Abstract

A portable Lidar system developed for large-scale (~1-20 m) combustion diagnostics is described and demonstrated. The system is able to perform remote backscattering measurements with range and temporal resolution. The range resolution is obtained by sharply imaging a part of the laser beam onto a CMOS-array or ICCD detector. The large focal depth required to do this is attained by placing the laser beam, the collection optics and the detector in a so-called Scheimpflug configuration. Results from simulations of the range capabilities and range resolution of the system are presented and its temporal resolution is also discussed. Various applications, important for combustion diagnostics, are also demonstrated, including Rayleigh scattering thermometry, aerosol detection and laser-induced fluorescence measurements. These measurements have been carried out using various continuous-wave GaN diode lasers, emitting in the violet-blue (405 – 450 nm) wavelength regime. It is anticipated that Scheimpflug Lidar will provide a useful and versatile diagnostic tool for combustion research, not only for fundamental studies, but in particular for applications at industrial sites.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Development of a picosecond lidar system for large-scale combustion diagnostics

Billy Kaldvee, Andreas Ehn, Joakim Bood, and Marcus Aldén
Appl. Opt. 48(4) B65-B72 (2009)

Implementation of a violet Scheimpflug lidar system for atmospheric aerosol studies

Liang Mei, Zheng Kong, and Peng Guan
Opt. Express 26(6) A260-A274 (2018)

Application of tunable excimer lasers to combustion diagnostics: a review

Erhard W. Rothe and Peter Andresen
Appl. Opt. 36(18) 3971-4033 (1997)

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (CRC Press, 1996), Vol. 3.
  2. A. Ehn, J. Zhu, X. Li, and J. Kiefer, “Advanced laser-based techniques for gas-phase diagnostics in combustion and aerospace engineering,” Appl. Spectrosc. 71(3), 341–366 (2017).
    [Crossref] [PubMed]
  3. R. K. Hanson, R. M. Spearrin, and C. S. Goldenstein, Spectroscopy and Optical Diagnostics of Gases (Springer, 2016).
  4. A. McIlroy, J. B. Jeffries, K. Kohse-Höinghaus, and J. B. Jeffries, “Applied Combustion Diagnostics,” (2002).
  5. M. Aldén, J. Bood, Z. Li, and M. Richter, “Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques,” Proc. Combust. Inst. 33(1), 69–97 (2011).
    [Crossref]
  6. M. G. Allen, E. R. Furlong, and R. K. Hanson, “Tunable diode laser sensing and combustion control,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, ed. (Taylor and Francis, 2002), pp. 479–498.
  7. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci. 36(2), 280–306 (2010).
    [Crossref]
  8. R. K. Hanson, “Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems,” Proc. Combust. Inst. 33(1), 1–40 (2011).
    [Crossref]
  9. W. D. Kulatilaka, H. U. Stauffer, J. R. Gord, and S. Roy, “One-dimensional single-shot thermometry in flames using femtosecond-CARS line imaging,” Opt. Lett. 36(21), 4182–4184 (2011).
    [Crossref] [PubMed]
  10. A. Bohlin and C. J. Kliewer, “Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” J. Chem. Phys. 138(22), 221101 (2013).
    [Crossref] [PubMed]
  11. M. B. Frish, R. T. Wainner, M. C. Laderer, B. D. Green, and M. G. Allen, “Standoff and miniature chemical vapor detectors based on tunable diode laser absorption spectroscopy,” IEEE Sens. J. 10(3), 639–646 (2010).
    [Crossref]
  12. J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “Laser spectroscopic oxygen sensor using diffuse reflector based optical cell and advanced signal processing,” Appl. Phys. B Lasers Opt. 100(2), 417–425 (2010).
    [Crossref]
  13. Z. Wang and S. T. Sanders, “Toward single - ended absorption spectroscopy probes based on backscattering from rough surfaces : H 2 O vapor measurements near 1350 nm,” Appl. Phys. B 121(2), 187–192 (2015).
    [Crossref]
  14. W. Y. Peng, C. S. Goldenstein, R. Mitchell Spearrin, J. B. Jeffries, and R. K. Hanson, “Single-ended mid-infrared laser-absorption sensor for simultaneous in situ measurements of H2O, CO2, CO, and temperature in combustion flows,” Appl. Opt. 55(33), 9347–9359 (2016).
    [Crossref] [PubMed]
  15. C. S. Goldenstein, R. Mitchell Spearrin, and R. K. Hanson, “Fiber-coupled diode-laser sensors for calibration-free stand-off measurements of gas temperature, pressure, and composition,” Appl. Opt. 55(3), 479–484 (2016).
    [Crossref] [PubMed]
  16. Z. Wang, S. T. Sanders, and M. A. Robinson, “Spatially resolved concentration measurements based on backscatter absorption spectroscopy,” Appl. Phys. B 122(6), 176 (2016).
    [Crossref]
  17. C. Weitkamp, ed., Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer Science & Business, 2006), Vol. 102.
  18. B. Kaldvee, A. Ehn, J. Bood, and M. Aldén, “Development of a picosecond lidar system for large-scale combustion diagnostics,” Appl. Opt. 48(4), B65–B72 (2009).
    [Crossref] [PubMed]
  19. B. Kaldvee, J. Bood, and M. Aldén, “Picosecond-lidar thermometry in a measurement volume surrounded by highly scattering media,” Meas. Sci. Technol. 22(12), 125302 (2011).
    [Crossref]
  20. B. Kaldvee, J. Wahlqvist, M. Jonsson, C. Brackmann, B. Andersson, P. van Hees, J. Bood, and M. Alden, “Room-fire characterization using highly range-resolved picosecond Lidar diagnostics and CFD simulations,” Combust. Sci. Technol. 185(5), 749–765 (2013).
    [Crossref]
  21. B. Kaldvee, C. Brackmann, M. Aldén, and J. Bood, “Highly range-resolved ammonia detection using near-field picosecond differential absorption lidar,” Opt. Express 20(18), 20688–20697 (2012).
    [Crossref] [PubMed]
  22. T. Leffler, C. Brackmann, A. Ehn, B. Kaldvee, M. Aldén, M. Berg, and J. Bood, “Range-resolved detection of potassium chloride using picosecond differential absorption light detection and ranging,” Appl. Opt. 54(5), 1058–1064 (2015).
    [Crossref] [PubMed]
  23. B. Kaldvee, C. Brackmann, M. Aldén, and J. Bood, “LII-lidar: Range-resolved backward picosecond laser-induced incandescence,” Appl. Phys. B Lasers Opt. 115(1), 111–121 (2014).
    [Crossref]
  24. M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles -Application to interacting flying insects,” Prog. Electromagnetics Res. 147, 141–151 (2014).
    [Crossref]
  25. L. Mei and M. Brydegaard, “Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system,” Opt. Express 23(24), A1613–A1628 (2015).
    [Crossref] [PubMed]
  26. L. Mei and M. Brydegaard, “Development of a Scheimpflug Lidar system for atmospheric aerosol monitoring,” in EPJ Web of Conferences (EDP Sciences, 2016), Vol. 119, p. 27005.
    [Crossref]
  27. M. Brydegaard, E. Malmqvist, S. Jansson, G. Zhao, J. Larsson, and S. Török, “The Scheimpflug Lidar method,” in SPIE Proceedings (2017), Vol. 10406.
    [Crossref]
  28. G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
    [Crossref]
  29. L. Mei and M. Brydegaard, “Continuous-wave differential absorption lidar,” Laser Photonics Rev. 9(6), 629–636 (2015).
    [Crossref]
  30. J. Carpentier, “Improvements in enlarging or like cameras,” GB Pat. No.1139 (1901).
  31. T. Scheimpflug, “Improved method and apparatus for the systematic alteration or distortion of plane pictures and images by means of lenses and mirrors for photography and for other purposes,” GB Pat. No.1196 (1904).
  32. H. M. Merklinger, Focusing the View Camera (2010), Vol. 0.
  33. F. Migliorini, S. De Iuliis, F. Cignoli, and G. Zizak, “How “flat” is the rich premixed flame produced by your McKenna burner?” Combust. Flame 153(3), 384–393 (2008).
    [Crossref]
  34. F. Vestin, M. Afzelius, C. Brackmann, and P. E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Inst. 30(1), 1673–1680 (2005).
    [Crossref]
  35. F.-Q. Zhao and H. Hiroyasu, “The applications of laser Rayleigh scattering to combustion diagnostics,” Pror. Energy Combust. Sci. 19(6), 447–485 (1993).
    [Crossref]
  36. T. Leffler, C. Brackmann, W. Weng, Q. Gao, M. Aldén, and Z. Li, “Experimental investigations of potassium chemistry in premixed flames,” Fuel 203, 802–810 (2017).
    [Crossref]
  37. J. Borggren, W. Weng, A. Hosseinnia, P.-E. Bengtsson, M. Aldén, and Z. Li, “Diode laser-based thermometry using two-line atomic fluorescence of indium and gallium,” Appl. Phys. B Lasers Opt. 123(12), 278 (2017).
    [Crossref]

