performance of ITO-free inverted organic bulk heterojunction photodetectors: Comparison with standard device architecture,” Org. Elec. 14(10), 2484–2490 (2013).
    [Crossref]
  32. M. Punke, S. Valouch, S. W. Kettlitz, N. Christ, C. Gärtner, M. Gerken, and U. Lemmer, “Dynamic characterization of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(7), 071118 (2007).
    [Crossref]
  33. P. Peumans, V. Bulović, and S. R. Forrest, “Efficient, high-bandwidth organic multilayer photodetectors,” Appl. Phys. Lett. 76(26), 3855–3857 (2000).
    [Crossref]
  34. M. Sofos, J. Goldberger, D. A. Stone, J. E. Allen, Q. Ma, D. J. Herman, W. W. Tsai, L. J. Lauhon, and S. I. Stupp, “A synergistic assembly of nanoscale lamellar photoconductor hybrids,” Nat. Mater. 8(1), 68–75 (2009).
    [Crossref] [PubMed]
  35. X. Li, S. Wang, Y. Xiao, and X. Li, “A trap-assisted ultrasensitive near-infrared organic photomultiple photodetector based on y-type titanylphthalocyanine nanoparticles,” J. Mater. Chem. C 4(24), 5584–5592 (2016).

2016 (1)

X. Li, S. Wang, Y. Xiao, and X. Li, “A trap-assisted ultrasensitive near-infrared organic photomultiple photodetector based on y-type titanylphthalocyanine nanoparticles,” J. Mater. Chem. C 4(24), 5584–5592 (2016).

2015 (4)

H. Wei, Y. Fang, Y. Yuan, L. Shen, and J. Huang, “Trap Engineering of CdTe Nanoparticle for High Gain, Fast Response, and Low Noise P3HT:CdTe Nanocomposite Photodetectors,” Adv. Mater. 27(34), 4975–4981 (2015).
[Crossref] [PubMed]

S. Shafian, Y. Jang, and K. Kim, “Solution processed organic photodetector utilizing an interdiffused polymer/fullerene bilayer,” Opt. Express 23(15), A936–A946 (2015).
[Crossref] [PubMed]

B. D. Boruah, D. B. Ferry, A. Mukherjee, and A. Misra, “Few-layer graphene/ZnO nanowires based high performance UV photodetector,” Nanotechnology 26(23), 235703 (2015).
[Crossref] [PubMed]

L. Lv, Q. Lu, Y. Ning, Z. Lu, X. Wang, Z. Lou, A. Tang, Y. Hu, F. Teng, Y. Yin, and Y. Hou, “Self-Assembled TiO2 Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells,” Chem. Mater. 27(1), 44–52 (2015).
[Crossref]

2014 (6)

C. Zhang, L. Qi, Q. Chen, L. Lv, Y. Ning, Y. Hu, Y. Hou, and F. Teng, “Plasma treatment of ITO cathode to fabricate free electron selective layer in inverted polymer solar cells,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8715–8722 (2014).
[Crossref]

S. Cho, K. D. Kim, J. Heo, J. Y. Lee, G. Cha, B. Y. Seo, Y. D. Kim, Y. S. Kim, S. Y. Choi, and D. C. Lim, “Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells,” Sci. Rep. 4, 4306 (2014).
[Crossref] [PubMed]

Y. Fang, F. Guo, Z. Xiao, and J. Huang, “Large gain, low noise nanocomposite ultraviolet photodetectors with a linear dynamic range of 120 db,” Adv. Opt. Mater 2(4), 348–353 (2014).
[Crossref]

D. Yang, K. Xu, X. Zhou, Y. Wang, and D. Ma, “Comprehensive studies of response characteristics of organic photodetectors based on rubrene and C60,” J. Appl. Phys. 115(24), 244506 (2014).
[Crossref]

J. M. Melancon and S. R. Živanović, “Broadband gain in poly(3-hexylthiophene):phenyl-C61-butyric-acid-methyl-ester photodetectors enabled by a semicontinuous gold interlayer,” Appl. Phys. Lett. 105(16), 163301 (2014).
[Crossref]

R. Nie, Y. Wang, and X. Deng, “Aligned Nanofibers as an Interfacial Layer for Achieving High-Detectivity and fast-response organic photodetectors,” ACS Appl. Mater. Interfaces 6(10), 7032–7037 (2014).
[Crossref] [PubMed]

2013 (8)

D. Z. Yang, X. K. Zhou, and D. G. Ma, “Fast response organic photodetectors with high detectivity based on rubrene and C60,” Org. Elec. 14(11), 3019–3023 (2013).
[Crossref]

B. Chen, X. Qiao, C.-M. Liu, C. Zhao, H.-C. Chen, K.-H. Wei, and B. Hu, “Effects of bulk and interfacial charge accumulation on fill factor in organic solar cells,” Appl. Phys. Lett. 102(19), 193302 (2013).
[Crossref] [PubMed]

W. Tress, K. Leo, and M. Riede, “Photoconductivity as loss mechanism in organic solar cells,” (RRL) Phys. Status Solidi 7(6), 401–405 (2013).
[Crossref]

G. Azzellino, A. Grimoldi, M. Binda, M. Caironi, D. Natali, and M. Sampietro, “Fully inkjet-printed organic photodetectors with high quantum yield,” Adv. Mater. 25(47), 6829–6833 (2013).
[Crossref] [PubMed]

B. Arredondo, B. Romero, J. M. Pena, A. Fernández-Pacheco, E. Alonso, R. Vergaz, and C. de Dios, “Visible light communication system using an organic bulk heterojunction photodetector,” Sensors (Basel) 13(9), 12266–12276 (2013).
[Crossref] [PubMed]

B. Arredondo, C. de Dios, R. Vergaz, A. R. Criado, B. Romero, B. Zimmermann, and U. Würfel, “Performance of ITO-free inverted organic bulk heterojunction photodetectors: Comparison with standard device architecture,” Org. Elec. 14(10), 2484–2490 (2013).
[Crossref]

W. Tress, S. Corvers, K. Leo, and M. Riede, “Investigation of driving forces for charge extraction in organic solar cells: transient photocurrent measurements on solar cells showing s-shaped current–voltage characteristics,” Adv. Energy Mater. 3(7), 873–880 (2013).
[Crossref]

K. J. Baeg, M. Binda, D. Natali, M. Caironi, and Y. Y. Noh, “Organic light detectors: photodiodes and phototransistors,” Adv. Mater. 25(31), 4267–4295 (2013).
[Crossref] [PubMed]

2012 (3)

J. D. Myers and J. G. Xue, “Organic Semiconductors and their Applications in Photovoltaic Devices,” Polym. Rev. (Phila. Pa.) 52(1), 1–37 (2012).
[Crossref]

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[Crossref] [PubMed]

2011 (1)

W. Tress, K. Leo, and M. Riede, “Influence of hole-transport layers and donor materials on open-circuit voltage and shape of i-v curves of organic solar cells,” Adv. Funct. Mater. 21(11), 2140–2149 (2011).
[Crossref]

2010 (3)

F.-C. Chen, S.-C. Chien, and G.-L. Cious, “Highly sensitive, low-voltage, organic photomultiple photodetectors exhibiting broadband response,” Appl. Phys. Lett. 97(10), 103301 (2010).
[Crossref]

W. T. Hammond and J. G. Xue, “Organic heterojunction photodiodes exhibiting low voltage, imaging-speed photocurrent gain,” Appl. Phys. Lett. 97(7), 073302 (2010).
[Crossref]

P. E. Keivanidis, P. K. H. Ho, R. H. Friend, and N. C. Greenham, “The Dependence of Device Dark Current on the Active-Layer Morphology of Solution-Processed Organic Photodetectors,” Adv. Funct. Mater. 20(22), 3895–3903 (2010).
[Crossref]

2009 (4)

