Abstract

A new reconfigurable, tunable on-chip optical filter bank is proposed and analyzed for the silicon-on-insulator platform at the ~1550 nm wavelength. The waveguided bank is a cascade connection of 2 x 2 Mach-Zehnder interferometer (MZI) filters. An identical standing-wave resonator is situated in each MZI “arm.” Using the thermo-optic (TO) effect to perturb this waveguide's index, the TO heater stripes provide continuous tuning of the filter by shifting the resonance smoothly along the wavelength axis. To reconfigure and program the cascade array, a broadband 2 x 2 MZI-related switch is inserted between adjacent filters. The novel TO switch, described here, can provide either single or double interconnection of 2 x 2 filters. The filter resonator is a new in-guide array of N closely coupled phase-shifted Bragg-grating resonators that provide one resonant spectral profile with 5 to 100 GHz bandwidth. The length of each grating cavity in the N group is chosen according to the Butterworth filter technique, and this gives high peak transmission for the composite. The predicted spectral profiles of a three-stage cascade show two-or-three peaks, or two-or-three notches with movable wavelength-locations as well as tunable wavelength-separations between those features. A tunable notch within a wider movable passband is also feasible. Potential applications include microwave photonics, wavelength-selective systems, optical spectroscopy and optical sensing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mach-Zehnder crossbar switching and tunable filtering using N-coupled waveguide Bragg resonators

Richard A. Soref, Francesco De Leonardis, and Vittorio M. N. Passaro
Opt. Express 26(12) 14959-14971 (2018)

Tunable optical-microwave filters optimized for 100 MHz resolution

Richard A. Soref, Francesco De Leonardis, and Vittorio M. N. Passaro
Opt. Express 26(14) 18399-18411 (2018)

Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter

Salah Ibrahim, Nicolas K. Fontaine, Stevan S. Djordjevic, Binbin Guan, Tiehui Su, Stanley Cheung, Ryan P. Scott, Andrew T. Pomerene, Liberty L. Seaford, Craig M. Hill, Steve Danziger, Zhi Ding, K. Okamoto, and S. J. B. Yoo
Opt. Express 19(14) 13245-13256 (2011)

