Abstract

We analyze the impact of aberration on spectral performance of silicon-based arrayed waveguide grating (AWG) router with the conventional design using a constant pitch along the grating circle for the array waveguides near the free propagation region (FPR), and simulation results show that due to existence of large aberration, side lobes occur in spectral responses of peripheral output channels for the center input light while more serious side lobes appear in most output channels within a free spectral range (FSR) for the edge channel input. Therefore, there is a high crosstalk in conventional N × N silicon AWG, which is very detrimental for router applications. In order to address it, a simple design with a constant projected period on a line tangent to the grating at its pole for the array waveguides near the FPR is proposed, and aberrations of all output wavelengths within a FSR are kept at a rather low level both for the center and edge input. Then we fabricate two kinds of AWG routers with the conventional and proposed design respectively on a SOI wafer, and experimental results show that spectral responses of the AWG router with the proposed design are significantly improved compared to those obtained in the conventional design, especially for the edge channel input.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Full-mesh T- and O-band wavelength router based on arrayed waveguide gratings

Nazirul A. Idris, Katsumi Yoshizawa, Yasunori Tomomatsu, Makoto Sudo, Tadashi Hajikano, Ryogo Kubo, Georgios Zervas, and Hiroyuki Tsuda
Opt. Express 24(1) 672-686 (2016)

Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology

Jing Wang, Zhen Sheng, Le Li, Albert Pang, Aimin Wu, Wei Li, Xi Wang, Shichang Zou, Minghao Qi, and Fuwan Gan
Opt. Express 22(8) 9395-9403 (2014)

Reduction of non-uniformity for a 16  ×  16 arrayed waveguide grating router based on silica waveguides

Xiang Xia, Tingting Lang, Libin Zhang, and Zhonghua Yu
Appl. Opt. 58(4) 1139-1145 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. Dong, “Silicon photonic integrated circuits for wavelength-division multiplexing applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 6100609 (2016).
    [Crossref]
  2. R. Proietti, Z. Cao, C. J. Nitta, Y. Li, and S. J. B. Yoo, “A scalable, low-latency, high-throughput, optical interconnect architecture based on arrayed waveguide grating routers,” J. Lightwave Technol. 33(4), 911–920 (2015).
    [Crossref]
  3. W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
    [Crossref]
  4. D.-J. Kim, J.-M. Lee, J. H. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photonics Technol. Lett. 20(19), 1615–1617 (2008).
    [Crossref]
  5. J. Wang, Z. Sheng, L. Li, A. Pang, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology,” Opt. Express 22(8), 9395–9403 (2014).
    [Crossref] [PubMed]
  6. S. Pathak, M. Vanslembrouck, P. Dumon, D. V. Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photonics Technol. Lett. 26(7), 718–721 (2014).
    [Crossref]
  7. J. Park, G. Kim, H. Park, J. Joo, S. Kim, and M.-J. Kwack, “Performance improvement in silicon arrayed waveguide grating by suppression of scattering near the boundary of a star coupler,” Appl. Opt. 54(17), 5597–5602 (2015).
    [Crossref] [PubMed]
  8. S. Kamei, M. Ishii, A. Kaneko, T. Shibata, and M. Itoh, “N × N cyclic-frequency router with improved performance based on arrayed-waveguide grating,” J. Lightwave Technol. 27(18), 4097–4104 (2009).
    [Crossref]
  9. J. Zou, T. Lang, Z. Le, and J.-J. He, “Ultracompact silicon-on-insulator-based reflective arrayed waveguide gratings for spectroscopic applications,” Appl. Opt. 55(13), 3531–3536 (2016).
    [Crossref] [PubMed]
  10. B. Gargallo, P. Muñoz, R. Baños, A. L. Giesecke, J. Bolten, T. Wahlbrink, and H. Kleinjans, “Reflective arrayed waveguide gratings based on Sagnac loop reflectors with custom spectral response,” Opt. Express 22(12), 14348–14362 (2014).
    [Crossref] [PubMed]
  11. J. Brouckaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Planar concave grating demultiplexer fabricated on a nanophotonics silicon-on-insulator platform,” J. Lightwave Technol. 25(5), 1269–1275 (2007).
    [Crossref]
  12. D. Wang, G. Jin, Y. Yan, and M. Wu, “Aberration theory of arrayed waveguide grating,” J. Lightwave Technol. 19(2), 279–284 (2001).
    [Crossref]
  13. S. Pathak, P. Dumon, D. V. Thourhout, and W. Bogaerts, “Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator,” Photonics J. 6(5), 4900109 (2014).
  14. S. Pathak, D. Van Thourhout, and W. Bogaerts, “Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications,” Opt. Lett. 38(16), 2961–2964 (2013).
    [Crossref] [PubMed]
  15. E. Kleijn, M. K. Smit, and X. J. M. Leijtens, “New analytical arrayed waveguide grating model,” J. Lightwave Technol. 31(20), 3309–3314 (2013).
    [Crossref]

2016 (2)

P. Dong, “Silicon photonic integrated circuits for wavelength-division multiplexing applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 6100609 (2016).
[Crossref]

J. Zou, T. Lang, Z. Le, and J.-J. He, “Ultracompact silicon-on-insulator-based reflective arrayed waveguide gratings for spectroscopic applications,” Appl. Opt. 55(13), 3531–3536 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (4)

J. Wang, Z. Sheng, L. Li, A. Pang, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology,” Opt. Express 22(8), 9395–9403 (2014).
[Crossref] [PubMed]

B. Gargallo, P. Muñoz, R. Baños, A. L. Giesecke, J. Bolten, T. Wahlbrink, and H. Kleinjans, “Reflective arrayed waveguide gratings based on Sagnac loop reflectors with custom spectral response,” Opt. Express 22(12), 14348–14362 (2014).
[Crossref] [PubMed]

S. Pathak, M. Vanslembrouck, P. Dumon, D. V. Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photonics Technol. Lett. 26(7), 718–721 (2014).
[Crossref]

S. Pathak, P. Dumon, D. V. Thourhout, and W. Bogaerts, “Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator,” Photonics J. 6(5), 4900109 (2014).

2013 (2)

2009 (1)

2008 (1)

D.-J. Kim, J.-M. Lee, J. H. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photonics Technol. Lett. 20(19), 1615–1617 (2008).
[Crossref]

2007 (1)

2006 (1)

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

2001 (1)

Absil, P.

S. Pathak, M. Vanslembrouck, P. Dumon, D. V. Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photonics Technol. Lett. 26(7), 718–721 (2014).
[Crossref]

Baets, R.

Baets, R. G.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

Baños, R.

Beckx, S.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

Bogaerts, W.

S. Pathak, M. Vanslembrouck, P. Dumon, D. V. Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photonics Technol. Lett. 26(7), 718–721 (2014).
[Crossref]

S. Pathak, P. Dumon, D. V. Thourhout, and W. Bogaerts, “Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator,” Photonics J. 6(5), 4900109 (2014).

S. Pathak, D. Van Thourhout, and W. Bogaerts, “Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications,” Opt. Lett. 38(16), 2961–2964 (2013).
[Crossref] [PubMed]

J. Brouckaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Planar concave grating demultiplexer fabricated on a nanophotonics silicon-on-insulator platform,” J. Lightwave Technol. 25(5), 1269–1275 (2007).
[Crossref]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

Bolten, J.

Brouckaert, J.

Cao, Z.

Dong, P.

P. Dong, “Silicon photonic integrated circuits for wavelength-division multiplexing applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 6100609 (2016).
[Crossref]

Dumon, P.

S. Pathak, P. Dumon, D. V. Thourhout, and W. Bogaerts, “Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator,” Photonics J. 6(5), 4900109 (2014).

S. Pathak, M. Vanslembrouck, P. Dumon, D. V. Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photonics Technol. Lett. 26(7), 718–721 (2014).
[Crossref]

J. Brouckaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Planar concave grating demultiplexer fabricated on a nanophotonics silicon-on-insulator platform,” J. Lightwave Technol. 25(5), 1269–1275 (2007).
[Crossref]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

Gan, F.

Gargallo, B.

Giesecke, A. L.

He, J.-J.

Ishii, M.

Itoh, M.

Jaenen, P.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

Jin, G.

Joo, J.

Kamei, S.

Kaneko, A.

Kim, D.-J.

D.-J. Kim, J.-M. Lee, J. H. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photonics Technol. Lett. 20(19), 1615–1617 (2008).
[Crossref]

Kim, G.

J. Park, G. Kim, H. Park, J. Joo, S. Kim, and M.-J. Kwack, “Performance improvement in silicon arrayed waveguide grating by suppression of scattering near the boundary of a star coupler,” Appl. Opt. 54(17), 5597–5602 (2015).
[Crossref] [PubMed]

D.-J. Kim, J.-M. Lee, J. H. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photonics Technol. Lett. 20(19), 1615–1617 (2008).
[Crossref]

Kim, S.

Kleijn, E.

Kleinjans, H.

Kwack, M.-J.

Lang, T.

Le, Z.

Lee, J.-M.

D.-J. Kim, J.-M. Lee, J. H. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photonics Technol. Lett. 20(19), 1615–1617 (2008).
[Crossref]

Leijtens, X. J. M.

Lepage, G.

S. Pathak, M. Vanslembrouck, P. Dumon, D. V. Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photonics Technol. Lett. 26(7), 718–721 (2014).
[Crossref]

Li, L.

Li, W.

Li, Y.

Muñoz, P.

Nitta, C. J.

Pang, A.

Park, H.

Park, J.

Pathak, S.

S. Pathak, P. Dumon, D. V. Thourhout, and W. Bogaerts, “Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator,” Photonics J. 6(5), 4900109 (2014).

S. Pathak, M. Vanslembrouck, P. Dumon, D. V. Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photonics Technol. Lett. 26(7), 718–721 (2014).
[Crossref]

S. Pathak, D. Van Thourhout, and W. Bogaerts, “Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications,” Opt. Lett. 38(16), 2961–2964 (2013).
[Crossref] [PubMed]

Proietti, R.

Pyo, J.

D.-J. Kim, J.-M. Lee, J. H. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photonics Technol. Lett. 20(19), 1615–1617 (2008).
[Crossref]

Qi, M.

Sheng, Z.

Shibata, T.

Smit, M. K.

Song, J. H.

D.-J. Kim, J.-M. Lee, J. H. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photonics Technol. Lett. 20(19), 1615–1617 (2008).
[Crossref]

Taillaert, D.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

Thourhout, D. V.

S. Pathak, M. Vanslembrouck, P. Dumon, D. V. Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photonics Technol. Lett. 26(7), 718–721 (2014).
[Crossref]

S. Pathak, P. Dumon, D. V. Thourhout, and W. Bogaerts, “Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator,” Photonics J. 6(5), 4900109 (2014).

Van Thourhout, D.

Vanslembrouck, M.

S. Pathak, M. Vanslembrouck, P. Dumon, D. V. Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photonics Technol. Lett. 26(7), 718–721 (2014).
[Crossref]

Verheyen, P.

S. Pathak, M. Vanslembrouck, P. Dumon, D. V. Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photonics Technol. Lett. 26(7), 718–721 (2014).
[Crossref]

Wahlbrink, T.

Wang, D.

Wang, J.

Wang, X.

Wiaux, V.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

Wouters, J.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

Wu, A.

Wu, M.

Yan, Y.

Yoo, S. J. B.

Zou, J.

Zou, S.

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (2)

P. Dong, “Silicon photonic integrated circuits for wavelength-division multiplexing applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 6100609 (2016).
[Crossref]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (2)

D.-J. Kim, J.-M. Lee, J. H. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photonics Technol. Lett. 20(19), 1615–1617 (2008).
[Crossref]

S. Pathak, M. Vanslembrouck, P. Dumon, D. V. Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photonics Technol. Lett. 26(7), 718–721 (2014).
[Crossref]

J. Lightwave Technol. (5)

Opt. Express (2)

Opt. Lett. (1)

Photonics J. (1)

S. Pathak, P. Dumon, D. V. Thourhout, and W. Bogaerts, “Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator,” Photonics J. 6(5), 4900109 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Location distribution of the array waveguides along the grating circle for Rowland configuration. (a) Conventional design: constant curvilinear period, (b) Proposed design: constant projected period.
Fig. 2
Fig. 2 Illustration of the free propagation region based on the Rowland configuration.
Fig. 3
Fig. 3 Deviation of locations of array waveguides in proposed design from those in conventional design along the grating circle.
Fig. 4
Fig. 4 Aberration values of 15 output wavelengths of two kinds of AWG routers for the 1st channel input (a) and 8th channel input (b), respectively.
Fig. 5
Fig. 5 Simulated spectral responses of the 400 GHz channel spaced 15 × 15 AWG router with the conventional design for the 1st channel input (a) and 8th channel input (b), respectively.
Fig. 6
Fig. 6 Simulated spectral responses of the 400 GHz channel spaced 15 × 15 AWG router with the proposed design for the 1st channel input (a) and 8th channel input (b), respectively.
Fig. 7
Fig. 7 (a) Optical microscope images of the fabricated 15 × 15 AWG router. Insets: Enlarged view of array waveguides (b) and I/O waveguides (c) near the FPR.
Fig. 8
Fig. 8 Measured spectral responses of the 400 GHz channel spaced 15 × 15 AWG router with the conventional design for the 1st channel input (a) and 8th channel input (b), respectively.
Fig. 9
Fig. 9 Measured spectral responses of the 400 GHz channel spaced 15 × 15 AWG router with the proposed design for the 1st channel input (a) and 8th channel input (b), respectively.
Fig. 10
Fig. 10 Overlapped spectra of the 1st, 8th and 15th output channel of the fabricated AWG router with the conventional design for the 1st (a) and 8th (b) input, respectively.
Fig. 11
Fig. 11 Overlapped spectra of the 1st, 8th and 15th output channel of the fabricated AWG router with the proposed design for the 1st (a) and 8th (b) input, respectively.
Fig. 12
Fig. 12 Spectral responses of the fabricated 15 × 15 AWG router. (a) Insertion loss, (b) Crosstalk level.

Tables (1)

Tables Icon

Table 1 Design parameters of the exampled AWG router.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

w = 2 R sin ( i d a 2 R ) , i = N , ... 1 , 0 , 1 , ... , N ( u 2 R ) 2 + w 2 = ( 2 R ) 2
w = i d a , i = N , ... 1 , 0 , 1 , ... , N ( u 2 R ) 2 + w 2 = ( 2 R ) 2
F ( w ) = n s r A ( w ) + n a L ( w ) + n s r B ( w ) G ( w ) m λ
Δ F ( w ) = F ( w ) F ( 0 ) = n s ( r A P ( w ) r A O ) + n a ( L ( w ) L ( 0 ) ) + n s ( r P B ( w ) r O B ) G ( w ) m λ

Metrics