C. R. McNeill, I. Hwang, and N. C. Greenham, “Photocurrent transients in all-polymer solar cells: Trapping and detrapping effects,” J. Appl. Phys. 106(2), 024507 (2009).
[Crossref]

I. Hwang, C. R. McNeill, and N. C. Greenham, “Drift-diffusion modeling of photocurrent transients in bulk heterojunction solar cells,” J. Appl. Phys. 106(9), 094506 (2009).
[Crossref]

J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors,” Nat. Nanotechnol. 4(1), 40–44 (2009).
[Crossref] [PubMed]

M. Sofos, J. Goldberger, D. A. Stone, J. E. Allen, Q. Ma, D. J. Herman, W. W. Tsai, L. J. Lauhon, and S. I. Stupp, “A synergistic assembly of nanoscale lamellar photoconductor hybrids,” Nat. Mater. 8(1), 68–75 (2009).
[Crossref] [PubMed]

2008 (1)

G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, “Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states,” Nano Lett. 8(5), 1446–1450 (2008).
[Crossref] [PubMed]

2007 (3)

G. Konstantatos and E. H. Sargent, “PbS colloidal quantum dot photoconductive photodetectors: Transport, traps, and gain,” Appl. Phys. Lett. 91(17), 173505 (2007).
[Crossref]

M. Punke, S. Valouch, S. W. Kettlitz, N. Christ, C. Gärtner, M. Gerken, and U. Lemmer, “Dynamic characterization of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(7), 071118 (2007).
[Crossref]

J. Huang and Y. Yang, “Origin of photomultiplication in C60 based devices,” Appl. Phys. Lett. 91(20), 784 (2007).

2000 (1)

P. Peumans, V. Bulović, and S. R. Forrest, “Efficient, high-bandwidth organic multilayer photodetectors,” Appl. Phys. Lett. 76(26), 3855–3857 (2000).
[Crossref]

Allen, J. E.

M. Sofos, J. Goldberger, D. A. Stone, J. E. Allen, Q. Ma, D. J. Herman, W. W. Tsai, L. J. Lauhon, and S. I. Stupp, “A synergistic assembly of nanoscale lamellar photoconductor hybrids,” Nat. Mater. 8(1), 68–75 (2009).
[Crossref] [PubMed]

Alonso, E.

B. Arredondo, B. Romero, J. M. Pena, A. Fernández-Pacheco, E. Alonso, R. Vergaz, and C. de Dios, “Visible light communication system using an organic bulk heterojunction photodetector,” Sensors (Basel) 13(9), 12266–12276 (2013).
[Crossref] [PubMed]

Arredondo, B.

B. Arredondo, B. Romero, J. M. Pena, A. Fernández-Pacheco, E. Alonso, R. Vergaz, and C. de Dios, “Visible light communication system using an organic bulk heterojunction photodetector,” Sensors (Basel) 13(9), 12266–12276 (2013).
[Crossref] [PubMed]

B. Arredondo, C. de Dios, R. Vergaz, A. R. Criado, B. Romero, B. Zimmermann, and U. Würfel, “Performance of ITO-free inverted organic bulk heterojunction photodetectors: Comparison with standard device architecture,” Org. Elec. 14(10), 2484–2490 (2013).
[Crossref]

Azzellino, G.

G. Azzellino, A. Grimoldi, M. Binda, M. Caironi, D. Natali, and M. Sampietro, “Fully inkjet-printed organic photodetectors with high quantum yield,” Adv. Mater. 25(47), 6829–6833 (2013).
[Crossref] [PubMed]

Baeg, K. J.

K. J. Baeg, M. Binda, D. Natali, M. Caironi, and Y. Y. Noh, “Organic light detectors: photodiodes and phototransistors,” Adv. Mater. 25(31), 4267–4295 (2013).
[Crossref] [PubMed]

Barlow, S.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Bi, Y.

F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[Crossref] [PubMed]

Binda, M.

K. J. Baeg, M. Binda, D. Natali, M. Caironi, and Y. Y. Noh, “Organic light detectors: photodiodes and phototransistors,” Adv. Mater. 25(31), 4267–4295 (2013).
[Crossref] [PubMed]

G. Azzellino, A. Grimoldi, M. Binda, M. Caironi, D. Natali, and M. Sampietro, “Fully inkjet-printed organic photodetectors with high quantum yield,” Adv. Mater. 25(47), 6829–6833 (2013).
[Crossref] [PubMed]

Boruah, B. D.

B. D. Boruah, D. B. Ferry, A. Mukherjee, and A. Misra, “Few-layer graphene/ZnO nanowires based high performance UV photodetector,” Nanotechnology 26(23), 235703 (2015).
[Crossref] [PubMed]

Brédas, J. L.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Bulovic, V.

P. Peumans, V. Bulović, and S. R. Forrest, “Efficient, high-bandwidth organic multilayer photodetectors,” Appl. Phys. Lett. 76(26), 3855–3857 (2000).
[Crossref]

Caironi, M.

K. J. Baeg, M. Binda, D. Natali, M. Caironi, and Y. Y. Noh, “Organic light detectors: photodiodes and phototransistors,” Adv. Mater. 25(31), 4267–4295 (2013).
[Crossref] [PubMed]

G. Azzellino, A. Grimoldi, M. Binda, M. Caironi, D. Natali, and M. Sampietro, “Fully inkjet-printed organic photodetectors with high quantum yield,” Adv. Mater. 25(47), 6829–6833 (2013).
[Crossref] [PubMed]

Cha, G.

S. Cho, K. D. Kim, J. Heo, J. Y. Lee, G. Cha, B. Y. Seo, Y. D. Kim, Y. S. Kim, S. Y. Choi, and D. C. Lim, “Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells,” Sci. Rep. 4, 4306 (2014).
[Crossref] [PubMed]

Chen, B.

B. Chen, X. Qiao, C.-M. Liu, C. Zhao, H.-C. Chen, K.-H. Wei, and B. Hu, “Effects of bulk and interfacial charge accumulation on fill factor in organic solar cells,” Appl. Phys. Lett. 102(19), 193302 (2013).
[Crossref] [PubMed]

Chen, F.-C.

F.-C. Chen, S.-C. Chien, and G.-L. Cious, “Highly sensitive, low-voltage, organic photomultiple photodetectors exhibiting broadband response,” Appl. Phys. Lett. 97(10), 103301 (2010).
[Crossref]

Chen, H.-C.

B. Chen, X. Qiao, C.-M. Liu, C. Zhao, H.-C. Chen, K.-H. Wei, and B. Hu, “Effects of bulk and interfacial charge accumulation on fill factor in organic solar cells,” Appl. Phys. Lett. 102(19), 193302 (2013).
[Crossref] [PubMed]

Chen, Q.

C. Zhang, L. Qi, Q. Chen, L. Lv, Y. Ning, Y. Hu, Y. Hou, and F. Teng, “Plasma treatment of ITO cathode to fabricate free electron selective layer in inverted polymer solar cells,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8715–8722 (2014).
[Crossref]

Cheun, H.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Chien, S.-C.

F.-C. Chen, S.-C. Chien, and G.-L. Cious, “Highly sensitive, low-voltage, organic photomultiple photodetectors exhibiting broadband response,” Appl. Phys. Lett. 97(10), 103301 (2010).
[Crossref]

Cho, S.

S. Cho, K. D. Kim, J. Heo, J. Y. Lee, G. Cha, B. Y. Seo, Y. D. Kim, Y. S. Kim, S. Y. Choi, and D. C. Lim, “Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells,” Sci. Rep. 4, 4306 (2014).
[Crossref] [PubMed]

Choi, S. Y.

S. Cho, K. D. Kim, J. Heo, J. Y. Lee, G. Cha, B. Y. Seo, Y. D. Kim, Y. S. Kim, S. Y. Choi, and D. C. Lim, “Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells,” Sci. Rep. 4, 4306 (2014).
[Crossref] [PubMed]

Christ, N.

M. Punke, S. Valouch, S. W. Kettlitz, N. Christ, C. Gärtner, M. Gerken, and U. Lemmer, “Dynamic characterization of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(7), 071118 (2007).
[Crossref]

Cious, G.-L.

F.-C. Chen, S.-C. Chien, and G.-L. Cious, “Highly sensitive, low-voltage, organic photomultiple photodetectors exhibiting broadband response,” Appl. Phys. Lett. 97(10), 103301 (2010).
[Crossref]

Clifford, J. P.

J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors,” Nat. Nanotechnol. 4(1), 40–44 (2009).
[Crossref] [PubMed]

Corvers, S.

W. Tress, S. Corvers, K. Leo, and M. Riede, “Investigation of driving forces for charge extraction in organic solar cells: transient photocurrent measurements on solar cells showing s-shaped current–voltage characteristics,” Adv. Energy Mater. 3(7), 873–880 (2013).
[Crossref]

Criado, A. R.

B. Arredondo, C. de Dios, R. Vergaz, A. R. Criado, B. Romero, B. Zimmermann, and U. Würfel, “Performance of ITO-free inverted organic bulk heterojunction photodetectors: Comparison with standard device architecture,” Org. Elec. 14(10), 2484–2490 (2013).
[Crossref]

de Dios, C.

B. Arredondo, C. de Dios, R. Vergaz, A. R. Criado, B. Romero, B. Zimmermann, and U. Würfel, “Performance of ITO-free inverted organic bulk heterojunction photodetectors: Comparison with standard device architecture,” Org. Elec. 14(10), 2484–2490 (2013).
[Crossref]

B. Arredondo, B. Romero, J. M. Pena, A. Fernández-Pacheco, E. Alonso, R. Vergaz, and C. de Dios, “Visible light communication system using an organic bulk heterojunction photodetector,” Sensors (Basel) 13(9), 12266–12276 (2013).
[Crossref] [PubMed]

Deng, X.

R. Nie, Y. Wang, and X. Deng, “Aligned Nanofibers as an Interfacial Layer for Achieving High-Detectivity and fast-response organic photodetectors,” ACS Appl. Mater. Interfaces 6(10), 7032–7037 (2014).
[Crossref] [PubMed]

Dindar, A.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Dong, Q.

F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[Crossref] [PubMed]

Fang, Y.

H. Wei, Y. Fang, Y. Yuan, L. Shen, and J. Huang, “Trap Engineering of CdTe Nanoparticle for High Gain, Fast Response, and Low Noise P3HT:CdTe Nanocomposite Photodetectors,” Adv. Mater. 27(34), 4975–4981 (2015).
[Crossref] [PubMed]

Y. Fang, F. Guo, Z. Xiao, and J. Huang, “Large gain, low noise nanocomposite ultraviolet photodetectors with a linear dynamic range of 120 db,” Adv. Opt. Mater 2(4), 348–353 (2014).
[Crossref]

Fenoll, M.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Fernández-Pacheco, A.

B. Arredondo, B. Romero, J. M. Pena, A. Fernández-Pacheco, E. Alonso, R. Vergaz, and C. de Dios, “Visible light communication system using an organic bulk heterojunction photodetector,” Sensors (Basel) 13(9), 12266–12276 (2013).
[Crossref] [PubMed]

Ferry, D. B.

B. D. Boruah, D. B. Ferry, A. Mukherjee, and A. Misra, “Few-layer graphene/ZnO nanowires based high performance UV photodetector,” Nanotechnology 26(23), 235703 (2015).
[Crossref] [PubMed]

Fischer, A.

G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, “Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states,” Nano Lett. 8(5), 1446–1450 (2008).
[Crossref] [PubMed]

Forrest, S. R.

P. Peumans, V. Bulović, and S. R. Forrest, “Efficient, high-bandwidth organic multilayer photodetectors,” Appl. Phys. Lett. 76(26), 3855–3857 (2000).
[Crossref]

Friend, R. H.

P. E. Keivanidis, P. K. H. Ho, R. H. Friend, and N. C. Greenham, “The Dependence of Device Dark Current on the Active-Layer Morphology of Solution-Processed Organic Photodetectors,” Adv. Funct. Mater. 20(22), 3895–3903 (2010).
[Crossref]

Fuentes-Hernandez, C.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Gärtner, C.

M. Punke, S. Valouch, S. W. Kettlitz, N. Christ, C. Gärtner, M. Gerken, and U. Lemmer, “Dynamic characterization of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(7), 071118 (2007).
[Crossref]

Gerken, M.

M. Punke, S. Valouch, S. W. Kettlitz, N. Christ, C. Gärtner, M. Gerken, and U. Lemmer, “Dynamic characterization of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(7), 071118 (2007).
[Crossref]

Giordano, A. J.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Goldberger, J.

M. Sofos, J. Goldberger, D. A. Stone, J. E. Allen, Q. Ma, D. J. Herman, W. W. Tsai, L. J. Lauhon, and S. I. Stupp, “A synergistic assembly of nanoscale lamellar photoconductor hybrids,” Nat. Mater. 8(1), 68–75 (2009).
[Crossref] [PubMed]

Graham, S.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Greenham, N. C.

P. E. Keivanidis, P. K. H. Ho, R. H. Friend, and N. C. Greenham, “The Dependence of Device Dark Current on the Active-Layer Morphology of Solution-Processed Organic Photodetectors,” Adv. Funct. Mater. 20(22), 3895–3903 (2010).
[Crossref]

I. Hwang, C. R. McNeill, and N. C. Greenham, “Drift-diffusion modeling of photocurrent transients in bulk heterojunction solar cells,” J. Appl. Phys. 106(9), 094506 (2009).
[Crossref]

C. R. McNeill, I. Hwang, and N. C. Greenham, “Photocurrent transients in all-polymer solar cells: Trapping and detrapping effects,” J. Appl. Phys. 106(2), 024507 (2009).
[Crossref]

Grimoldi, A.

G. Azzellino, A. Grimoldi, M. Binda, M. Caironi, D. Natali, and M. Sampietro, “Fully inkjet-printed organic photodetectors with high quantum yield,” Adv. Mater. 25(47), 6829–6833 (2013).
[Crossref] [PubMed]

Guo, F.

Y. Fang, F. Guo, Z. Xiao, and J. Huang, “Large gain, low noise nanocomposite ultraviolet photodetectors with a linear dynamic range of 120 db,” Adv. Opt. Mater 2(4), 348–353 (2014).
[Crossref]

F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[Crossref] [PubMed]

Hammond, W. T.

W. T. Hammond and J. G. Xue, “Organic heterojunction photodiodes exhibiting low voltage, imaging-speed photocurrent gain,” Appl. Phys. Lett. 97(7), 073302 (2010).
[Crossref]

Haske, W.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Heo, J.

S. Cho, K. D. Kim, J. Heo, J. Y. Lee, G. Cha, B. Y. Seo, Y. D. Kim, Y. S. Kim, S. Y. Choi, and D. C. Lim, “Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells,” Sci. Rep. 4, 4306 (2014).
[Crossref] [PubMed]

Herman, D. J.

M. Sofos, J. Goldberger, D. A. Stone, J. E. Allen, Q. Ma, D. J. Herman, W. W. Tsai, L. J. Lauhon, and S. I. Stupp, “A synergistic assembly of nanoscale lamellar photoconductor hybrids,” Nat. Mater. 8(1), 68–75 (2009).
[Crossref] [PubMed]

Ho, P. K. H.

P. E. Keivanidis, P. K. H. Ho, R. H. Friend, and N. C. Greenham, “The Dependence of Device Dark Current on the Active-Layer Morphology of Solution-Processed Organic Photodetectors,” Adv. Funct. Mater. 20(22), 3895–3903 (2010).
[Crossref]

Hoogland, S.

J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors,” Nat. Nanotechnol. 4(1), 40–44 (2009).
[Crossref] [PubMed]

Hou, Y.

L. Lv, Q. Lu, Y. Ning, Z. Lu, X. Wang, Z. Lou, A. Tang, Y. Hu, F. Teng, Y. Yin, and Y. Hou, “Self-Assembled TiO2 Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells,” Chem. Mater. 27(1), 44–52 (2015).
[Crossref]

C. Zhang, L. Qi, Q. Chen, L. Lv, Y. Ning, Y. Hu, Y. Hou, and F. Teng, “Plasma treatment of ITO cathode to fabricate free electron selective layer in inverted polymer solar cells,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8715–8722 (2014).
[Crossref]

Hu, B.

B. Chen, X. Qiao, C.-M. Liu, C. Zhao, H.-C. Chen, K.-H. Wei, and B. Hu, “Effects of bulk and interfacial charge accumulation on fill factor in organic solar cells,” Appl. Phys. Lett. 102(19), 193302 (2013).
[Crossref] [PubMed]

Hu, Y.

L. Lv, Q. Lu, Y. Ning, Z. Lu, X. Wang, Z. Lou, A. Tang, Y. Hu, F. Teng, Y. Yin, and Y. Hou, “Self-Assembled TiO2 Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells,” Chem. Mater. 27(1), 44–52 (2015).
[Crossref]

C. Zhang, L. Qi, Q. Chen, L. Lv, Y. Ning, Y. Hu, Y. Hou, and F. Teng, “Plasma treatment of ITO cathode to fabricate free electron selective layer in inverted polymer solar cells,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8715–8722 (2014).
[Crossref]

Huang, J.

H. Wei, Y. Fang, Y. Yuan, L. Shen, and J. Huang, “Trap Engineering of CdTe Nanoparticle for High Gain, Fast Response, and Low Noise P3HT:CdTe Nanocomposite Photodetectors,” Adv. Mater. 27(34), 4975–4981 (2015).
[Crossref] [PubMed]

Y. Fang, F. Guo, Z. Xiao, and J. Huang, “Large gain, low noise nanocomposite ultraviolet photodetectors with a linear dynamic range of 120 db,” Adv. Opt. Mater 2(4), 348–353 (2014).
[Crossref]

F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[Crossref] [PubMed]

J. Huang and Y. Yang, “Origin of photomultiplication in C60 based devices,” Appl. Phys. Lett. 91(20), 784 (2007).

Hwang, I.

I. Hwang, C. R. McNeill, and N. C. Greenham, “Drift-diffusion modeling of photocurrent transients in bulk heterojunction solar cells,” J. Appl. Phys. 106(9), 094506 (2009).
[Crossref]

C. R. McNeill, I. Hwang, and N. C. Greenham, “Photocurrent transients in all-polymer solar cells: Trapping and detrapping effects,” J. Appl. Phys. 106(2), 024507 (2009).
[Crossref]

Jang, Y.

Johnston, K. W.

J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors,” Nat. Nanotechnol. 4(1), 40–44 (2009).
[Crossref] [PubMed]

Kahn, A.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Keivanidis, P. E.

P. E. Keivanidis, P. K. H. Ho, R. H. Friend, and N. C. Greenham, “The Dependence of Device Dark Current on the Active-Layer Morphology of Solution-Processed Organic Photodetectors,” Adv. Funct. Mater. 20(22), 3895–3903 (2010).
[Crossref]

Kettlitz, S. W.

M. Punke, S. Valouch, S. W. Kettlitz, N. Christ, C. Gärtner, M. Gerken, and U. Lemmer, “Dynamic characterization of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(7), 071118 (2007).
[Crossref]

Khan, T. M.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Kim, J.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Kim, K.

Kim, K. D.

S. Cho, K. D. Kim, J. Heo, J. Y. Lee, G. Cha, B. Y. Seo, Y. D. Kim, Y. S. Kim, S. Y. Choi, and D. C. Lim, “Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells,” Sci. Rep. 4, 4306 (2014).
[Crossref] [PubMed]

Kim, Y. D.

S. Cho, K. D. Kim, J. Heo, J. Y. Lee, G. Cha, B. Y. Seo, Y. D. Kim, Y. S. Kim, S. Y. Choi, and D. C. Lim, “Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells,” Sci. Rep. 4, 4306 (2014).
[Crossref] [PubMed]

Kim, Y. S.

S. Cho, K. D. Kim, J. Heo, J. Y. Lee, G. Cha, B. Y. Seo, Y. D. Kim, Y. S. Kim, S. Y. Choi, and D. C. Lim, “Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells,” Sci. Rep. 4, 4306 (2014).
[Crossref] [PubMed]

Kippelen, B.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Konstantatos, G.

J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors,” Nat. Nanotechnol. 4(1), 40–44 (2009).
[Crossref] [PubMed]

G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, “Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states,” Nano Lett. 8(5), 1446–1450 (2008).
[Crossref] [PubMed]

G. Konstantatos and E. H. Sargent, “PbS colloidal quantum dot photoconductive photodetectors: Transport, traps, and gain,” Appl. Phys. Lett. 91(17), 173505 (2007).
[Crossref]

Lauhon, L. J.

M. Sofos, J. Goldberger, D. A. Stone, J. E. Allen, Q. Ma, D. J. Herman, W. W. Tsai, L. J. Lauhon, and S. I. Stupp, “A synergistic assembly of nanoscale lamellar photoconductor hybrids,” Nat. Mater. 8(1), 68–75 (2009).
[Crossref] [PubMed]

Lee, J. Y.

S. Cho, K. D. Kim, J. Heo, J. Y. Lee, G. Cha, B. Y. Seo, Y. D. Kim, Y. S. Kim, S. Y. Choi, and D. C. Lim, “Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells,” Sci. Rep. 4, 4306 (2014).
[Crossref] [PubMed]

Lemmer, U.

M. Punke, S. Valouch, S. W. Kettlitz, N. Christ, C. Gärtner, M. Gerken, and U. Lemmer, “Dynamic characterization of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(7), 071118 (2007).
[Crossref]

Leo, K.

W. Tress, K. Leo, and M. Riede, “Photoconductivity as loss mechanism in organic solar cells,” (RRL) Phys. Status Solidi 7(6), 401–405 (2013).
[Crossref]

W. Tress, S. Corvers, K. Leo, and M. Riede, “Investigation of driving forces for charge extraction in organic solar cells: transient photocurrent measurements on solar cells showing s-shaped current–voltage characteristics,” Adv. Energy Mater. 3(7), 873–880 (2013).
[Crossref]

W. Tress, K. Leo, and M. Riede, “Influence of hole-transport layers and donor materials on open-circuit voltage and shape of i-v curves of organic solar cells,” Adv. Funct. Mater. 21(11), 2140–2149 (2011).
[Crossref]

Levina, L.

J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors,” Nat. Nanotechnol. 4(1), 40–44 (2009).
[Crossref] [PubMed]

G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, “Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states,” Nano Lett. 8(5), 1446–1450 (2008).
[Crossref] [PubMed]

Li, H.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Li, X.

X. Li, S. Wang, Y. Xiao, and X. Li, “A trap-assisted ultrasensitive near-infrared organic photomultiple photodetector based on y-type titanylphthalocyanine nanoparticles,” J. Mater. Chem. C 4(24), 5584–5592 (2016).

X. Li, S. Wang, Y. Xiao, and X. Li, “A trap-assisted ultrasensitive near-infrared organic photomultiple photodetector based on y-type titanylphthalocyanine nanoparticles,” J. Mater. Chem. C 4(24), 5584–5592 (2016).

Lim, D. C.

S. Cho, K. D. Kim, J. Heo, J. Y. Lee, G. Cha, B. Y. Seo, Y. D. Kim, Y. S. Kim, S. Y. Choi, and D. C. Lim, “Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells,” Sci. Rep. 4, 4306 (2014).
[Crossref] [PubMed]

Liu, C.-M.