References

  • View by:
  • |
  • |
  • |

  1. W. Zhang and J. Yao, “Silicon-based integrated microwave photonics,” IEEE J. Quantum Electron. 52, 1–12 (2016).
  2. Y. Xie, Z. Gen, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. H. Roeloffzen, K.-J. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity,” Nanophotonics 7, 1–34 (2017).
  3. J. Capmany and P. Muñoz, “Integrated microwave photonics for radio access networks,” J. Lightwave Technol. 32(16), 2849–2861 (2014).
    [Crossref]
  4. C. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 7 (2015).
    [Crossref]
  5. Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives,” Photon. Res. 3(5), B10–B27 (2015).
    [Crossref]
  6. D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
    [Crossref] [PubMed]
  7. L. M. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, and A. J. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica 2(10), 854–859 (2015).
    [Crossref]
  8. J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
    [Crossref] [PubMed]
  9. M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7, 13004–13012 (2016).
    [Crossref] [PubMed]
  10. F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Opt. Express 21(10), 11652–11658 (2013).
    [Crossref] [PubMed]
  11. B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. Ben Yoo, “CMOS Compatible Reconfigurable Silicon Photonic Lattice Filters Using Cascaded Unit Cells for RF-Photonic Processing,” IEEE J. Sel. Top. Quantum Electron. 20, 8202110 (2014).
  12. L. Zhou, Q. Sun, L. Lu, and J. Chen, “Programmable universal microwave-photonic filter based on cascadeddual-ring assisted MZIs,” in Proceedings of the SPIE Photonics West Conference, San Francisco (29 Jan 2018), paper 10536–52.
  13. R. Soref, “Tutorial: Integrated- Photonic Switching Structures,” APL Photonics 3(2), 021101 (2018).
    [Crossref]
  14. H. Zhou, C. Qiu, X. Jiang, Q. Zhu, Y. He, Y. Zhang, Y. Su, and R. Soref, “Compact, submilliwatt 2 x 2 silicon thermo-optic switch based on photonic crystal nanobeam cavities,” Photon. Res. 5(2), 108–112 (2017).
    [Crossref]
  15. X. Jiang, H. Zhang, C. Qiu, Y. Zhang, Y. Su, and R. Soref, “Compact and power-efficient 2 x 2 thermo-optical switch based on the dual-nanobeam MZI,” Optical Fiber Communication Conference, paper Th2A.7, San Diego, 25 March 2018.
    [Crossref]
  16. R. Soref, “Resonant and slow-light 2 x 2 switches enabled by nanobeams and grating-assisted waveguides,” Progress in Electromagnetics Research Symposium, invited paper IP5.9, St. Petersburg, Russia (2017).
  17. R. Soref and J. Hendrickson, “Proposed ultralow-energy dual photonic-crystal nanobeam devices for on-chip N x N switching, logic, and wavelength multiplexing,” Opt. Express 23(25), 32582–32596 (2015).
    [Crossref] [PubMed]
  18. J. R. Hendrickson, R. Soref, and R. Gibson, “Improved 2 × 2 Mach-Zehnder switching using coupled-resonator photonic-crystal nanobeams,” Opt. Lett. 43(2), 287–290 (2018).
    [Crossref] [PubMed]
  19. R. Soref, J. R. Hendrickson, and J. Sweet, “Simulation of germanium nanobeam electro-optical 2 × 2 switches and 1 × 1 modulators for the 2 to 5 µm infrared region,” Opt. Express 24(9), 9369–9382 (2016).
    [Crossref] [PubMed]
  20. V. Veerasubramanian, G. Beaudin, A. Giguère, B. Le Drogoff, V. Aimez, and A. G. Kirk, “Waveguide-coupled drop filters on SOI using quarter-wave shifted sidewalled grating resonators,” Opt. Express 20(14), 15983–15990 (2012).
    [Crossref] [PubMed]
  21. A. D. Simard and S. LaRochelle, “Complex apodized Bragg grating filters without circulators in silicon-on-insulator,” Opt. Express 23(13), 16662–16675 (2015).
    [Crossref] [PubMed]
  22. A. D. Simard and S. LaRochelle, “High Performance Narrow Bandpass Filters Based on Integrated Bragg Gratings in Silicon-on-Insulator,” in Proceedings of OFC (2015), Tu3A.2.
  23. S. LaRochelle and A. D. Simard, “Silicon Photonic Bragg Grating Devices,” in Proceedings of OFC (2017), Th1G.3.
  24. R. Soref, F. De Leonardis, and V. M. N. Passaro, Mach-Zehnder Crossbar Switching and Tunable Filtering Using N-coupled Waveguide Bragg Resonators (submitted).
  25. R. Soref, F. De Leonardis, V. M. N. Passaro, “Tunable Optical-Microwave Filters Optimized for 100 MHz Resolution, Opt. Express (submitted).
  26. Z. Chen, J. Flueckiger, X. Wang, F. Zhang, H. Yun, Z. Lu, M. Caverley, Y. Wang, N. A. F. Jaeger, and L. Chrostowski, “Spiral Bragg Grating Waveguides for TM Mode Silicon Photonics,” Opt. Express 23(19), 25295–25307 (2015).
    [Crossref] [PubMed]

2018 (2)

2017 (3)

H. Zhou, C. Qiu, X. Jiang, Q. Zhu, Y. He, Y. Zhang, Y. Su, and R. Soref, “Compact, submilliwatt 2 x 2 silicon thermo-optic switch based on photonic crystal nanobeam cavities,” Photon. Res. 5(2), 108–112 (2017).
[Crossref]

Y. Xie, Z. Gen, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. H. Roeloffzen, K.-J. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity,” Nanophotonics 7, 1–34 (2017).

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref] [PubMed]

2016 (3)

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7, 13004–13012 (2016).
[Crossref] [PubMed]

W. Zhang and J. Yao, “Silicon-based integrated microwave photonics,” IEEE J. Quantum Electron. 52, 1–12 (2016).

R. Soref, J. R. Hendrickson, and J. Sweet, “Simulation of germanium nanobeam electro-optical 2 × 2 switches and 1 × 1 modulators for the 2 to 5 µm infrared region,” Opt. Express 24(9), 9369–9382 (2016).
[Crossref] [PubMed]

2015 (7)

A. D. Simard and S. LaRochelle, “Complex apodized Bragg grating filters without circulators in silicon-on-insulator,” Opt. Express 23(13), 16662–16675 (2015).
[Crossref] [PubMed]

Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives,” Photon. Res. 3(5), B10–B27 (2015).
[Crossref]

Z. Chen, J. Flueckiger, X. Wang, F. Zhang, H. Yun, Z. Lu, M. Caverley, Y. Wang, N. A. F. Jaeger, and L. Chrostowski, “Spiral Bragg Grating Waveguides for TM Mode Silicon Photonics,” Opt. Express 23(19), 25295–25307 (2015).
[Crossref] [PubMed]

L. M. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, and A. J. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica 2(10), 854–859 (2015).
[Crossref]

R. Soref and J. Hendrickson, “Proposed ultralow-energy dual photonic-crystal nanobeam devices for on-chip N x N switching, logic, and wavelength multiplexing,” Opt. Express 23(25), 32582–32596 (2015).
[Crossref] [PubMed]

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

C. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 7 (2015).
[Crossref]

2014 (2)

B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. Ben Yoo, “CMOS Compatible Reconfigurable Silicon Photonic Lattice Filters Using Cascaded Unit Cells for RF-Photonic Processing,” IEEE J. Sel. Top. Quantum Electron. 20, 8202110 (2014).

J. Capmany and P. Muñoz, “Integrated microwave photonics for radio access networks,” J. Lightwave Technol. 32(16), 2849–2861 (2014).
[Crossref]

2013 (1)

2012 (1)

Aimez, V.

Assefa, S.

Azaña, J.

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7, 13004–13012 (2016).
[Crossref] [PubMed]

Beaudin, G.

Ben Yoo, S. J.

B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. Ben Yoo, “CMOS Compatible Reconfigurable Silicon Photonic Lattice Filters Using Cascaded Unit Cells for RF-Photonic Processing,” IEEE J. Sel. Top. Quantum Electron. 20, 8202110 (2014).

Boller, K.-J.

Y. Xie, Z. Gen, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. H. Roeloffzen, K.-J. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity,” Nanophotonics 7, 1–34 (2017).

L. M. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, and A. J. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica 2(10), 854–859 (2015).
[Crossref]

Burla, M.

Y. Xie, Z. Gen, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. H. Roeloffzen, K.-J. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity,” Nanophotonics 7, 1–34 (2017).

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7, 13004–13012 (2016).
[Crossref] [PubMed]

Cao, W.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref] [PubMed]

Capmany, J.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref] [PubMed]

J. Capmany and P. Muñoz, “Integrated microwave photonics for radio access networks,” J. Lightwave Technol. 32(16), 2849–2861 (2014).
[Crossref]

Carolan, J.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Caverley, M.

Chen, Z.

Chrostowski, L.

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7, 13004–13012 (2016).
[Crossref] [PubMed]

Z. Chen, J. Flueckiger, X. Wang, F. Zhang, H. Yun, Z. Lu, M. Caverley, Y. Wang, N. A. F. Jaeger, and L. Chrostowski, “Spiral Bragg Grating Waveguides for TM Mode Silicon Photonics,” Opt. Express 23(19), 25295–25307 (2015).
[Crossref] [PubMed]

Crudgington, L.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref] [PubMed]

De Leonardis, F.

R. Soref, F. De Leonardis, and V. M. N. Passaro, Mach-Zehnder Crossbar Switching and Tunable Filtering Using N-coupled Waveguide Bragg Resonators (submitted).

Ding, Z.

B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. Ben Yoo, “CMOS Compatible Reconfigurable Silicon Photonic Lattice Filters Using Cascaded Unit Cells for RF-Photonic Processing,” IEEE J. Sel. Top. Quantum Electron. 20, 8202110 (2014).

Djordjevic, S. S.

B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. Ben Yoo, “CMOS Compatible Reconfigurable Silicon Photonic Lattice Filters Using Cascaded Unit Cells for RF-Photonic Processing,” IEEE J. Sel. Top. Quantum Electron. 20, 8202110 (2014).

Doerr, C.

C. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 7 (2015).
[Crossref]

Flueckiger, J.

Fontaine, N. K.

B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. Ben Yoo, “CMOS Compatible Reconfigurable Silicon Photonic Lattice Filters Using Cascaded Unit Cells for RF-Photonic Processing,” IEEE J. Sel. Top. Quantum Electron. 20, 8202110 (2014).

Gasulla, I.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref] [PubMed]

Geisler, D. J.

B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. Ben Yoo, “CMOS Compatible Reconfigurable Silicon Photonic Lattice Filters Using Cascaded Unit Cells for RF-Photonic Processing,” IEEE J. Sel. Top. Quantum Electron. 20, 8202110 (2014).

Gen, Z.

Y. Xie, Z. Gen, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. H. Roeloffzen, K.-J. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity,” Nanophotonics 7, 1–34 (2017).

Gibson, R.

Giguère, A.

Green, W. M. J.

Guan, B.

B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. Ben Yoo, “CMOS Compatible Reconfigurable Silicon Photonic Lattice Filters Using Cascaded Unit Cells for RF-Photonic Processing,” IEEE J. Sel. Top. Quantum Electron. 20, 8202110 (2014).

Harrold, C.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Hashimoto, T.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

He, Y.

Hendrickson, J.

Hendrickson, J. R.

Hoekman, M.

Y. Xie, Z. Gen, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. H. Roeloffzen, K.-J. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity,” Nanophotonics 7, 1–34 (2017).

L. M. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, and A. J. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica 2(10), 854–859 (2015).
[Crossref]

Horst, F.

Ibrahim, S.

B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. Ben Yoo, “CMOS Compatible Reconfigurable Silicon Photonic Lattice Filters Using Cascaded Unit Cells for RF-Photonic Processing,” IEEE J. Sel. Top. Quantum Electron. 20, 8202110 (2014).

Itoh, M.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Jaeger, N. A. F.

Jiang, X.

Khokhar, A. Z.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref] [PubMed]

Kirk, A. G.

Laing, A.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

LaRochelle, S.

A. D. Simard and S. LaRochelle, “Complex apodized Bragg grating filters without circulators in silicon-on-insulator,” Opt. Express 23(13), 16662–16675 (2015).
[Crossref] [PubMed]

A. D. Simard and S. LaRochelle, “High Performance Narrow Bandpass Filters Based on Integrated Bragg Gratings in Silicon-on-Insulator,” in Proceedings of OFC (2015), Tu3A.2.

S. LaRochelle and A. D. Simard, “Silicon Photonic Bragg Grating Devices,” in Proceedings of OFC (2017), Th1G.3.

Le Drogoff, B.

Leinse, A.

Y. Xie, Z. Gen, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. H. Roeloffzen, K.-J. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity,” Nanophotonics 7, 1–34 (2017).

Li, K.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref] [PubMed]

Li, M.

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7, 13004–13012 (2016).
[Crossref] [PubMed]

Li, Y.

Lowery, A. J.

Y. Xie, Z. Gen, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. H. Roeloffzen, K.-J. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity,” Nanophotonics 7, 1–34 (2017).

L. M. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, and A. J. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica 2(10), 854–859 (2015).
[Crossref]

Lu, Z.

Marshall, G. D.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Martín-López, E.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Mashanovich, G. Z.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref] [PubMed]

Matsuda, N.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Matthews, J. C.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Muñoz, P.

O’Brien, J. L.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Offrein, B. J.

Oguma, M.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Passaro, V. M. N.

R. Soref, F. De Leonardis, and V. M. N. Passaro, Mach-Zehnder Crossbar Switching and Tunable Filtering Using N-coupled Waveguide Bragg Resonators (submitted).

Pérez, D.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref] [PubMed]

Poon, A. W.

Qiu, C.

Roeloffzen, C. G. H.

Y. Xie, Z. Gen, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. H. Roeloffzen, K.-J. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity,” Nanophotonics 7, 1–34 (2017).

L. M. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, and A. J. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica 2(10), 854–859 (2015).
[Crossref]

Russell, N. J.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Scott, R. P.

B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. Ben Yoo, “CMOS Compatible Reconfigurable Silicon Photonic Lattice Filters Using Cascaded Unit Cells for RF-Photonic Processing,” IEEE J. Sel. Top. Quantum Electron. 20, 8202110 (2014).

Shadbolt, P. J.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Shank, S. M.

Silverstone, J. W.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Simard, A. D.

A. D. Simard and S. LaRochelle, “Complex apodized Bragg grating filters without circulators in silicon-on-insulator,” Opt. Express 23(13), 16662–16675 (2015).
[Crossref] [PubMed]

S. LaRochelle and A. D. Simard, “Silicon Photonic Bragg Grating Devices,” in Proceedings of OFC (2017), Th1G.3.

A. D. Simard and S. LaRochelle, “High Performance Narrow Bandpass Filters Based on Integrated Bragg Gratings in Silicon-on-Insulator,” in Proceedings of OFC (2015), Tu3A.2.

Soref, R.

Sparrow, C.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Su, Y.

Sweet, J.

Taddei, C.

Y. Xie, Z. Gen, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. H. Roeloffzen, K.-J. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity,” Nanophotonics 7, 1–34 (2017).

Thompson, M. G.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Thomson, D. J.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref] [PubMed]

Veerasubramanian, V.

Vlasov, Y. A.

Wang, X.

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7, 13004–13012 (2016).
[Crossref] [PubMed]

Z. Chen, J. Flueckiger, X. Wang, F. Zhang, H. Yun, Z. Lu, M. Caverley, Y. Wang, N. A. F. Jaeger, and L. Chrostowski, “Spiral Bragg Grating Waveguides for TM Mode Silicon Photonics,” Opt. Express 23(19), 25295–25307 (2015).
[Crossref] [PubMed]

Wang, Y.

Xie, Y.

Y. Xie, Z. Gen, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. H. Roeloffzen, K.-J. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity,” Nanophotonics 7, 1–34 (2017).

Yao, J.

W. Zhang and J. Yao, “Silicon-based integrated microwave photonics,” IEEE J. Quantum Electron. 52, 1–12 (2016).

Yun, H.

Zhang, F.

Zhang, L.

Zhang, W.

W. Zhang and J. Yao, “Silicon-based integrated microwave photonics,” IEEE J. Quantum Electron. 52, 1–12 (2016).

Zhang, Y.

Zhou, H.

Zhou, L.

B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. Ben Yoo, “CMOS Compatible Reconfigurable Silicon Photonic Lattice Filters Using Cascaded Unit Cells for RF-Photonic Processing,” IEEE J. Sel. Top. Quantum Electron. 20, 8202110 (2014).

Zhu, Q.

Zhuang, L.

Y. Xie, Z. Gen, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. H. Roeloffzen, K.-J. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity,” Nanophotonics 7, 1–34 (2017).

Zhuang, L. M.

APL Photonics (1)

R. Soref, “Tutorial: Integrated- Photonic Switching Structures,” APL Photonics 3(2), 021101 (2018).
[Crossref]

Front. Phys. (1)

C. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 7 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

W. Zhang and J. Yao, “Silicon-based integrated microwave photonics,” IEEE J. Quantum Electron. 52, 1–12 (2016).

IEEE J. Sel. Top. Quantum Electron. (1)

B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. Ben Yoo, “CMOS Compatible Reconfigurable Silicon Photonic Lattice Filters Using Cascaded Unit Cells for RF-Photonic Processing,” IEEE J. Sel. Top. Quantum Electron. 20, 8202110 (2014).

J. Lightwave Technol. (1)

Nanophotonics (1)

Y. Xie, Z. Gen, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. H. Roeloffzen, K.-J. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity,” Nanophotonics 7, 1–34 (2017).

Nat. