Abstract

Abstract: We investigate the light absorption enhancement in waveguide Schottky photodetector integrated with ultrathin metal/silicide stripe, which can provide high internal quantum efficiency. By using aab0-quasi-TE hybrid modes for the first time, a high absorptance of 95.6% is achieved in 5 nm thick Au stripe with area of only 0.14 μm2, without using resonance structure. In theory, the responsivity, dark current, and 3dB bandwidth of the corresponding device are 0.146 A/W, 8.03 nA, and 88 GHz, respectively. For most silicides, the quasi-TM mode should be used in this device, and an optimized PtSi device has a responsivity of 0.71 A/W and a dark current of 35.9 μA.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-compact silicon waveguide-integrated Schottky photodetectors using perfect absorption from tapered metal nanobrick arrays

Hyeokbin Kwon, Jong-Bum You, Yeonghoon Jin, and Kyoungsik Yu
Opt. Express 27(12) 16413-16424 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. W. Peters, “An infrared detector utilizing internal photoemission,” Proc. IEEE 55(5), 704–705 (1967).
    [Crossref]
  2. M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photonics Rev. 10(6), 895–921 (2016).
    [Crossref]
  3. R. Williams and R. H. Bube, “Photoemission in the Photovoltaic Effect in Cadmium Sulfide Crystals,” J. Appl. Phys. 31(6), 968–978 (1960).
    [Crossref]
  4. S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
    [Crossref]
  5. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
    [Crossref] [PubMed]
  6. W. F. Kosonocky, F. V. Shallcross, T. S. Villani, and J. V. Groppe, “160x244 Element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron Dev. 32(8), 1564–1573 (1985).
    [Crossref]
  7. B. Y. Tsaur, M. J. McNutt, R. A. Bredthauer, and R. B. Mattson, “128x128-element IrSi Schottky-barrier focal plane arrays for long-wavelength infrared imaging,” IEEE Electron Device Lett. 10(8), 361–363 (1989).
    [Crossref]
  8. C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
    [Crossref]
  9. M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
    [Crossref] [PubMed]
  10. M. Casalino, “Near-Infrared Sub-Bandgap All-Silicon Photodetectors: A Review,” Int. J. Opt. Appl. 2(1), 1–16 (2012).
  11. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
    [Crossref]
  12. S. M. Sze, D. J. Coleman, and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron. 14(12), 1209–1218 (1971).
    [Crossref]
  13. M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
    [Crossref] [PubMed]
  14. R. W. Fathauer, J. M. Iannelli, C. W. Nieh, and S. Hashimoto, “Infrared response from metallic particles embedded in a single‐crystal Si matrix: The layered internal photoemission sensor,” Appl. Phys. Lett. 57(14), 1419–1421 (1990).
    [Crossref]
  15. F. Raissi, “A possible explanation for high quantum efficiency of PtSi/porous Si Schottky detectors,” IEEE Trans. Electron Dev. 50(4), 1134–1137 (2003).
    [Crossref]
  16. S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett. 100(6), 061109 (2012).
    [Crossref]
  17. C. Scales and P. Berini, “Thin-Film Schottky Barrier Photodetector Models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
    [Crossref]
  18. H. Elabd, “Theory and Measurements of Photoresponse for Thin Film Pd_2 Si and PtSi Infrared Schottky-Barrier Detectors with Optical Cavity,” RCA Rev. 143(4), 569–589 (1982).
  19. M. Casalino, G. Coppola, M. Gioffre, M. Iodice, L. Moretti, I. Rendina, and L. Sirleto, “Cavity Enhanced Internal Photoemission Effect in Silicon Photodiode for Sub-Bandgap Detection,” J. Lightwave Technol. 28(22), 3266–3272 (2010).
  20. A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
    [Crossref] [PubMed]
  21. M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm,” Opt. Express 20(11), 12599–12609 (2012).
    [Crossref] [PubMed]
  22. K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
    [Crossref] [PubMed]
  23. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
    [Crossref] [PubMed]
  24. M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
    [Crossref] [PubMed]
  25. E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near-field optical antenna resonances,” Nat. Nanotechnol. 6(9), 588–593 (2011).
    [Crossref] [PubMed]
  26. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express 20(27), 28594–28602 (2012).
    [Crossref] [PubMed]
  27. S. Muehlbrandt, A. Melikyan, T. Harter, K. Köhnle, A. Muslija, P. Vincze, S. Wolf, P. Jakobs, Y. Fedoryshyn, W. Freude, J. Leuthold, C. Koos, and M. Kohl, “Silicon-plasmonic internal-photoemission detector for 40 Gbit/s data reception,” Optica 3(7), 741 (2016).
    [Crossref]
  28. S. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicide Schottky barrier detector integrated in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguide,” Opt. Express 19(17), 15843–15854 (2011).
    [Crossref] [PubMed]
  29. A. Akbari, A. Olivieri, and P. Berini, “Subbandgap Asymmetric Surface Plasmon Waveguide Schottky Detectors on Silicon,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4600209 (2013).
    [Crossref]
  30. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001).
    [Crossref]
  31. C. Scales, I. Breukelaar, and P. Berini, “Surface-plasmon Schottky contact detector based on a symmetric metal stripe in silicon,” Opt. Lett. 35(4), 529–531 (2010).
    [Crossref] [PubMed]
  32. C. Scales, I. Breukelaar, R. Charbonneau, and P. Berini, “Infrared Performance of Symmetric Surface-Plasmon Waveguide Schottky Detectors in Si,” J. Lightwave Technol. 29(12), 1852–1860 (2011).
    [Crossref]
  33. M. Hosseinifar, V. Ahmadi, and M. Ebnali-Heidari, “Si-Schottky Photodetector Based on Metal Stripe in Slot-Waveguide Microring Resonator,” IEEE Photonics Technol. Lett. 28(12), 1363–1366 (2016).
    [Crossref]
  34. A. R. Zali, M. K. Moravvej-Farshi, and G. Abaeiani, “Internal photoemission-based photodetector on Si microring resonator,” Opt. Lett. 37(23), 4925–4927 (2012).
    [Crossref] [PubMed]
  35. J. Guo, Z. Wu, Y. Li, and Y. Zhao, “Design of plasmonic photodetector with high absorptance and nano-scale active regions,” Opt. Express 24(16), 18229–18243 (2016).
    [Crossref] [PubMed]
  36. I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, “On-Chip Integrated, Silicon-Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain,” Nano Lett. 16(5), 3005–3013 (2016).
    [Crossref] [PubMed]
  37. R. H. Fowler, “The Analysis of Photoelectric Sensitivity Curves for Clean Metals at Various Temperatures,” Phys. Rev. 38(1), 45–56 (1931).
    [Crossref]
  38. V. E. Vickers, “Model of schottky barrier hot-electron-mode photodetection,” Appl. Opt. 10(9), 2190–2192 (1971).
    [Crossref] [PubMed]
  39. R. Stuart, F. Wooten, and W. Spicer, “Monte Carlo calculations pertaining to the transport of hot electrons in metals,” Phys. Rev. 135(2A), A495–A505 (1964).
    [Crossref]
  40. A. Czernik, H. Palm, W. Cabanski, M. Schulz, and U. Suckow, “Infrared photoemission of holes from ultrathin (3–20 nm) Pt/Ir-compound silicide films into silicon,” Appl. Phys., A Mater. Sci. Process. 55(2), 180–191 (1992).
    [Crossref]
  41. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  42. C. K. Chen, B. Nechay, and B. Y. Tsaur, “Ultraviolet, visible, and infrared response of PtSi Schottky-barrier detectors operated in the front-illuminated mode,” IEEE Trans. Electron Dev. 38(5), 1094–1103 (1991).
    [Crossref]
  43. J. S. Guo and Y. L. Zhao, “Analysis of Mode Hybridization in Tapered Waveguides,” IEEE Photonics Technol. Lett. 27(23), 2441–2444 (2015).
    [Crossref]
  44. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
    [Crossref] [PubMed]
  45. FDTD Solutions, Lumerical Solutions Inc., Vancouver, Canada.
  46. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  47. S. M. Sze, Physics of Semiconductor Devices ((John Wiley and Sons, 1981).

2016 (6)

M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photonics Rev. 10(6), 895–921 (2016).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

S. Muehlbrandt, A. Melikyan, T. Harter, K. Köhnle, A. Muslija, P. Vincze, S. Wolf, P. Jakobs, Y. Fedoryshyn, W. Freude, J. Leuthold, C. Koos, and M. Kohl, “Silicon-plasmonic internal-photoemission detector for 40 Gbit/s data reception,” Optica 3(7), 741 (2016).
[Crossref]

M. Hosseinifar, V. Ahmadi, and M. Ebnali-Heidari, “Si-Schottky Photodetector Based on Metal Stripe in Slot-Waveguide Microring Resonator,” IEEE Photonics Technol. Lett. 28(12), 1363–1366 (2016).
[Crossref]

J. Guo, Z. Wu, Y. Li, and Y. Zhao, “Design of plasmonic photodetector with high absorptance and nano-scale active regions,” Opt. Express 24(16), 18229–18243 (2016).
[Crossref] [PubMed]

I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, “On-Chip Integrated, Silicon-Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain,” Nano Lett. 16(5), 3005–3013 (2016).
[Crossref] [PubMed]

2015 (2)

J. S. Guo and Y. L. Zhao, “Analysis of Mode Hybridization in Tapered Waveguides,” IEEE Photonics Technol. Lett. 27(23), 2441–2444 (2015).
[Crossref]

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

2014 (3)

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref] [PubMed]