B. Chen, X. Qiao, C.-M. Liu, C. Zhao, H.-C. Chen, K.-H. Wei, and B. Hu, “Effects of bulk and interfacial charge accumulation on fill factor in organic solar cells,” Appl. Phys. Lett. 102(19), 193302 (2013).
[Crossref] [PubMed]

Lou, Z.

L. Lv, Q. Lu, Y. Ning, Z. Lu, X. Wang, Z. Lou, A. Tang, Y. Hu, F. Teng, Y. Yin, and Y. Hou, “Self-Assembled TiO2 Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells,” Chem. Mater. 27(1), 44–52 (2015).
[Crossref]

Lu, Q.

L. Lv, Q. Lu, Y. Ning, Z. Lu, X. Wang, Z. Lou, A. Tang, Y. Hu, F. Teng, Y. Yin, and Y. Hou, “Self-Assembled TiO2 Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells,” Chem. Mater. 27(1), 44–52 (2015).
[Crossref]

Lu, Z.

L. Lv, Q. Lu, Y. Ning, Z. Lu, X. Wang, Z. Lou, A. Tang, Y. Hu, F. Teng, Y. Yin, and Y. Hou, “Self-Assembled TiO2 Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells,” Chem. Mater. 27(1), 44–52 (2015).
[Crossref]

Lv, L.

L. Lv, Q. Lu, Y. Ning, Z. Lu, X. Wang, Z. Lou, A. Tang, Y. Hu, F. Teng, Y. Yin, and Y. Hou, “Self-Assembled TiO2 Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells,” Chem. Mater. 27(1), 44–52 (2015).
[Crossref]

C. Zhang, L. Qi, Q. Chen, L. Lv, Y. Ning, Y. Hu, Y. Hou, and F. Teng, “Plasma treatment of ITO cathode to fabricate free electron selective layer in inverted polymer solar cells,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8715–8722 (2014).
[Crossref]

Ma, D.

D. Yang, K. Xu, X. Zhou, Y. Wang, and D. Ma, “Comprehensive studies of response characteristics of organic photodetectors based on rubrene and C60,” J. Appl. Phys. 115(24), 244506 (2014).
[Crossref]

Ma, D. G.

D. Z. Yang, X. K. Zhou, and D. G. Ma, “Fast response organic photodetectors with high detectivity based on rubrene and C60,” Org. Elec. 14(11), 3019–3023 (2013).
[Crossref]

Ma, Q.

M. Sofos, J. Goldberger, D. A. Stone, J. E. Allen, Q. Ma, D. J. Herman, W. W. Tsai, L. J. Lauhon, and S. I. Stupp, “A synergistic assembly of nanoscale lamellar photoconductor hybrids,” Nat. Mater. 8(1), 68–75 (2009).
[Crossref] [PubMed]

Marder, S. R.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

McNeill, C. R.

C. R. McNeill, I. Hwang, and N. C. Greenham, “Photocurrent transients in all-polymer solar cells: Trapping and detrapping effects,” J. Appl. Phys. 106(2), 024507 (2009).
[Crossref]

I. Hwang, C. R. McNeill, and N. C. Greenham, “Drift-diffusion modeling of photocurrent transients in bulk heterojunction solar cells,” J. Appl. Phys. 106(9), 094506 (2009).
[Crossref]

Melancon, J. M.

J. M. Melancon and S. R. Živanović, “Broadband gain in poly(3-hexylthiophene):phenyl-C61-butyric-acid-methyl-ester photodetectors enabled by a semicontinuous gold interlayer,” Appl. Phys. Lett. 105(16), 163301 (2014).
[Crossref]

Meyer, J.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Misra, A.

B. D. Boruah, D. B. Ferry, A. Mukherjee, and A. Misra, “Few-layer graphene/ZnO nanowires based high performance UV photodetector,” Nanotechnology 26(23), 235703 (2015).
[Crossref] [PubMed]

Mukherjee, A.

B. D. Boruah, D. B. Ferry, A. Mukherjee, and A. Misra, “Few-layer graphene/ZnO nanowires based high performance UV photodetector,” Nanotechnology 26(23), 235703 (2015).
[Crossref] [PubMed]

Myers, J. D.

J. D. Myers and J. G. Xue, “Organic Semiconductors and their Applications in Photovoltaic Devices,” Polym. Rev. (Phila. Pa.) 52(1), 1–37 (2012).
[Crossref]

Najafabadi, E.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Natali, D.

K. J. Baeg, M. Binda, D. Natali, M. Caironi, and Y. Y. Noh, “Organic light detectors: photodiodes and phototransistors,” Adv. Mater. 25(31), 4267–4295 (2013).
[Crossref] [PubMed]

G. Azzellino, A. Grimoldi, M. Binda, M. Caironi, D. Natali, and M. Sampietro, “Fully inkjet-printed organic photodetectors with high quantum yield,” Adv. Mater. 25(47), 6829–6833 (2013).
[Crossref] [PubMed]

Nie, R.

R. Nie, Y. Wang, and X. Deng, “Aligned Nanofibers as an Interfacial Layer for Achieving High-Detectivity and fast-response organic photodetectors,” ACS Appl. Mater. Interfaces 6(10), 7032–7037 (2014).
[Crossref] [PubMed]

Ning, Y.

L. Lv, Q. Lu, Y. Ning, Z. Lu, X. Wang, Z. Lou, A. Tang, Y. Hu, F. Teng, Y. Yin, and Y. Hou, “Self-Assembled TiO2 Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells,” Chem. Mater. 27(1), 44–52 (2015).
[Crossref]

C. Zhang, L. Qi, Q. Chen, L. Lv, Y. Ning, Y. Hu, Y. Hou, and F. Teng, “Plasma treatment of ITO cathode to fabricate free electron selective layer in inverted polymer solar cells,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8715–8722 (2014).
[Crossref]

Noh, Y. Y.

K. J. Baeg, M. Binda, D. Natali, M. Caironi, and Y. Y. Noh, “Organic light detectors: photodiodes and phototransistors,” Adv. Mater. 25(31), 4267–4295 (2013).
[Crossref] [PubMed]

Papadopoulos, T.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Pena, J. M.

B. Arredondo, B. Romero, J. M. Pena, A. Fernández-Pacheco, E. Alonso, R. Vergaz, and C. de Dios, “Visible light communication system using an organic bulk heterojunction photodetector,” Sensors (Basel) 13(9), 12266–12276 (2013).
[Crossref] [PubMed]

Peumans, P.

P. Peumans, V. Bulović, and S. R. Forrest, “Efficient, high-bandwidth organic multilayer photodetectors,” Appl. Phys. Lett. 76(26), 3855–3857 (2000).
[Crossref]

Punke, M.

M. Punke, S. Valouch, S. W. Kettlitz, N. Christ, C. Gärtner, M. Gerken, and U. Lemmer, “Dynamic characterization of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(7), 071118 (2007).
[Crossref]

Qi, L.

C. Zhang, L. Qi, Q. Chen, L. Lv, Y. Ning, Y. Hu, Y. Hou, and F. Teng, “Plasma treatment of ITO cathode to fabricate free electron selective layer in inverted polymer solar cells,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8715–8722 (2014).
[Crossref]

Qiao, X.

B. Chen, X. Qiao, C.-M. Liu, C. Zhao, H.-C. Chen, K.-H. Wei, and B. Hu, “Effects of bulk and interfacial charge accumulation on fill factor in organic solar cells,” Appl. Phys. Lett. 102(19), 193302 (2013).
[Crossref] [PubMed]

Riede, M.

W. Tress, S. Corvers, K. Leo, and M. Riede, “Investigation of driving forces for charge extraction in organic solar cells: transient photocurrent measurements on solar cells showing s-shaped current–voltage characteristics,” Adv. Energy Mater. 3(7), 873–880 (2013).
[Crossref]

W. Tress, K. Leo, and M. Riede, “Photoconductivity as loss mechanism in organic solar cells,” (RRL) Phys. Status Solidi 7(6), 401–405 (2013).
[Crossref]

W. Tress, K. Leo, and M. Riede, “Influence of hole-transport layers and donor materials on open-circuit voltage and shape of i-v curves of organic solar cells,” Adv. Funct. Mater. 21(11), 2140–2149 (2011).
[Crossref]

Romero, B.