2017 (3)

T. Leffler, C. Brackmann, W. Weng, Q. Gao, M. Aldén, and Z. Li, “Experimental investigations of potassium chemistry in premixed flames,” Fuel 203, 802–810 (2017).
[Crossref]

J. Borggren, W. Weng, A. Hosseinnia, P.-E. Bengtsson, M. Aldén, and Z. Li, “Diode laser-based thermometry using two-line atomic fluorescence of indium and gallium,” Appl. Phys. B Lasers Opt. 123(12), 278 (2017).
[Crossref]

A. Ehn, J. Zhu, X. Li, and J. Kiefer, “Advanced laser-based techniques for gas-phase diagnostics in combustion and aerospace engineering,” Appl. Spectrosc. 71(3), 341–366 (2017).
[Crossref] [PubMed]

2016 (4)

C. S. Goldenstein, R. Mitchell Spearrin, and R. K. Hanson, “Fiber-coupled diode-laser sensors for calibration-free stand-off measurements of gas temperature, pressure, and composition,” Appl. Opt. 55(3), 479–484 (2016).
[Crossref] [PubMed]

W. Y. Peng, C. S. Goldenstein, R. Mitchell Spearrin, J. B. Jeffries, and R. K. Hanson, “Single-ended mid-infrared laser-absorption sensor for simultaneous in situ measurements of H2O, CO2, CO, and temperature in combustion flows,” Appl. Opt. 55(33), 9347–9359 (2016).
[Crossref] [PubMed]

G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

Z. Wang, S. T. Sanders, and M. A. Robinson, “Spatially resolved concentration measurements based on backscatter absorption spectroscopy,” Appl. Phys. B 122(6), 176 (2016).
[Crossref]

2015 (4)

Z. Wang and S. T. Sanders, “Toward single - ended absorption spectroscopy probes based on backscattering from rough surfaces : H 2 O vapor measurements near 1350 nm,” Appl. Phys. B 121(2), 187–192 (2015).
[Crossref]

L. Mei and M. Brydegaard, “Continuous-wave differential absorption lidar,” Laser Photonics Rev. 9(6), 629–636 (2015).
[Crossref]

T. Leffler, C. Brackmann, A. Ehn, B. Kaldvee, M. Aldén, M. Berg, and J. Bood, “Range-resolved detection of potassium chloride using picosecond differential absorption light detection and ranging,” Appl. Opt. 54(5), 1058–1064 (2015).
[Crossref] [PubMed]

L. Mei and M. Brydegaard, “Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system,” Opt. Express 23(24), A1613–A1628 (2015).
[Crossref] [PubMed]

2014 (2)

B. Kaldvee, C. Brackmann, M. Aldén, and J. Bood, “LII-lidar: Range-resolved backward picosecond laser-induced incandescence,” Appl. Phys. B Lasers Opt. 115(1), 111–121 (2014).
[Crossref]

M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles -Application to interacting flying insects,” Prog. Electromagnetics Res. 147, 141–151 (2014).
[Crossref]

2013 (2)

A. Bohlin and C. J. Kliewer, “Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” J. Chem. Phys. 138(22), 221101 (2013).
[Crossref] [PubMed]

B. Kaldvee, J. Wahlqvist, M. Jonsson, C. Brackmann, B. Andersson, P. van Hees, J. Bood, and M. Alden, “Room-fire characterization using highly range-resolved picosecond Lidar diagnostics and CFD simulations,” Combust. Sci. Technol. 185(5), 749–765 (2013).
[Crossref]