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

2013 (3)

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

A. Akbari, A. Olivieri, and P. Berini, “Subbandgap Asymmetric Surface Plasmon Waveguide Schottky Detectors on Silicon,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4600209 (2013).
[Crossref]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

2012 (5)

2011 (6)

E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near-field optical antenna resonances,” Nat. Nanotechnol. 6(9), 588–593 (2011).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicide Schottky barrier detector integrated in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguide,” Opt. Express 19(17), 15843–15854 (2011).
[Crossref] [PubMed]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
[Crossref] [PubMed]

C. Scales, I. Breukelaar, R. Charbonneau, and P. Berini, “Infrared Performance of Symmetric Surface-Plasmon Waveguide Schottky Detectors in Si,” J. Lightwave Technol. 29(12), 1852–1860 (2011).
[Crossref]

2010 (3)

2008 (1)

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[Crossref]

2003 (1)

F. Raissi, “A possible explanation for high quantum efficiency of PtSi/porous Si Schottky detectors,” IEEE Trans. Electron Dev. 50(4), 1134–1137 (2003).
[Crossref]

2001 (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001).
[Crossref]

1992 (1)

A. Czernik, H. Palm, W. Cabanski, M. Schulz, and U. Suckow, “Infrared photoemission of holes from ultrathin (3–20 nm) Pt/Ir-compound silicide films into silicon,” Appl. Phys., A Mater. Sci. Process. 55(2), 180–191 (1992).
[Crossref]

1991 (1)

C. K. Chen, B. Nechay, and B. Y. Tsaur, “Ultraviolet, visible, and infrared response of PtSi Schottky-barrier detectors operated in the front-illuminated mode,” IEEE Trans. Electron Dev. 38(5), 1094–1103 (1991).
[Crossref]

1990 (1)

R. W. Fathauer, J. M. Iannelli, C. W. Nieh, and S. Hashimoto, “Infrared response from metallic particles embedded in a single‐crystal Si matrix: The layered internal photoemission sensor,” Appl. Phys. Lett. 57(14), 1419–1421 (1990).
[Crossref]

1989 (1)

B. Y. Tsaur, M. J. McNutt, R. A. Bredthauer, and R. B. Mattson, “128x128-element IrSi Schottky-barrier focal plane arrays for long-wavelength infrared imaging,” IEEE Electron Device Lett. 10(8), 361–363 (1989).
[Crossref]

1985 (1)

W. F. Kosonocky, F. V. Shallcross, T. S. Villani, and J. V. Groppe, “160x244 Element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron Dev. 32(8), 1564–1573 (1985).
[Crossref]

1982 (1)

H. Elabd, “Theory and Measurements of Photoresponse for Thin Film Pd_2 Si and PtSi Infrared Schottky-Barrier Detectors with Optical Cavity,” RCA Rev. 143(4), 569–589 (1982).

1971 (2)

S. M. Sze, D. J. Coleman, and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron. 14(12), 1209–1218 (1971).
[Crossref]

V. E. Vickers, “Model of schottky barrier hot-electron-mode photodetection,” Appl. Opt. 10(9), 2190–2192 (1971).
[Crossref] [PubMed]

1967 (1)

D. W. Peters, “An infrared detector utilizing internal photoemission,” Proc. IEEE 55(5), 704–705 (1967).
[Crossref]

1964 (1)

R. Stuart, F. Wooten, and W. Spicer, “Monte Carlo calculations pertaining to the transport of hot electrons in metals,” Phys. Rev. 135(2A), A495–A505 (1964).
[Crossref]

1960 (1)

R. Williams and R. H. Bube, “Photoemission in the Photovoltaic Effect in Cadmium Sulfide Crystals,” J. Appl. Phys. 31(6), 968–978 (1960).
[Crossref]

1931 (1)

R. H. Fowler, “The Analysis of Photoelectric Sensitivity Curves for Clean Metals at Various Temperatures,” Phys. Rev. 38(1), 45–56 (1931).
[Crossref]

Abaeiani, G.

Ahmadi, V.

M. Hosseinifar, V. Ahmadi, and M. Ebnali-Heidari, “Si-Schottky Photodetector Based on Metal Stripe in Slot-Waveguide Microring Resonator,” IEEE Photonics Technol. Lett. 28(12), 1363–1366 (2016).
[Crossref]

Akbari, A.

A. Akbari, A. Olivieri, and P. Berini, “Subbandgap Asymmetric Surface Plasmon Waveguide Schottky Detectors on Silicon,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4600209 (2013).
[Crossref]

Atar, F. B.

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

Bai, P.

S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett. 100(6), 061109 (2012).
[Crossref]

Barnard, E. S.

E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near-field optical antenna resonances,” Nat. Nanotechnol. 6(9), 588–593 (2011).
[Crossref] [PubMed]

Berini, P.

A. Akbari, A. Olivieri, and P. Berini, “Subbandgap Asymmetric Surface Plasmon Waveguide Schottky Detectors on Silicon,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4600209 (2013).
[Crossref]

C. Scales, I. Breukelaar, R. Charbonneau, and P. Berini, “Infrared Performance of Symmetric Surface-Plasmon Waveguide Schottky Detectors in Si,” J. Lightwave Technol. 29(12), 1852–1860 (2011).
[Crossref]

C. Scales, I. Breukelaar, and P. Berini, “Surface-plasmon Schottky contact detector based on a symmetric metal stripe in silicon,” Opt. Lett. 35(4), 529–531 (2010).
[Crossref] [PubMed]

C. Scales and P. Berini, “Thin-Film Schottky Barrier Photodetector Models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[Crossref]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001).
[Crossref]

Boeuf, F.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Bowers, J. E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
[Crossref] [PubMed]

Bredthauer, R. A.

B. Y. Tsaur, M. J. McNutt, R. A. Bredthauer, and R. B. Mattson, “128x128-element IrSi Schottky-barrier focal plane arrays for long-wavelength infrared imaging,” IEEE Electron Device Lett. 10(8), 361–363 (1989).
[Crossref]

Breukelaar, I.

Brongersma, M. L.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near-field optical antenna resonances,” Nat. Nanotechnol. 6(9), 588–593 (2011).
[Crossref] [PubMed]

Brown, L. V.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Bube, R. H.

R. Williams and R. H. Bube, “Photoemission in the Photovoltaic Effect in Cadmium Sulfide Crystals,” J. Appl. Phys. 31(6), 968–978 (1960).
[Crossref]

Cabanski, W.

A. Czernik, H. Palm, W. Cabanski, M. Schulz, and U. Suckow, “Infrared photoemission of holes from ultrathin (3–20 nm) Pt/Ir-compound silicide films into silicon,” Appl. Phys., A Mater. Sci. Process. 55(2), 180–191 (1992).
[Crossref]

Casalino, M.

M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photonics Rev. 10(6), 895–921 (2016).
[Crossref]

M. Casalino, “Near-Infrared Sub-Bandgap All-Silicon Photodetectors: A Review,” Int. J. Opt. Appl. 2(1), 1–16 (2012).

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm,” Opt. Express 20(11), 12599–12609 (2012).
[Crossref] [PubMed]

M. Casalino, G. Coppola, M. Gioffre, M. Iodice, L. Moretti, I. Rendina, and L. Sirleto, “Cavity Enhanced Internal Photoemission Effect in Silicon Photodiode for Sub-Bandgap Detection,” J. Lightwave Technol. 28(22), 3266–3272 (2010).

Cassan, E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Charbonneau, R.

Chen, C. K.

C. K. Chen, B. Nechay, and B. Y. Tsaur, “Ultraviolet, visible, and infrared response of PtSi Schottky-barrier detectors operated in the front-illuminated mode,” IEEE Trans. Electron Dev. 38(5), 1094–1103 (1991).
[Crossref]

Chen, H. L.

K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref] [PubMed]

Chu, H. S.

S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett. 100(6), 061109 (2012).
[Crossref]

Clavero, C.

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

Coleman, D. J.

S. M. Sze, D. J. Coleman, and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron. 14(12), 1209–1218 (1971).
[Crossref]

Coppola, G.

Czernik, A.

A. Czernik, H. Palm, W. Cabanski, M. Schulz, and U. Suckow, “Infrared photoemission of holes from ultrathin (3–20 nm) Pt/Ir-compound silicide films into silicon,” Appl. Phys., A Mater. Sci. Process. 55(2), 180–191 (1992).
[Crossref]

Dai, D.

de Fazio, D.

I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, “On-Chip Integrated, Silicon-Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain,” Nano Lett. 16(5), 3005–3013 (2016).
[Crossref] [PubMed]

De La Rue, R. M.

M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photonics Rev. 10(6), 895–921 (2016).
[Crossref]

Desiatov, B.

I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, “On-Chip Integrated, Silicon-Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain,” Nano Lett. 16(5), 3005–3013 (2016).
[Crossref] [PubMed]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express 20(27), 28594–28602 (2012).
[Crossref] [PubMed]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
[Crossref] [PubMed]

Ebnali-Heidari, M.

M. Hosseinifar, V. Ahmadi, and M. Ebnali-Heidari, “Si-Schottky Photodetector Based on Metal Stripe in Slot-Waveguide Microring Resonator,” IEEE Photonics Technol. Lett. 28(12), 1363–1366 (2016).
[Crossref]

Eiden, A.

I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, “On-Chip Integrated, Silicon-Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain,” Nano Lett. 16(5), 3005–3013 (2016).
[Crossref] [PubMed]

Elabd, H.