B. Arredondo, C. de Dios, R. Vergaz, A. R. Criado, B. Romero, B. Zimmermann, and U. Würfel, “Performance of ITO-free inverted organic bulk heterojunction photodetectors: Comparison with standard device architecture,” Org. Elec. 14(10), 2484–2490 (2013).
[Crossref]

B. Arredondo, B. Romero, J. M. Pena, A. Fernández-Pacheco, E. Alonso, R. Vergaz, and C. de Dios, “Visible light communication system using an organic bulk heterojunction photodetector,” Sensors (Basel) 13(9), 12266–12276 (2013).
[Crossref] [PubMed]

Sampietro, M.

G. Azzellino, A. Grimoldi, M. Binda, M. Caironi, D. Natali, and M. Sampietro, “Fully inkjet-printed organic photodetectors with high quantum yield,” Adv. Mater. 25(47), 6829–6833 (2013).
[Crossref] [PubMed]

Sargent, E. H.

J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors,” Nat. Nanotechnol. 4(1), 40–44 (2009).
[Crossref] [PubMed]

G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, “Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states,” Nano Lett. 8(5), 1446–1450 (2008).
[Crossref] [PubMed]

G. Konstantatos and E. H. Sargent, “PbS colloidal quantum dot photoconductive photodetectors: Transport, traps, and gain,” Appl. Phys. Lett. 91(17), 173505 (2007).
[Crossref]

Seo, B. Y.

S. Cho, K. D. Kim, J. Heo, J. Y. Lee, G. Cha, B. Y. Seo, Y. D. Kim, Y. S. Kim, S. Y. Choi, and D. C. Lim, “Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells,” Sci. Rep. 4, 4306 (2014).
[Crossref] [PubMed]

Shafian, S.

Shen, L.

H. Wei, Y. Fang, Y. Yuan, L. Shen, and J. Huang, “Trap Engineering of CdTe Nanoparticle for High Gain, Fast Response, and Low Noise P3HT:CdTe Nanocomposite Photodetectors,” Adv. Mater. 27(34), 4975–4981 (2015).
[Crossref] [PubMed]

Shim, J.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Sofos, M.

M. Sofos, J. Goldberger, D. A. Stone, J. E. Allen, Q. Ma, D. J. Herman, W. W. Tsai, L. J. Lauhon, and S. I. Stupp, “A synergistic assembly of nanoscale lamellar photoconductor hybrids,” Nat. Mater. 8(1), 68–75 (2009).
[Crossref] [PubMed]

Sojoudi, H.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Stone, D. A.

M. Sofos, J. Goldberger, D. A. Stone, J. E. Allen, Q. Ma, D. J. Herman, W. W. Tsai, L. J. Lauhon, and S. I. Stupp, “A synergistic assembly of nanoscale lamellar photoconductor hybrids,” Nat. Mater. 8(1), 68–75 (2009).
[Crossref] [PubMed]

Stupp, S. I.

M. Sofos, J. Goldberger, D. A. Stone, J. E. Allen, Q. Ma, D. J. Herman, W. W. Tsai, L. J. Lauhon, and S. I. Stupp, “A synergistic assembly of nanoscale lamellar photoconductor hybrids,” Nat. Mater. 8(1), 68–75 (2009).
[Crossref] [PubMed]

Tang, A.

L. Lv, Q. Lu, Y. Ning, Z. Lu, X. Wang, Z. Lou, A. Tang, Y. Hu, F. Teng, Y. Yin, and Y. Hou, “Self-Assembled TiO2 Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells,” Chem. Mater. 27(1), 44–52 (2015).
[Crossref]

Teng, F.

L. Lv, Q. Lu, Y. Ning, Z. Lu, X. Wang, Z. Lou, A. Tang, Y. Hu, F. Teng, Y. Yin, and Y. Hou, “Self-Assembled TiO2 Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells,” Chem. Mater. 27(1), 44–52 (2015).
[Crossref]

C. Zhang, L. Qi, Q. Chen, L. Lv, Y. Ning, Y. Hu, Y. Hou, and F. Teng, “Plasma treatment of ITO cathode to fabricate free electron selective layer in inverted polymer solar cells,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8715–8722 (2014).
[Crossref]

Tress, W.

W. Tress, S. Corvers, K. Leo, and M. Riede, “Investigation of driving forces for charge extraction in organic solar cells: transient photocurrent measurements on solar cells showing s-shaped current–voltage characteristics,” Adv. Energy Mater. 3(7), 873–880 (2013).
[Crossref]

W. Tress, K. Leo, and M. Riede, “Photoconductivity as loss mechanism in organic solar cells,” (RRL) Phys. Status Solidi 7(6), 401–405 (2013).
[Crossref]

W. Tress, K. Leo, and M. Riede, “Influence of hole-transport layers and donor materials on open-circuit voltage and shape of i-v curves of organic solar cells,” Adv. Funct. Mater. 21(11), 2140–2149 (2011).
[Crossref]

Tsai, W. W.

M. Sofos, J. Goldberger, D. A. Stone, J. E. Allen, Q. Ma, D. J. Herman, W. W. Tsai, L. J. Lauhon, and S. I. Stupp, “A synergistic assembly of nanoscale lamellar photoconductor hybrids,” Nat. Mater. 8(1), 68–75 (2009).
[Crossref] [PubMed]

Valouch, S.

M. Punke, S. Valouch, S. W. Kettlitz, N. Christ, C. Gärtner, M. Gerken, and U. Lemmer, “Dynamic characterization of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(7), 071118 (2007).
[Crossref]

Vergaz, R.

B. Arredondo, C. de Dios, R. Vergaz, A. R. Criado, B. Romero, B. Zimmermann, and U. Würfel, “Performance of ITO-free inverted organic bulk heterojunction photodetectors: Comparison with standard device architecture,” Org. Elec. 14(10), 2484–2490 (2013).
[Crossref]

B. Arredondo, B. Romero, J. M. Pena, A. Fernández-Pacheco, E. Alonso, R. Vergaz, and C. de Dios, “Visible light communication system using an organic bulk heterojunction photodetector,” Sensors (Basel) 13(9), 12266–12276 (2013).
[Crossref] [PubMed]

Wang, S.

X. Li, S. Wang, Y. Xiao, and X. Li, “A trap-assisted ultrasensitive near-infrared organic photomultiple photodetector based on y-type titanylphthalocyanine nanoparticles,” J. Mater. Chem. C 4(24), 5584–5592 (2016).

Wang, X.

L. Lv, Q. Lu, Y. Ning, Z. Lu, X. Wang, Z. Lou, A. Tang, Y. Hu, F. Teng, Y. Yin, and Y. Hou, “Self-Assembled TiO2 Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells,” Chem. Mater. 27(1), 44–52 (2015).
[Crossref]

Wang, Y.

D. Yang, K. Xu, X. Zhou, Y. Wang, and D. Ma, “Comprehensive studies of response characteristics of organic photodetectors based on rubrene and C60,” J. Appl. Phys. 115(24), 244506 (2014).
[Crossref]

R. Nie, Y. Wang, and X. Deng, “Aligned Nanofibers as an Interfacial Layer for Achieving High-Detectivity and fast-response organic photodetectors,” ACS Appl. Mater. Interfaces 6(10), 7032–7037 (2014).
[Crossref] [PubMed]

Wei, H.

H. Wei, Y. Fang, Y. Yuan, L. Shen, and J. Huang, “Trap Engineering of CdTe Nanoparticle for High Gain, Fast Response, and Low Noise P3HT:CdTe Nanocomposite Photodetectors,” Adv. Mater. 27(34), 4975–4981 (2015).
[Crossref] [PubMed]

Wei, K.-H.

B. Chen, X. Qiao, C.-M. Liu, C. Zhao, H.-C. Chen, K.-H. Wei, and B. Hu, “Effects of bulk and interfacial charge accumulation on fill factor in organic solar cells,” Appl. Phys. Lett. 102(19), 193302 (2013).
[Crossref] [PubMed]

Winget, P.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Würfel, U.

B. Arredondo, C. de Dios, R. Vergaz, A. R. Criado, B. Romero, B. Zimmermann, and U. Würfel, “Performance of ITO-free inverted organic bulk heterojunction photodetectors: Comparison with standard device architecture,” Org. Elec. 14(10), 2484–2490 (2013).
[Crossref]

Xiao, Y.

X. Li, S. Wang, Y. Xiao, and X. Li, “A trap-assisted ultrasensitive near-infrared organic photomultiple photodetector based on y-type titanylphthalocyanine nanoparticles,” J. Mater. Chem. C 4(24), 5584–5592 (2016).

Xiao, Z.

Y. Fang, F. Guo, Z. Xiao, and J. Huang, “Large gain, low noise nanocomposite ultraviolet photodetectors with a linear dynamic range of 120 db,” Adv. Opt. Mater 2(4), 348–353 (2014).
[Crossref]

F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[Crossref] [PubMed]

Xu, K.

D. Yang, K. Xu, X. Zhou, Y. Wang, and D. Ma, “Comprehensive studies of response characteristics of organic photodetectors based on rubrene and C60,” J. Appl. Phys. 115(24), 244506 (2014).
[Crossref]

Xue, J. G.

J. D. Myers and J. G. Xue, “Organic Semiconductors and their Applications in Photovoltaic Devices,” Polym. Rev. (Phila. Pa.) 52(1), 1–37 (2012).
[Crossref]

W. T. Hammond and J. G. Xue, “Organic heterojunction photodiodes exhibiting low voltage, imaging-speed photocurrent gain,” Appl. Phys. Lett. 97(7), 073302 (2010).
[Crossref]

Yang, B.

F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[Crossref] [PubMed]

Yang, D.

D. Yang, K. Xu, X. Zhou, Y. Wang, and D. Ma, “Comprehensive studies of response characteristics of organic photodetectors based on rubrene and C60,” J. Appl. Phys. 115(24), 244506 (2014).
[Crossref]

Yang, D. Z.

D. Z. Yang, X. K. Zhou, and D. G. Ma, “Fast response organic photodetectors with high detectivity based on rubrene and C60,” Org. Elec. 14(11), 3019–3023 (2013).
[Crossref]

Yang, Y.

J. Huang and Y. Yang, “Origin of photomultiplication in C60 based devices,” Appl. Phys. Lett. 91(20), 784 (2007).

Yin, Y.

L. Lv, Q. Lu, Y. Ning, Z. Lu, X. Wang, Z. Lou, A. Tang, Y. Hu, F. Teng, Y. Yin, and Y. Hou, “Self-Assembled TiO2 Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells,” Chem. Mater. 27(1), 44–52 (2015).
[Crossref]

Yuan, Y.

H. Wei, Y. Fang, Y. Yuan, L. Shen, and J. Huang, “Trap Engineering of CdTe Nanoparticle for High Gain, Fast Response, and Low Noise P3HT:CdTe Nanocomposite Photodetectors,” Adv. Mater. 27(34), 4975–4981 (2015).
[Crossref] [PubMed]

F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[Crossref] [PubMed]

Zhang, C.

C. Zhang, L. Qi, Q. Chen, L. Lv, Y. Ning, Y. Hu, Y. Hou, and F. Teng, “Plasma treatment of ITO cathode to fabricate free electron selective layer in inverted polymer solar cells,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8715–8722 (2014).
[Crossref]

Zhao, C.

B. Chen, X. Qiao, C.-M. Liu, C. Zhao, H.-C. Chen, K.-H. Wei, and B. Hu, “Effects of bulk and interfacial charge accumulation on fill factor in organic solar cells,” Appl. Phys. Lett. 102(19), 193302 (2013).
[Crossref] [PubMed]

Zhou, X.

D. Yang, K. Xu, X. Zhou, Y. Wang, and D. Ma, “Comprehensive studies of response characteristics of organic photodetectors based on rubrene and C60,” J. Appl. Phys. 115(24), 244506 (2014).
[Crossref]

Zhou, X. K.

D. Z. Yang, X. K. Zhou, and D. G. Ma, “Fast response organic photodetectors with high detectivity based on rubrene and C60,” Org. Elec. 14(11), 3019–3023 (2013).
[Crossref]

Zhou, Y.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Zimmermann, B.

B. Arredondo, C. de Dios, R. Vergaz, A. R. Criado, B. Romero, B. Zimmermann, and U. Würfel, “Performance of ITO-free inverted organic bulk heterojunction photodetectors: Comparison with standard device architecture,” Org. Elec. 14(10), 2484–2490 (2013).
[Crossref]

Živanovic, S. R.

J. M. Melancon and S. R. Živanović, “Broadband gain in poly(3-hexylthiophene):phenyl-C61-butyric-acid-methyl-ester photodetectors enabled by a semicontinuous gold interlayer,” Appl. Phys. Lett. 105(16), 163301 (2014).
[Crossref]

(RRL) Phys. Status Solidi (1)

W. Tress, K. Leo, and M. Riede, “Photoconductivity as loss mechanism in organic solar cells,” (RRL) Phys. Status Solidi 7(6), 401–405 (2013).
[Crossref]

ACS Appl. Mater. Interfaces (1)

R. Nie, Y. Wang, and X. Deng, “Aligned Nanofibers as an Interfacial Layer for Achieving High-Detectivity and fast-response organic photodetectors,” ACS Appl. Mater. Interfaces 6(10), 7032–7037 (2014).
[Crossref] [PubMed]

Adv. Energy Mater. (1)

W. Tress, S. Corvers, K. Leo, and M. Riede, “Investigation of driving forces for charge extraction in organic solar cells: transient photocurrent measurements on solar cells showing s-shaped current–voltage characteristics,” Adv. Energy Mater. 3(7), 873–880 (2013).
[Crossref]

Adv. Funct. Mater. (2)

W. Tress, K. Leo, and M. Riede, “Influence of hole-transport layers and donor materials on open-circuit voltage and shape of i-v curves of organic solar cells,” Adv. Funct. Mater. 21(11), 2140–2149 (2011).
[Crossref]

P. E. Keivanidis, P. K. H. Ho, R. H. Friend, and N. C. Greenham, “The Dependence of Device Dark Current on the Active-Layer Morphology of Solution-Processed Organic Photodetectors,” Adv. Funct. Mater. 20(22), 3895–3903 (2010).
[Crossref]

Adv. Mater. (3)

K. J. Baeg, M. Binda, D. Natali, M. Caironi, and Y. Y. Noh, “Organic light detectors: photodiodes and phototransistors,” Adv. Mater. 25(31), 4267–4295 (2013).
[Crossref] [PubMed]

H. Wei, Y. Fang, Y. Yuan, L. Shen, and J. Huang, “Trap Engineering of CdTe Nanoparticle for High Gain, Fast Response, and Low Noise P3HT:CdTe Nanocomposite Photodetectors,” Adv. Mater. 27(34), 4975–4981 (2015).
[Crossref] [PubMed]

G. Azzellino, A. Grimoldi, M. Binda, M. Caironi, D. Natali, and M. Sampietro, “Fully inkjet-printed organic photodetectors with high quantum yield,” Adv. Mater. 25(47), 6829–6833 (2013).
[Crossref] [PubMed]

Adv. Opt. Mater (1)

Y. Fang, F. Guo, Z. Xiao, and J. Huang, “Large gain, low noise nanocomposite ultraviolet photodetectors with a linear dynamic range of 120 db,” Adv. Opt. Mater 2(4), 348–353 (2014).
[Crossref]

Appl. Phys. Lett. (8)

J. Huang and Y. Yang, “Origin of photomultiplication in C60 based devices,” Appl. Phys. Lett. 91(20), 784 (2007).

B. Chen, X. Qiao, C.-M. Liu, C. Zhao, H.-C. Chen, K.-H. Wei, and B. Hu, “Effects of bulk and interfacial charge accumulation on fill factor in organic solar cells,” Appl. Phys. Lett. 102(19), 193302 (2013).
[Crossref] [PubMed]

W. T. Hammond and J. G. Xue, “Organic heterojunction photodiodes exhibiting low voltage, imaging-speed photocurrent gain,” Appl. Phys. Lett. 97(7), 073302 (2010).
[Crossref]

J. M. Melancon and S. R. Živanović, “Broadband gain in poly(3-hexylthiophene):phenyl-C61-butyric-acid-methyl-ester photodetectors enabled by a semicontinuous gold interlayer,” Appl. Phys. Lett. 105(16), 163301 (2014).
[Crossref]

M. Punke, S. Valouch, S. W. Kettlitz, N. Christ, C. Gärtner, M. Gerken, and U. Lemmer, “Dynamic characterization of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(7), 071118 (2007).
[Crossref]

P. Peumans, V. Bulović, and S. R. Forrest, “Efficient, high-bandwidth organic multilayer photodetectors,” Appl. Phys. Lett. 76(26), 3855–3857 (2000).
[Crossref]

F.-C. Chen, S.-C. Chien, and G.-L. Cious, “Highly sensitive, low-voltage, organic photomultiple photodetectors exhibiting broadband response,” Appl. Phys. Lett. 97(10), 103301 (2010).
[Crossref]

G. Konstantatos and E. H. Sargent, “PbS colloidal quantum dot photoconductive photodetectors: Transport, traps, and gain,” Appl. Phys. Lett. 91(17), 173505 (2007).
[Crossref]

Chem. Mater. (1)

L. Lv, Q. Lu, Y. Ning, Z. Lu, X. Wang, Z. Lou, A. Tang, Y. Hu, F. Teng, Y. Yin, and Y. Hou, “Self-Assembled TiO2 Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells,” Chem. Mater. 27(1), 44–52 (2015).
[Crossref]

J. Appl. Phys. (3)

D. Yang, K. Xu, X. Zhou, Y. Wang, and D. Ma, “Comprehensive studies of response characteristics of organic photodetectors based on rubrene and C60,” J. Appl. Phys. 115(24), 244506 (2014).
[Crossref]

C. R. McNeill, I. Hwang, and N. C. Greenham, “Photocurrent transients in all-polymer solar cells: Trapping and detrapping effects,” J. Appl. Phys. 106(2), 024507 (2009).
[Crossref]

I. Hwang, C. R. McNeill, and N. C. Greenham, “Drift-diffusion modeling of photocurrent transients in bulk heterojunction solar cells,” J. Appl. Phys. 106(9), 094506 (2009).
[Crossref]

J. Mater. Chem. C (1)

X. Li, S. Wang, Y. Xiao, and X. Li, “A trap-assisted ultrasensitive near-infrared organic photomultiple photodetector based on y-type titanylphthalocyanine nanoparticles,” J. Mater. Chem. C 4(24), 5584–5592 (2016).

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

C. Zhang, L. Qi, Q. Chen, L. Lv, Y. Ning, Y. Hu, Y. Hou, and F. Teng, “Plasma treatment of ITO cathode to fabricate free electron selective layer in inverted polymer solar cells,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8715–8722 (2014).
[Crossref]

Nano Lett. (1)

G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, “Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states,” Nano Lett. 8(5), 1446–1450 (2008).
[Crossref] [PubMed]

Nanotechnology (1)

B. D. Boruah, D. B. Ferry, A. Mukherjee, and A. Misra, “Few-layer graphene/ZnO nanowires based high performance UV photodetector,” Nanotechnology 26(23), 235703 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

M. Sofos, J. Goldberger, D. A. Stone, J. E. Allen, Q. Ma, D. J. Herman, W. W. Tsai, L. J. Lauhon, and S. I. Stupp, “A synergistic assembly of nanoscale lamellar photoconductor hybrids,” Nat. Mater. 8(1), 68–75 (2009).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors,” Nat. Nanotechnol. 4(1), 40–44 (2009).
[Crossref] [PubMed]

F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Org. Elec. (2)

D. Z. Yang, X. K. Zhou, and D. G. Ma, “Fast response organic photodetectors with high detectivity based on rubrene and C60,” Org. Elec. 14(11), 3019–3023 (2013).
[Crossref]

B. Arredondo, C. de Dios, R. Vergaz, A. R. Criado, B. Romero, B. Zimmermann, and U. Würfel, “Performance of ITO-free inverted organic bulk heterojunction photodetectors: Comparison with standard device architecture,” Org. Elec. 14(10), 2484–2490 (2013).
[Crossref]

Polym. Rev. (Phila. Pa.) (1)

J. D. Myers and J. G. Xue, “Organic Semiconductors and their Applications in Photovoltaic Devices,” Polym. Rev. (Phila. Pa.) 52(1), 1–37 (2012).
[Crossref]

Sci. Rep. (1)

S. Cho, K. D. Kim, J. Heo, J. Y. Lee, G. Cha, B. Y. Seo, Y. D. Kim, Y. S. Kim, S. Y. Choi, and D. C. Lim, “Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells,” Sci. Rep. 4, 4306 (2014).
[Crossref] [PubMed]

Science (1)

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Sensors (Basel) (1)

B. Arredondo, B. Romero, J. M. Pena, A. Fernández-Pacheco, E. Alonso, R. Vergaz, and C. de Dios, “Visible light communication system using an organic bulk heterojunction photodetector,” Sensors (Basel) 13(9), 12266–12276 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Absorption spectra of the P3HT:PC61BM layer based on ITO and PEIE modified ITO substrates (b) The energy level diagram of the OPD (c) UPS spectra of the pristine ITO and PEIE modified ITO electrodes
Fig. 2
Fig. 2 (a) J-V curves of the OPD on ITO and ITO + PEIE (under AM 1.5 100 mW/cm2) (b) The J-V curves of the OPD on ITO + PEIE and ITO (inset) in logarithmic scale (under AM 1.5 100 mW/cm2) (c) EQE curves of the photodetector on ITO + PEIE under different bias conditions, inset EQE curves of the device on ITO without bias conditions (d) Light intensity spectrum of the monochromatic lights for the EQE test of the PEIE treated device
Fig. 3
Fig. 3 (a) The capacitance-voltage characteristics of the OPD on ITO and PEIE modified ITO under dark and light conditions; (b) transient photocurrent rise and fall of the OPD on ITO (c) transient photocurrent rise and fall of the OPD on PEIE modified ITO (d) Transient photocurrent rise and fall of the OPD on PEIE modified ITO under different bias.
Fig. 4
Fig. 4 (a) Cyclical photoresponses of the OPDs based on ITO and PEIE modified ITO. (b) Optoelectronic small signal frequency response of the OPD with the PEIE modified ITO at −0.5 V under modulated green-LED (530 nm) illumination. (c) Optoelectronic small signal frequency response of the OPD with the PEIE modified ITO at −0.5 V under modulated green-LED (530 nm) illumination with different light intensity.
Fig. 5
Fig. 5 (a) (b) (c)Light I-V characteristics of the OPD based on the PEIE modified ITO under various wavelength (468 nm, 530 nm, 625 nm) illuminations with increasing incident light intensity, (d) (e) (f)Jph of the OPD at −0.5 V based on the PEIE modified ITO as a function of light intensity (468 nm, 530 nm, 625 nm).

Tables (1)

Tables Icon

Table 1 Figures of merit for PEIE modified ITO OPDs under different biasa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

EQE = J p h h υ P i n e = ( J l i g h t J d a r k ) h υ P i n e
R = J p h P i n
D * = R 2 e J d a r k ,

Metrics