2012 (1)

2011 (4)

W. D. Kulatilaka, H. U. Stauffer, J. R. Gord, and S. Roy, “One-dimensional single-shot thermometry in flames using femtosecond-CARS line imaging,” Opt. Lett. 36(21), 4182–4184 (2011).
[Crossref] [PubMed]

M. Aldén, J. Bood, Z. Li, and M. Richter, “Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques,” Proc. Combust. Inst. 33(1), 69–97 (2011).
[Crossref]

R. K. Hanson, “Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems,” Proc. Combust. Inst. 33(1), 1–40 (2011).
[Crossref]

B. Kaldvee, J. Bood, and M. Aldén, “Picosecond-lidar thermometry in a measurement volume surrounded by highly scattering media,” Meas. Sci. Technol. 22(12), 125302 (2011).
[Crossref]

2010 (3)

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci. 36(2), 280–306 (2010).
[Crossref]

M. B. Frish, R. T. Wainner, M. C. Laderer, B. D. Green, and M. G. Allen, “Standoff and miniature chemical vapor detectors based on tunable diode laser absorption spectroscopy,” IEEE Sens. J. 10(3), 639–646 (2010).
[Crossref]

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “Laser spectroscopic oxygen sensor using diffuse reflector based optical cell and advanced signal processing,” Appl. Phys. B Lasers Opt. 100(2), 417–425 (2010).
[Crossref]

2009 (1)

2008 (1)

F. Migliorini, S. De Iuliis, F. Cignoli, and G. Zizak, “How “flat” is the rich premixed flame produced by your McKenna burner?” Combust. Flame 153(3), 384–393 (2008).
[Crossref]

2005 (1)

F. Vestin, M. Afzelius, C. Brackmann, and P. E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Inst. 30(1), 1673–1680 (2005).
[Crossref]

1993 (1)

F.-Q. Zhao and H. Hiroyasu, “The applications of laser Rayleigh scattering to combustion diagnostics,” Pror. Energy Combust. Sci. 19(6), 447–485 (1993).
[Crossref]

Afzelius, M.

F. Vestin, M. Afzelius, C. Brackmann, and P. E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Inst. 30(1), 1673–1680 (2005).
[Crossref]

Alden, M.

B. Kaldvee, J. Wahlqvist, M. Jonsson, C. Brackmann, B. Andersson, P. van Hees, J. Bood, and M. Alden, “Room-fire characterization using highly range-resolved picosecond Lidar diagnostics and CFD simulations,” Combust. Sci. Technol. 185(5), 749–765 (2013).
[Crossref]

Aldén, M.

J. Borggren, W. Weng, A. Hosseinnia, P.-E. Bengtsson, M. Aldén, and Z. Li, “Diode laser-based thermometry using two-line atomic fluorescence of indium and gallium,” Appl. Phys. B Lasers Opt. 123(12), 278 (2017).
[Crossref]

T. Leffler, C. Brackmann, W. Weng, Q. Gao, M. Aldén, and Z. Li, “Experimental investigations of potassium chemistry in premixed flames,” Fuel 203, 802–810 (2017).
[Crossref]

T. Leffler, C. Brackmann, A. Ehn, B. Kaldvee, M. Aldén, M. Berg, and J. Bood, “Range-resolved detection of potassium chloride using picosecond differential absorption light detection and ranging,” Appl. Opt. 54(5), 1058–1064 (2015).
[Crossref] [PubMed]

B. Kaldvee, C. Brackmann, M. Aldén, and J. Bood, “LII-lidar: Range-resolved backward picosecond laser-induced incandescence,” Appl. Phys. B Lasers Opt. 115(1), 111–121 (2014).
[Crossref]

B. Kaldvee, C. Brackmann, M. Aldén, and J. Bood, “Highly range-resolved ammonia detection using near-field picosecond differential absorption lidar,” Opt. Express 20(18), 20688–20697 (2012).
[Crossref] [PubMed]

M. Aldén, J. Bood, Z. Li, and M. Richter, “Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques,” Proc. Combust. Inst. 33(1), 69–97 (2011).
[Crossref]

B. Kaldvee, J. Bood, and M. Aldén, “Picosecond-lidar thermometry in a measurement volume surrounded by highly scattering media,” Meas. Sci. Technol. 22(12), 125302 (2011).
[Crossref]

B. Kaldvee, A. Ehn, J. Bood, and M. Aldén, “Development of a picosecond lidar system for large-scale combustion diagnostics,” Appl. Opt. 48(4), B65–B72 (2009).
[Crossref] [PubMed]

Allen, M. G.

M. B. Frish, R. T. Wainner, M. C. Laderer, B. D. Green, and M. G. Allen, “Standoff and miniature chemical vapor detectors based on tunable diode laser absorption spectroscopy,” IEEE Sens. J. 10(3), 639–646 (2010).
[Crossref]

Amann, M. C.

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “Laser spectroscopic oxygen sensor using diffuse reflector based optical cell and advanced signal processing,” Appl. Phys. B Lasers Opt. 100(2), 417–425 (2010).
[Crossref]

Andersson, B.

B. Kaldvee, J. Wahlqvist, M. Jonsson, C. Brackmann, B. Andersson, P. van Hees, J. Bood, and M. Alden, “Room-fire characterization using highly range-resolved picosecond Lidar diagnostics and CFD simulations,” Combust. Sci. Technol. 185(5), 749–765 (2013).
[Crossref]

Bengtsson, P. E.

F. Vestin, M. Afzelius, C. Brackmann, and P. E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Inst. 30(1), 1673–1680 (2005).
[Crossref]

Bengtsson, P.-E.

J. Borggren, W. Weng, A. Hosseinnia, P.-E. Bengtsson, M. Aldén, and Z. Li, “Diode laser-based thermometry using two-line atomic fluorescence of indium and gallium,” Appl. Phys. B Lasers Opt. 123(12), 278 (2017).
[Crossref]

Berg, M.

Bianco, G.

G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

Bohlin, A.

A. Bohlin and C. J. Kliewer, “Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” J. Chem. Phys. 138(22), 221101 (2013).
[Crossref] [PubMed]

Bood, J.

T. Leffler, C. Brackmann, A. Ehn, B. Kaldvee, M. Aldén, M. Berg, and J. Bood, “Range-resolved detection of potassium chloride using picosecond differential absorption light detection and ranging,” Appl. Opt. 54(5), 1058–1064 (2015).
[Crossref] [PubMed]

B. Kaldvee, C. Brackmann, M. Aldén, and J. Bood, “LII-lidar: Range-resolved backward picosecond laser-induced incandescence,” Appl. Phys. B Lasers Opt. 115(1), 111–121 (2014).
[Crossref]

B. Kaldvee, J. Wahlqvist, M. Jonsson, C. Brackmann, B. Andersson, P. van Hees, J. Bood, and M. Alden, “Room-fire characterization using highly range-resolved picosecond Lidar diagnostics and CFD simulations,” Combust. Sci. Technol. 185(5), 749–765 (2013).
[Crossref]

B. Kaldvee, C. Brackmann, M. Aldén, and J. Bood, “Highly range-resolved ammonia detection using near-field picosecond differential absorption lidar,” Opt. Express 20(18), 20688–20697 (2012).
[Crossref] [PubMed]

B. Kaldvee, J. Bood, and M. Aldén, “Picosecond-lidar thermometry in a measurement volume surrounded by highly scattering media,” Meas. Sci. Technol. 22(12), 125302 (2011).
[Crossref]

M. Aldén, J. Bood, Z. Li, and M. Richter, “Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques,” Proc. Combust. Inst. 33(1), 69–97 (2011).
[Crossref]

B. Kaldvee, A. Ehn, J. Bood, and M. Aldén, “Development of a picosecond lidar system for large-scale combustion diagnostics,” Appl. Opt. 48(4), B65–B72 (2009).
[Crossref] [PubMed]

Borggren, J.

J. Borggren, W. Weng, A. Hosseinnia, P.-E. Bengtsson, M. Aldén, and Z. Li, “Diode laser-based thermometry using two-line atomic fluorescence of indium and gallium,” Appl. Phys. B Lasers Opt. 123(12), 278 (2017).
[Crossref]

Brackmann, C.

T. Leffler, C. Brackmann, W. Weng, Q. Gao, M. Aldén, and Z. Li, “Experimental investigations of potassium chemistry in premixed flames,” Fuel 203, 802–810 (2017).
[Crossref]

T. Leffler, C. Brackmann, A. Ehn, B. Kaldvee, M. Aldén, M. Berg, and J. Bood, “Range-resolved detection of potassium chloride using picosecond differential absorption light detection and ranging,” Appl. Opt. 54(5), 1058–1064 (2015).
[Crossref] [PubMed]

B. Kaldvee, C. Brackmann, M. Aldén, and J. Bood, “LII-lidar: Range-resolved backward picosecond laser-induced incandescence,” Appl. Phys. B Lasers Opt. 115(1), 111–121 (2014).
[Crossref]

B. Kaldvee, J. Wahlqvist, M. Jonsson, C. Brackmann, B. Andersson, P. van Hees, J. Bood, and M. Alden, “Room-fire characterization using highly range-resolved picosecond Lidar diagnostics and CFD simulations,” Combust. Sci. Technol. 185(5), 749–765 (2013).
[Crossref]

B. Kaldvee, C. Brackmann, M. Aldén, and J. Bood, “Highly range-resolved ammonia detection using near-field picosecond differential absorption lidar,” Opt. Express 20(18), 20688–20697 (2012).
[Crossref] [PubMed]

F. Vestin, M. Afzelius, C. Brackmann, and P. E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Inst. 30(1), 1673–1680 (2005).
[Crossref]

Brydegaard, M.

G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

L. Mei and M. Brydegaard, “Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system,” Opt. Express 23(24), A1613–A1628 (2015).
[Crossref] [PubMed]

L. Mei and M. Brydegaard, “Continuous-wave differential absorption lidar,” Laser Photonics Rev. 9(6), 629–636 (2015).
[Crossref]

M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles -Application to interacting flying insects,” Prog. Electromagnetics Res. 147, 141–151 (2014).
[Crossref]

M. Brydegaard, E. Malmqvist, S. Jansson, G. Zhao, J. Larsson, and S. Török, “The Scheimpflug Lidar method,” in SPIE Proceedings (2017), Vol. 10406.
[Crossref]

Chen, J.

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “Laser spectroscopic oxygen sensor using diffuse reflector based optical cell and advanced signal processing,” Appl. Phys. B Lasers Opt. 100(2), 417–425 (2010).
[Crossref]

Cignoli, F.

F. Migliorini, S. De Iuliis, F. Cignoli, and G. Zizak, “How “flat” is the rich premixed flame produced by your McKenna burner?” Combust. Flame 153(3), 384–393 (2008).
[Crossref]

De Iuliis, S.

F. Migliorini, S. De Iuliis, F. Cignoli, and G. Zizak, “How “flat” is the rich premixed flame produced by your McKenna burner?” Combust. Flame 153(3), 384–393 (2008).
[Crossref]

Ehn, A.

Frish, M. B.

M. B. Frish, R. T. Wainner, M. C. Laderer, B. D. Green, and M. G. Allen, “Standoff and miniature chemical vapor detectors based on tunable diode laser absorption spectroscopy,” IEEE Sens. J. 10(3), 639–646 (2010).
[Crossref]

Gao, Q.

T. Leffler, C. Brackmann, W. Weng, Q. Gao, M. Aldén, and Z. Li, “Experimental investigations of potassium chemistry in premixed flames,” Fuel 203, 802–810 (2017).
[Crossref]

Gebru, A.

M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles -Application to interacting flying insects,” Prog. Electromagnetics Res. 147, 141–151 (2014).
[Crossref]

Goldenstein, C. S.

Gord, J. R.

W. D. Kulatilaka, H. U. Stauffer, J. R. Gord, and S. Roy, “One-dimensional single-shot thermometry in flames using femtosecond-CARS line imaging,” Opt. Lett. 36(21), 4182–4184 (2011).
[Crossref] [PubMed]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci. 36(2), 280–306 (2010).
[Crossref]

Green, B. D.

M. B. Frish, R. T. Wainner, M. C. Laderer, B. D. Green, and M. G. Allen, “Standoff and miniature chemical vapor detectors based on tunable diode laser absorption spectroscopy,” IEEE Sens. J. 10(3), 639–646 (2010).
[Crossref]

Hangauer, A.

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “Laser spectroscopic oxygen sensor using diffuse reflector based optical cell and advanced signal processing,” Appl. Phys. B Lasers Opt. 100(2), 417–425 (2010).
[Crossref]

Hanson, R. K.

Hansson, L. A.

G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

Hiroyasu, H.

F.-Q. Zhao and H. Hiroyasu, “The applications of laser Rayleigh scattering to combustion diagnostics,” Pror. Energy Combust. Sci. 19(6), 447–485 (1993).
[Crossref]

Hosseinnia, A.

J. Borggren, W. Weng, A. Hosseinnia, P.-E. Bengtsson, M. Aldén, and Z. Li, “Diode laser-based thermometry using two-line atomic fluorescence of indium and gallium,” Appl. Phys. B Lasers Opt. 123(12), 278 (2017).
[Crossref]

Jansson, S.

M. Brydegaard, E. Malmqvist, S. Jansson, G. Zhao, J. Larsson, and S. Török, “The Scheimpflug Lidar method,” in SPIE Proceedings (2017), Vol. 10406.
[Crossref]

Jeffries, J. B.

W. Y. Peng, C. S. Goldenstein, R. Mitchell Spearrin, J. B. Jeffries, and R. K. Hanson, “Single-ended mid-infrared laser-absorption sensor for simultaneous in situ measurements of H2O, CO2, CO, and temperature in combustion flows,” Appl. Opt. 55(33), 9347–9359 (2016).
[Crossref] [PubMed]

A. McIlroy, J. B. Jeffries, K. Kohse-Höinghaus, and J. B. Jeffries, “Applied Combustion Diagnostics,” (2002).

A. McIlroy, J. B. Jeffries, K. Kohse-Höinghaus, and J. B. Jeffries, “Applied Combustion Diagnostics,” (2002).

Jonsson, M.

B. Kaldvee, J. Wahlqvist, M. Jonsson, C. Brackmann, B. Andersson, P. van Hees, J. Bood, and M. Alden, “Room-fire characterization using highly range-resolved picosecond Lidar diagnostics and CFD simulations,” Combust. Sci. Technol. 185(5), 749–765 (2013).
[Crossref]

Kaldvee, B.

T. Leffler, C. Brackmann, A. Ehn, B. Kaldvee, M. Aldén, M. Berg, and J. Bood, “Range-resolved detection of potassium chloride using picosecond differential absorption light detection and ranging,” Appl. Opt. 54(5), 1058–1064 (2015).
[Crossref] [PubMed]

B. Kaldvee, C. Brackmann, M. Aldén, and J. Bood, “LII-lidar: Range-resolved backward picosecond laser-induced incandescence,” Appl. Phys. B Lasers Opt. 115(1), 111–121 (2014).
[Crossref]

B. Kaldvee, J. Wahlqvist, M. Jonsson, C. Brackmann, B. Andersson, P. van Hees, J. Bood, and M. Alden, “Room-fire characterization using highly range-resolved picosecond Lidar diagnostics and CFD simulations,” Combust. Sci. Technol. 185(5), 749–765 (2013).
[Crossref]

B. Kaldvee, C. Brackmann, M. Aldén, and J. Bood, “Highly range-resolved ammonia detection using near-field picosecond differential absorption lidar,” Opt. Express 20(18), 20688–20697 (2012).
[Crossref] [PubMed]

B. Kaldvee, J. Bood, and M. Aldén, “Picosecond-lidar thermometry in a measurement volume surrounded by highly scattering media,” Meas. Sci. Technol. 22(12), 125302 (2011).
[Crossref]

B. Kaldvee, A. Ehn, J. Bood, and M. Aldén, “Development of a picosecond lidar system for large-scale combustion diagnostics,” Appl. Opt. 48(4), B65–B72 (2009).
[Crossref] [PubMed]

Kiefer, J.

Kliewer, C. J.

A. Bohlin and C. J. Kliewer, “Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” J. Chem. Phys. 138(22), 221101 (2013).
[Crossref] [PubMed]

Kohse-Höinghaus, K.

A. McIlroy, J. B. Jeffries, K. Kohse-Höinghaus, and J. B. Jeffries, “Applied Combustion Diagnostics,” (2002).

Kulatilaka, W. D.

Laderer, M. C.

M. B. Frish, R. T. Wainner, M. C. Laderer, B. D. Green, and M. G. Allen, “Standoff and miniature chemical vapor detectors based on tunable diode laser absorption spectroscopy,” IEEE Sens. J. 10(3), 639–646 (2010).
[Crossref]

Larsson, J.

M. Brydegaard, E. Malmqvist, S. Jansson, G. Zhao, J. Larsson, and S. Török, “The Scheimpflug Lidar method,” in SPIE Proceedings (2017), Vol. 10406.
[Crossref]

Leffler, T.

Li, X.

Li, Z.

J. Borggren, W. Weng, A. Hosseinnia, P.-E. Bengtsson, M. Aldén, and Z. Li, “Diode laser-based thermometry using two-line atomic fluorescence of indium and gallium,” Appl. Phys. B Lasers Opt. 123(12), 278 (2017).
[Crossref]

T. Leffler, C. Brackmann, W. Weng, Q. Gao, M. Aldén, and Z. Li, “Experimental investigations of potassium chemistry in premixed flames,” Fuel 203, 802–810 (2017).
[Crossref]

M. Aldén, J. Bood, Z. Li, and M. Richter, “Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques,” Proc. Combust. Inst. 33(1), 69–97 (2011).
[Crossref]

Ljungholm, M.

G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

Malmqvist, E.

G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

M. Brydegaard, E. Malmqvist, S. Jansson, G. Zhao, J. Larsson, and S. Török, “The Scheimpflug Lidar method,” in SPIE Proceedings (2017), Vol. 10406.
[Crossref]

McIlroy, A.

A. McIlroy, J. B. Jeffries, K. Kohse-Höinghaus, and J. B. Jeffries, “Applied Combustion Diagnostics,” (2002).

Mei, L.

L. Mei and M. Brydegaard, “Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system,” Opt. Express 23(24), A1613–A1628 (2015).
[Crossref] [PubMed]

L. Mei and M. Brydegaard, “Continuous-wave differential absorption lidar,” Laser Photonics Rev. 9(6), 629–636 (2015).
[Crossref]

Migliorini, F.

F. Migliorini, S. De Iuliis, F. Cignoli, and G. Zizak, “How “flat” is the rich premixed flame produced by your McKenna burner?” Combust. Flame 153(3), 384–393 (2008).
[Crossref]

Mitchell Spearrin, R.

Patnaik, A. K.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci. 36(2), 280–306 (2010).
[Crossref]

Peng, W. Y.

Richter, M.

M. Aldén, J. Bood, Z. Li, and M. Richter, “Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques,” Proc. Combust. Inst. 33(1), 69–97 (2011).
[Crossref]

Robinson, M. A.

Z. Wang, S. T. Sanders, and M. A. Robinson, “Spatially resolved concentration measurements based on backscatter absorption spectroscopy,” Appl. Phys. B 122(6), 176 (2016).
[Crossref]

Roy, S.

W. D. Kulatilaka, H. U. Stauffer, J. R. Gord, and S. Roy, “One-dimensional single-shot thermometry in flames using femtosecond-CARS line imaging,” Opt. Lett. 36(21), 4182–4184 (2011).
[Crossref] [PubMed]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci. 36(2), 280–306 (2010).
[Crossref]

Sanders, S. T.

Z. Wang, S. T. Sanders, and M. A. Robinson, “Spatially resolved concentration measurements based on backscatter absorption spectroscopy,” Appl. Phys. B 122(6), 176 (2016).
[Crossref]

Z. Wang and S. T. Sanders, “Toward single - ended absorption spectroscopy probes based on backscattering from rough surfaces : H 2 O vapor measurements near 1350 nm,” Appl. Phys. B 121(2), 187–192 (2015).
[Crossref]

Stauffer, H. U.

Strzoda, R.

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “Laser spectroscopic oxygen sensor using diffuse reflector based optical cell and advanced signal processing,” Appl. Phys. B Lasers Opt. 100(2), 417–425 (2010).
[Crossref]

Svanberg, S.

G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles -Application to interacting flying insects,” Prog. Electromagnetics Res. 147, 141–151 (2014).
[Crossref]

Török, S.

M. Brydegaard, E. Malmqvist, S. Jansson, G. Zhao, J. Larsson, and S. Török, “The Scheimpflug Lidar method,” in SPIE Proceedings (2017), Vol. 10406.
[Crossref]

van Hees, P.

B. Kaldvee, J. Wahlqvist, M. Jonsson, C. Brackmann, B. Andersson, P. van Hees, J. Bood, and M. Alden, “Room-fire characterization using highly range-resolved picosecond Lidar diagnostics and CFD simulations,” Combust. Sci. Technol. 185(5), 749–765 (2013).
[Crossref]

Vestin, F.

F. Vestin, M. Afzelius, C. Brackmann, and P. E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Inst. 30(1), 1673–1680 (2005).
[Crossref]

Wahlqvist, J.

B. Kaldvee, J. Wahlqvist, M. Jonsson, C. Brackmann, B. Andersson, P. van Hees, J. Bood, and M. Alden, “Room-fire characterization using highly range-resolved picosecond Lidar diagnostics and CFD simulations,” Combust. Sci. Technol. 185(5), 749–765 (2013).
[Crossref]

Wainner, R. T.

M. B. Frish, R. T. Wainner, M. C. Laderer, B. D. Green, and M. G. Allen, “Standoff and miniature chemical vapor detectors based on tunable diode laser absorption spectroscopy,” IEEE Sens. J. 10(3), 639–646 (2010).
[Crossref]

Wang, Z.

Z. Wang, S. T. Sanders, and M. A. Robinson, “Spatially resolved concentration measurements based on backscatter absorption spectroscopy,” Appl. Phys. B 122(6), 176 (2016).
[Crossref]

Z. Wang and S. T. Sanders, “Toward single - ended absorption spectroscopy probes based on backscattering from rough surfaces : H 2 O vapor measurements near 1350 nm,” Appl. Phys. B 121(2), 187–192 (2015).
[Crossref]

Weng, W.

J. Borggren, W. Weng, A. Hosseinnia, P.-E. Bengtsson, M. Aldén, and Z. Li, “Diode laser-based thermometry using two-line atomic fluorescence of indium and gallium,” Appl. Phys. B Lasers Opt. 123(12), 278 (2017).
[Crossref]

T. Leffler, C. Brackmann, W. Weng, Q. Gao, M. Aldén, and Z. Li, “Experimental investigations of potassium chemistry in premixed flames,” Fuel 203, 802–810 (2017).
[Crossref]

Zhao, F.-Q.

F.-Q. Zhao and H. Hiroyasu, “The applications of laser Rayleigh scattering to combustion diagnostics,” Pror. Energy Combust. Sci. 19(6), 447–485 (1993).
[Crossref]

Zhao, G.

G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

M. Brydegaard, E. Malmqvist, S. Jansson, G. Zhao, J. Larsson, and S. Török, “The Scheimpflug Lidar method,” in SPIE Proceedings (2017), Vol. 10406.
[Crossref]

Zhu, J.

Zizak, G.

F. Migliorini, S. De Iuliis, F. Cignoli, and G. Zizak, “How “flat” is the rich premixed flame produced by your McKenna burner?” Combust. Flame 153(3), 384–393 (2008).
[Crossref]

Appl. Opt. (4)

Appl. Phys. B (2)

Z. Wang and S. T. Sanders, “Toward single - ended absorption spectroscopy probes based on backscattering from rough surfaces : H 2 O vapor measurements near 1350 nm,” Appl. Phys. B 121(2), 187–192 (2015).
[Crossref]

Z. Wang, S. T. Sanders, and M. A. Robinson, “Spatially resolved concentration measurements based on backscatter absorption spectroscopy,” Appl. Phys. B 122(6), 176 (2016).
[Crossref]

Appl. Phys. B Lasers Opt. (3)

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “Laser spectroscopic oxygen sensor using diffuse reflector based optical cell and advanced signal processing,” Appl. Phys. B Lasers Opt. 100(2), 417–425 (2010).
[Crossref]

J. Borggren, W. Weng, A. Hosseinnia, P.-E. Bengtsson, M. Aldén, and Z. Li, “Diode laser-based thermometry using two-line atomic fluorescence of indium and gallium,” Appl. Phys. B Lasers Opt. 123(12), 278 (2017).
[Crossref]

B. Kaldvee, C. Brackmann, M. Aldén, and J. Bood, “LII-lidar: Range-resolved backward picosecond laser-induced incandescence,” Appl. Phys. B Lasers Opt. 115(1), 111–121 (2014).
[Crossref]

Appl. Spectrosc. (1)

Combust. Flame (1)

F. Migliorini, S. De Iuliis, F. Cignoli, and G. Zizak, “How “flat” is the rich premixed flame produced by your McKenna burner?” Combust. Flame 153(3), 384–393 (2008).
[Crossref]

Combust. Sci. Technol. (1)

B. Kaldvee, J. Wahlqvist, M. Jonsson, C. Brackmann, B. Andersson, P. van Hees, J. Bood, and M. Alden, “Room-fire characterization using highly range-resolved picosecond Lidar diagnostics and CFD simulations,” Combust. Sci. Technol. 185(5), 749–765 (2013).
[Crossref]

Fuel (1)

T. Leffler, C. Brackmann, W. Weng, Q. Gao, M. Aldén, and Z. Li, “Experimental investigations of potassium chemistry in premixed flames,” Fuel 203, 802–810 (2017).
[Crossref]

IEEE Sens. J. (1)

M. B. Frish, R. T. Wainner, M. C. Laderer, B. D. Green, and M. G. Allen, “Standoff and miniature chemical vapor detectors based on tunable diode laser absorption spectroscopy,” IEEE Sens. J. 10(3), 639–646 (2010).
[Crossref]

J. Chem. Phys. (1)

A. Bohlin and C. J. Kliewer, “Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” J. Chem. Phys. 138(22), 221101 (2013).
[Crossref] [PubMed]

Laser Photonics Rev. (2)

G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L. A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

L. Mei and M. Brydegaard, “Continuous-wave differential absorption lidar,” Laser Photonics Rev. 9(6), 629–636 (2015).
[Crossref]

Meas. Sci. Technol. (1)

B. Kaldvee, J. Bood, and M. Aldén, “Picosecond-lidar thermometry in a measurement volume surrounded by highly scattering media,” Meas. Sci. Technol. 22(12), 125302 (2011).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Proc. Combust. Inst. (3)

F. Vestin, M. Afzelius, C. Brackmann, and P. E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Inst. 30(1), 1673–1680 (2005).
[Crossref]

R. K. Hanson, “Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems,” Proc. Combust. Inst. 33(1), 1–40 (2011).
[Crossref]

M. Aldén, J. Bood, Z. Li, and M. Richter, “Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques,” Proc. Combust. Inst. 33(1), 69–97 (2011).
[Crossref]

Prog. Electromagnetics Res. (1)

M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles -Application to interacting flying insects,” Prog. Electromagnetics Res. 147, 141–151 (2014).
[Crossref]

Pror. Energy Combust. Sci. (2)

F.-Q. Zhao and H. Hiroyasu, “The applications of laser Rayleigh scattering to combustion diagnostics,” Pror. Energy Combust. Sci. 19(6), 447–485 (1993).
[Crossref]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci. 36(2), 280–306 (2010).
[Crossref]

Other (10)

M. G. Allen, E. R. Furlong, and R. K. Hanson, “Tunable diode laser sensing and combustion control,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, ed. (Taylor and Francis, 2002), pp. 479–498.

R. K. Hanson, R. M. Spearrin, and C. S. Goldenstein, Spectroscopy and Optical Diagnostics of Gases (Springer, 2016).

A. McIlroy, J. B. Jeffries, K. Kohse-Höinghaus, and J. B. Jeffries, “Applied Combustion Diagnostics,” (2002).

L. Mei and M. Brydegaard, “Development of a Scheimpflug Lidar system for atmospheric aerosol monitoring,” in EPJ Web of Conferences (EDP Sciences, 2016), Vol. 119, p. 27005.
[Crossref]

M. Brydegaard, E. Malmqvist, S. Jansson, G. Zhao, J. Larsson, and S. Török, “The Scheimpflug Lidar method,” in SPIE Proceedings (2017), Vol. 10406.
[Crossref]

C. Weitkamp, ed., Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer Science & Business, 2006), Vol. 102.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (CRC Press, 1996), Vol. 3.

J. Carpentier, “Improvements in enlarging or like cameras,” GB Pat. No.1139 (1901).

T. Scheimpflug, “Improved method and apparatus for the systematic alteration or distortion of plane pictures and images by means of lenses and mirrors for photography and for other purposes,” GB Pat. No.1196 (1904).

H. M. Merklinger, Focusing the View Camera (2010), Vol. 0.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Images of railway tracks stretching to the horizon, taken from a moving train with different camera setups. The effects of the different setups have been simulated for the sake of clarity. In (a) an image from a conventional camera is shown, where the focal depth is limited. (b) shows the corresponding image taken with a small aperture, or pin hole. Infinite focal depth can then be obtained, but the long exposure time needed causes motion blur. (c) is taken with a Scheimpflug configuration, i.e. with a large aperture and the lens tilted in relation to the detector. Focus is attained up to infinity without any motion blurring. Behind the optical infinity (horizon) the focus is lost again.
Fig. 2
Fig. 2 A schematic figure of a Scheimpflug Lidar setup. All the necessary angles and distances needed for calculation of range and resolution can be seen in the figure. The relevant planes are marked with dotted lines, and the distances are marked with red arrows. The Scheimpflug and Hinge intersection are shown in the lower part of the figure. The distance D (base line) defines the perpendicular distance between the laser beam and the center of the lens. β defines the angle between the lens plane and the plane of D. Both D and β are discussed further below.
Fig. 3
Fig. 3 (a) Analytical range curves and (b) the corresponding resolution curves for five different Scheimpflug configurations. The resolution curves in (b) is on logarithmic scale. The angle β (tilt of lens) and the distance D are defined in Fig. 2.
Fig. 4
Fig. 4 Obtained far limit and near limit range versus different distances, D (Fig. 2) for (a) f = 200 mm (b) f = 100 mm (c) 50 mm, with a line scan detector with a length of 28 mm (1x2048 pixels). (c)-(d) The corresponding maximum and minimum resolution. For a fixed f, it may be seen that a case where a large range interval is monitored gives much worse range resolution (here represented by the pixel foot print) than a case where a short range interval is monitored. A small f, leads to a small distance D, but also low range resolution for large range intervals. A large f, on the other hand, results in a larger distance D, but better resolution for larger range intervals. The setup utilized in this work has a focal length of 200 mm (corresponding to panel a), which means that D was around 22 cm.
Fig. 5
Fig. 5 An illustration of the principles of the Scheimpflug Lidar simulation program. The program calculates the range, resolution and signal strength for beams of different widths and shapes. The top part of the figure shows the laser beam (blue area) which is divided up into discrete volume cubes represented by dots. The volumes that two adjacent pixel observe are represented by a red and a green area and their out-of-focus overlap inside the beam is marked with yellow. The plots at lower part of the figure shows how many volume cubes the foot print of a pixel overlap at each range. The FWHM of a distribution defines the resolution in the corresponding pixel and its area corresponds to the pixel signal strength. When the beam has a finite width, the two foot prints overlap in range inside the laser beam. The signal in each pixel gets smeared out in the range direction and starts to overlap with the signal in adjacent pixels. When the laser beam is infinitely narrow, represented here by the thick, dark blue center line, the two pixel footprints do not overlap in range inside the laser beam, as seen by the red and green shaded boxes in the plot. The spread of the signal in range thus corresponds only to the size of the pixel in question’s footprint, determined by the Scheimpflug principle.
Fig. 6
Fig. 6 Simulated practical resolution for the same ranges as in Fig. 3 with a beam with a Gaussian beam profile with FWHM of (a) 0.2 mm, (b) 1.6 mm (c) 3.4 mm. The resolution scale is logarithmic.
Fig. 7
Fig. 7 A schematic of the current Lidar setup. How a counter can be incorporated in the set up to enable online background subtraction is shown to the left in the figure. The plot at the upper right corner, shows how the backscatter signal decreases with distance (blue curve) but the volume each pixel monitors, i.e. its footprint, increases with distance (red curve). This means that if the medium that is being studied has a homogenous distribution in range these two functions will to some degree cancel each other and give a flatter signal. The dynamic range of the detector can thus be utilized more efficiently over the range compared to time-of-flight Lidar.
Fig. 8
Fig. 8 (a) Time-range maps over a 5-second time window with a range interval of approximately 187 – 530 cm. Two heavily sooting flames, one located at a range of 230 cm and the other at 352 cm, were place in the Lidar transect. The data was collected with a 1 kHz effective sample rate and a 400 µs integration time. The mean intensity over the time window for each range is shown to the left. The insert in the lower panel shows a closer view of the signal from one of the flames, marked by a dotted rectangle. (b) Time-range plot displaying the spatio-temporal dynamics of smoke dispersing along the same Lidar transect during 35 seconds. The sampling rate during this measurement was 100 Hz. The intensity scale in this figure is in log scale.
Fig. 9
Fig. 9 Elastic Lidar signals with a flat methane/air flame placed at a range of 185 cm. The effective sampling rate of the detector was 1.75 kHz and the integration time for an exposure was 266 µs. Each curve represents the signal obtained by taking the median of a specific number of exposures in the obtained time-range file. The high peak at 192.3 cm in the blue and red curves is due to dust particles in the air surrounding the burner, which is not averaged out for low number of exposures.
Fig. 10
Fig. 10 (a) Median elastic Lidar signals over an 8.6 s time-window (15000 exposures). The blue curve displays the signal with a flat methane/air flame placed at a range of 185 cm and the red, dashed curve shows the reference signal acquired with only air flowing through the burner. The laser beam was at an HAB of 5 mm. The reason for the small decrease in the air signal above the burner is due to the removal of large particles by the air flow. (b) The ratio between the two curves shown in (a). The difference in range between the 10% and 90% points on the curves defines the slope width. These points are marked with arrows. The vertical dotted line indicates the position of the knife edge when the width of the beam was measured.
Fig. 11
Fig. 11 (a) Normalized Rayleigh scattering ratios from the edge of a McKenna flame [see Fig. 10] for 5 different beam widths. The beam widths have been measured at the range indicated by the vertical dotted line. (b) The experimental and simulated slope widths of the ratio signal at the edge of the McKenna burner for the different beam widths. The red solid line is a linear fit to the simulated points, while the blue solid line is a linear fit to the last three experimental points. The non-linear behavior of the experimental points at small beam widths can be explained by the influence of the finite temperature gradient present at the edge of the flame. The offset of the experimental points at zero beam width indicates that the width of the temperature gradient is around 5 mm, shown by the horizontal yellow dashed line.
Fig. 12
Fig. 12 (a) Median Lidar curves over a 10s-time window (1000 exposures), corresponding to molecular Rayleigh scattering with (blue) and without (red) a methane/air (with an equivalence ratio of 0.9) flame from a McKenna burner placed in the Lidar transect. The effective sampling rate was 100 Hz. The laser beam was approximately 10 mm above the burner. The slightly lower intensity above the burner for the air signal is because the air flow removes large particles from the volume. (b) The evaluated range-resolved temperature profile.
Fig. 13
Fig. 13 (a) 2-D Scheimpflug Lidar signal of a laser sheet with a height of 5 mm. The detected indium fluorescence had a wavelength of 451.17 nm. (b) A cross section of the Lidar signal in (a). (c) ICCD image of the fluorescence signal acquired with collection at 90° angle relative to the laser beam path. (d) Cross section of the signal in (c). The signals for both (a) and (b) are an average of 200 images with an exposure time of 8 ms.

Tables (2)

Tables Icon

Table 1 Specifications of the lasers utilized in the present work.

Tables Icon

Table 2 Specification of the detectors utilized in the present work.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

z n = fsin(παΦ) sin(α)tan( π 2 +arctan( p n cos(α) b c + p n sin(α) )Φ)
ϕ=arctan( ftan(α) bcf )
pn=nlpixL/2
Tproduct= σproductIair σairIproduct Tair

Metrics