H. Elabd, “Theory and Measurements of Photoresponse for Thin Film Pd_2 Si and PtSi Infrared Schottky-Barrier Detectors with Optical Cavity,” RCA Rev. 143(4), 569–589 (1982).

Fang, Z.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Fathauer, R. W.

R. W. Fathauer, J. M. Iannelli, C. W. Nieh, and S. Hashimoto, “Infrared response from metallic particles embedded in a single‐crystal Si matrix: The layered internal photoemission sensor,” Appl. Phys. Lett. 57(14), 1419–1421 (1990).
[Crossref]

Fédéli, J.-M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Fedoryshyn, Y.

Ferrari, A. C.

I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, “On-Chip Integrated, Silicon-Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain,” Nano Lett. 16(5), 3005–3013 (2016).
[Crossref] [PubMed]

Fowler, R. H.

R. H. Fowler, “The Analysis of Photoelectric Sensitivity Curves for Clean Metals at Various Temperatures,” Phys. Rev. 38(1), 45–56 (1931).
[Crossref]

Freude, W.

Gioffre, M.

Goykhman, I.

I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, “On-Chip Integrated, Silicon-Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain,” Nano Lett. 16(5), 3005–3013 (2016).
[Crossref] [PubMed]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express 20(27), 28594–28602 (2012).
[Crossref] [PubMed]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
[Crossref] [PubMed]

Groppe, J. V.

W. F. Kosonocky, F. V. Shallcross, T. S. Villani, and J. V. Groppe, “160x244 Element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron Dev. 32(8), 1564–1573 (1985).
[Crossref]

Guo, J.

Guo, J. S.

J. S. Guo and Y. L. Zhao, “Analysis of Mode Hybridization in Tapered Waveguides,” IEEE Photonics Technol. Lett. 27(23), 2441–2444 (2015).
[Crossref]

Halas, N. J.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Harter, T.

Hartmann, J.-M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Hashimoto, S.

R. W. Fathauer, J. M. Iannelli, C. W. Nieh, and S. Hashimoto, “Infrared response from metallic particles embedded in a single‐crystal Si matrix: The layered internal photoemission sensor,” Appl. Phys. Lett. 57(14), 1419–1421 (1990).
[Crossref]

Hosseinifar, M.

M. Hosseinifar, V. Ahmadi, and M. Ebnali-Heidari, “Si-Schottky Photodetector Based on Metal Stripe in Slot-Waveguide Microring Resonator,” IEEE Photonics Technol. Lett. 28(12), 1363–1366 (2016).
[Crossref]

Iannelli, J. M.

R. W. Fathauer, J. M. Iannelli, C. W. Nieh, and S. Hashimoto, “Infrared response from metallic particles embedded in a single‐crystal Si matrix: The layered internal photoemission sensor,” Appl. Phys. Lett. 57(14), 1419–1421 (1990).
[Crossref]

Iodice, M.

Jakobs, P.

Khurgin, J.

I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, “On-Chip Integrated, Silicon-Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain,” Nano Lett. 16(5), 3005–3013 (2016).
[Crossref] [PubMed]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express 20(27), 28594–28602 (2012).
[Crossref] [PubMed]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
[Crossref] [PubMed]

King, N. S.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Knight, M. W.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Kohl, M.

Köhnle, K.

Komljenovic, T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Koos, C.

Kosonocky, W. F.

W. F. Kosonocky, F. V. Shallcross, T. S. Villani, and J. V. Groppe, “160x244 Element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron Dev. 32(8), 1564–1573 (1985).
[Crossref]

Kwong, D. L.

S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett. 100(6), 061109 (2012).
[Crossref]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicide Schottky barrier detector integrated in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguide,” Opt. Express 19(17), 15843–15854 (2011).
[Crossref] [PubMed]

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[Crossref]

Lai, Y. S.

K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref] [PubMed]

Leuthold, J.

Levy, U.

I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, “On-Chip Integrated, Silicon-Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain,” Nano Lett. 16(5), 3005–3013 (2016).
[Crossref] [PubMed]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express 20(27), 28594–28602 (2012).
[Crossref] [PubMed]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
[Crossref] [PubMed]

Li, Y.

Lin, K. T.

K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref] [PubMed]

Lo, G. Q.

S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett. 100(6), 061109 (2012).
[Crossref]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicide Schottky barrier detector integrated in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguide,” Opt. Express 19(17), 15843–15854 (2011).
[Crossref] [PubMed]

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[Crossref]

Logan, D. F.

M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photonics Rev. 10(6), 895–921 (2016).
[Crossref]

Loya, A.

S. M. Sze, D. J. Coleman, and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron. 14(12), 1209–1218 (1971).
[Crossref]

Marris-Morini, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Mashanovich, G. Z.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Mattson, R. B.

B. Y. Tsaur, M. J. McNutt, R. A. Bredthauer, and R. B. Mattson, “128x128-element IrSi Schottky-barrier focal plane arrays for long-wavelength infrared imaging,” IEEE Electron Device Lett. 10(8), 361–363 (1989).
[Crossref]

Mazurski, N.

I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, “On-Chip Integrated, Silicon-Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain,” Nano Lett. 16(5), 3005–3013 (2016).
[Crossref] [PubMed]

McNutt, M. J.

B. Y. Tsaur, M. J. McNutt, R. A. Bredthauer, and R. B. Mattson, “128x128-element IrSi Schottky-barrier focal plane arrays for long-wavelength infrared imaging,” IEEE Electron Device Lett. 10(8), 361–363 (1989).
[Crossref]

Melikyan, A.

Milana, S.

I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, “On-Chip Integrated, Silicon-Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain,” Nano Lett. 16(5), 3005–3013 (2016).
[Crossref] [PubMed]

Moravvej-Farshi, M. K.

Moretti, L.

Muehlbrandt, S.

Muslija, A.

Nazirzadeh, M. A.

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

Nechay, B.

C. K. Chen, B. Nechay, and B. Y. Tsaur, “Ultraviolet, visible, and infrared response of PtSi Schottky-barrier detectors operated in the front-illuminated mode,” IEEE Trans. Electron Dev. 38(5), 1094–1103 (1991).
[Crossref]

Nedeljkovic, M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Nieh, C. W.

R. W. Fathauer, J. M. Iannelli, C. W. Nieh, and S. Hashimoto, “Infrared response from metallic particles embedded in a single‐crystal Si matrix: The layered internal photoemission sensor,” Appl. Phys. Lett. 57(14), 1419–1421 (1990).
[Crossref]

Nordlander, P.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

O’Brien, P.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Okyay, A. K.

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

Olivieri, A.

A. Akbari, A. Olivieri, and P. Berini, “Subbandgap Asymmetric Surface Plasmon Waveguide Schottky Detectors on Silicon,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4600209 (2013).
[Crossref]

Pala, R. A.

E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near-field optical antenna resonances,” Nat. Nanotechnol. 6(9), 588–593 (2011).
[Crossref] [PubMed]

Palm, H.

A. Czernik, H. Palm, W. Cabanski, M. Schulz, and U. Suckow, “Infrared photoemission of holes from ultrathin (3–20 nm) Pt/Ir-compound silicide films into silicon,” Appl. Phys., A Mater. Sci. Process. 55(2), 180–191 (1992).
[Crossref]

Peters, D. W.

D. W. Peters, “An infrared detector utilizing internal photoemission,” Proc. IEEE 55(5), 704–705 (1967).
[Crossref]

Raissi, F.

F. Raissi, “A possible explanation for high quantum efficiency of PtSi/porous Si Schottky detectors,” IEEE Trans. Electron Dev. 50(4), 1134–1137 (2003).
[Crossref]

Reed, G. T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Rendina, I.

Sassi, U.

I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, “On-Chip Integrated, Silicon-Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain,” Nano Lett. 16(5), 3005–3013 (2016).
[Crossref] [PubMed]

Scales, C.

Schmid, J. H.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Schulz, M.

A. Czernik, H. Palm, W. Cabanski, M. Schulz, and U. Suckow, “Infrared photoemission of holes from ultrathin (3–20 nm) Pt/Ir-compound silicide films into silicon,” Appl. Phys., A Mater. Sci. Process. 55(2), 180–191 (1992).
[Crossref]

Shallcross, F. V.

W. F. Kosonocky, F. V. Shallcross, T. S. Villani, and J. V. Groppe, “160x244 Element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron Dev. 32(8), 1564–1573 (1985).
[Crossref]

Shappir, J.

I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, “On-Chip Integrated, Silicon-Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain,” Nano Lett. 16(5), 3005–3013 (2016).
[Crossref] [PubMed]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express 20(27), 28594–28602 (2012).
[Crossref] [PubMed]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
[Crossref] [PubMed]

Sirleto, L.

Sobhani, A.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Spicer, W.

R. Stuart, F. Wooten, and W. Spicer, “Monte Carlo calculations pertaining to the transport of hot electrons in metals,” Phys. Rev. 135(2A), A495–A505 (1964).
[Crossref]

Stuart, R.

R. Stuart, F. Wooten, and W. Spicer, “Monte Carlo calculations pertaining to the transport of hot electrons in metals,” Phys. Rev. 135(2A), A495–A505 (1964).
[Crossref]

Suckow, U.

A. Czernik, H. Palm, W. Cabanski, M. Schulz, and U. Suckow, “Infrared photoemission of holes from ultrathin (3–20 nm) Pt/Ir-compound silicide films into silicon,” Appl. Phys., A Mater. Sci. Process. 55(2), 180–191 (1992).
[Crossref]

Sze, S. M.

S. M. Sze, D. J. Coleman, and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron. 14(12), 1209–1218 (1971).
[Crossref]

Thomson, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Tsaur, B. Y.

C. K. Chen, B. Nechay, and B. Y. Tsaur, “Ultraviolet, visible, and infrared response of PtSi Schottky-barrier detectors operated in the front-illuminated mode,” IEEE Trans. Electron Dev. 38(5), 1094–1103 (1991).
[Crossref]

B. Y. Tsaur, M. J. McNutt, R. A. Bredthauer, and R. B. Mattson, “128x128-element IrSi Schottky-barrier focal plane arrays for long-wavelength infrared imaging,” IEEE Electron Device Lett. 10(8), 361–363 (1989).
[Crossref]

Turgut, B. B.

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

Urban, A. S.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

Vickers, V. E.

Villani, T. S.

W. F. Kosonocky, F. V. Shallcross, T. S. Villani, and J. V. Groppe, “160x244 Element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron Dev. 32(8), 1564–1573 (1985).
[Crossref]

Vincze, P.

Virot, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Vivien, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Wang, Y.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Williams, R.

R. Williams and R. H. Bube, “Photoemission in the Photovoltaic Effect in Cadmium Sulfide Crystals,” J. Appl. Phys. 31(6), 968–978 (1960).
[Crossref]

Wolf, S.

Wooten, F.

R. Stuart, F. Wooten, and W. Spicer, “Monte Carlo calculations pertaining to the transport of hot electrons in metals,” Phys. Rev. 135(2A), A495–A505 (1964).
[Crossref]

Wu, Z.

Xu, D.-X.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Yu, C. C.

K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref] [PubMed]

Yu, M. B.

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[Crossref]

Zali, A. R.

Zhao, Y.

Zhao, Y. L.

J. S. Guo and Y. L. Zhao, “Analysis of Mode Hybridization in Tapered Waveguides,” IEEE Photonics Technol. Lett. 27(23), 2441–2444 (2015).
[Crossref]

Zheng, B.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Zheng, B. Y.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

Zhu, S.

S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett. 100(6), 061109 (2012).
[Crossref]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicide Schottky barrier detector integrated in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguide,” Opt. Express 19(17), 15843–15854 (2011).
[Crossref] [PubMed]

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[Crossref]

Zilkie, A.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[Crossref]

R. W. Fathauer, J. M. Iannelli, C. W. Nieh, and S. Hashimoto, “Infrared response from metallic particles embedded in a single‐crystal Si matrix: The layered internal photoemission sensor,” Appl. Phys. Lett. 57(14), 1419–1421 (1990).
[Crossref]

S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett. 100(6), 061109 (2012).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

A. Czernik, H. Palm, W. Cabanski, M. Schulz, and U. Suckow, “Infrared photoemission of holes from ultrathin (3–20 nm) Pt/Ir-compound silicide films into silicon,” Appl. Phys., A Mater. Sci. Process. 55(2), 180–191 (1992).
[Crossref]

IEEE Electron Device Lett. (1)

B. Y. Tsaur, M. J. McNutt, R. A. Bredthauer, and R. B. Mattson, “128x128-element IrSi Schottky-barrier focal plane arrays for long-wavelength infrared imaging,” IEEE Electron Device Lett. 10(8), 361–363 (1989).
[Crossref]

IEEE J. Quantum Electron. (1)

C. Scales and P. Berini, “Thin-Film Schottky Barrier Photodetector Models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Akbari, A. Olivieri, and P. Berini, “Subbandgap Asymmetric Surface Plasmon Waveguide Schottky Detectors on Silicon,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4600209 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. Hosseinifar, V. Ahmadi, and M. Ebnali-Heidari, “Si-Schottky Photodetector Based on Metal Stripe in Slot-Waveguide Microring Resonator,” IEEE Photonics Technol. Lett. 28(12), 1363–1366 (2016).
[Crossref]

J. S. Guo and Y. L. Zhao, “Analysis of Mode Hybridization in Tapered Waveguides,” IEEE Photonics Technol. Lett. 27(23), 2441–2444 (2015).
[Crossref]

IEEE Trans. Electron Dev. (3)

C. K. Chen, B. Nechay, and B. Y. Tsaur, “Ultraviolet, visible, and infrared response of PtSi Schottky-barrier detectors operated in the front-illuminated mode,” IEEE Trans. Electron Dev. 38(5), 1094–1103 (1991).
[Crossref]

F. Raissi, “A possible explanation for high quantum efficiency of PtSi/porous Si Schottky detectors,” IEEE Trans. Electron Dev. 50(4), 1134–1137 (2003).
[Crossref]

W. F. Kosonocky, F. V. Shallcross, T. S. Villani, and J. V. Groppe, “160x244 Element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron Dev. 32(8), 1564–1573 (1985).
[Crossref]

Int. J. Opt. Appl. (1)

M. Casalino, “Near-Infrared Sub-Bandgap All-Silicon Photodetectors: A Review,” Int. J. Opt. Appl. 2(1), 1–16 (2012).

J. Appl. Phys. (1)

R. Williams and R. H. Bube, “Photoemission in the Photovoltaic Effect in Cadmium Sulfide Crystals,” J. Appl. Phys. 31(6), 968–978 (1960).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (1)

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Laser Photonics Rev. (1)

M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photonics Rev. 10(6), 895–921 (2016).
[Crossref]

Nano Lett. (3)

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, “On-Chip Integrated, Silicon-Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain,” Nano Lett. 16(5), 3005–3013 (2016).
[Crossref] [PubMed]

Nat. Commun. (2)

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near-field optical antenna resonances,” Nat. Nanotechnol. 6(9), 588–593 (2011).
[Crossref] [PubMed]

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Optica (1)

Phys. Rev. (2)

R. H. Fowler, “The Analysis of Photoelectric Sensitivity Curves for Clean Metals at Various Temperatures,” Phys. Rev. 38(1), 45–56 (1931).
[Crossref]

R. Stuart, F. Wooten, and W. Spicer, “Monte Carlo calculations pertaining to the transport of hot electrons in metals,” Phys. Rev. 135(2A), A495–A505 (1964).
[Crossref]

Phys. Rev. B (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001).
[Crossref]

Proc. IEEE (1)

D. W. Peters, “An infrared detector utilizing internal photoemission,” Proc. IEEE 55(5), 704–705 (1967).
[Crossref]

RCA Rev. (1)

H. Elabd, “Theory and Measurements of Photoresponse for Thin Film Pd_2 Si and PtSi Infrared Schottky-Barrier Detectors with Optical Cavity,” RCA Rev. 143(4), 569–589 (1982).

Sci. Rep. (1)

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

Science (1)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Solid-State Electron. (1)

S. M. Sze, D. J. Coleman, and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron. 14(12), 1209–1218 (1971).
[Crossref]

Other (4)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

FDTD Solutions, Lumerical Solutions Inc., Vancouver, Canada.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

S. M. Sze, Physics of Semiconductor Devices ((John Wiley and Sons, 1981).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Calculated IQE versus t/L and ΦB by model in [17,18], λ = 1550 nm.
Fig. 2
Fig. 2 (a) Plasmonic waveguide for light absorption, the waveguide cross sections with covered ultrathin film of (b) metal and (c) silicide.
Fig. 3
Fig. 3 (a), (d), and (e) Real parts of effective indices versus wm; (b), (d), and (f) α (MPA, dB/μm) versus wm. (a) and (b) Au, hm = 5 nm; (c) and (d) Au, hm = 7 nm; (e) and (f) Al, hm = 5 nm. Mode hybridization areas are marked by red circles. Other parameters: wsi = 600 nm, hsi = 220 nm, λ = 1550 nm.
Fig. 4
Fig. 4 Electric field distributions presented in log(|E| + 1), (a) sab0 mode; (b) aab0 mode; (c) quasi-TE mode; (d) quasi-TM mode. wm = 140 nm, hm = 5 nm. Metal: Au, λ = 1550 nm.
Fig. 5
Fig. 5 Electric field components of hybridized modes, (a)-(c) mode A, (d)-(f) mode B, (a) (d) log(|Ex| + 1), (b) (e) log(|Ey| + 1), (c) (f) real parts of Ey. wm = 90 nm, hm = 7nm. Metal: Au, λ = 1550 nm.
Fig. 6
Fig. 6 (a) Mode conversion processes in the modified taper: TE to quasi-TE, quasi-TE to hybrid modes (b) AFDTD and AEME versus z-coordinate for varied wm with hm = 5 nm, wsi = 600 nm, hsi = 220 nm. Metal: Au, λ = 1550 nm. Other parameters are listed in Table 2.
Fig. 7
Fig. 7 (a) Real parts of effective indices versus wm for varied hm and bound modes; (b) α (MPAs, dB/μm) versus wm for varied hm and bound modes. Other parameters: wsi = 600 nm, hsi = 220 nm, λ = 1550 nm.
Fig. 8
Fig. 8 Calculated Idark versus hm and wm with fixed responsivity of 0.3 A/W

Tables (2)

Tables Icon

Table 1 Material properties of several common metals/silicides

Tables Icon

Table 2 Parameters and results in calculations using FDTD and EME methods with hm = 5 nm

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R e s p = η e e h ν = A η i e h ν ,
A = v a b s 1 2 ω i m a g ( ε ) | E | 2 d V P s o u r c e ,
a m = 0.25 ( d S E × H m + d S E m × H * ) .
A E M E ( z ) = A t a p e r + m A m ( 1 e 2 n m i k 0 z ) ,
I d a r k = S A * * T 2 e q Φ B / k B T ,
f t r a n s i t = 0.44 v s a t / W ,
f R C = 1 / ( 2 π R C ) ,

Metrics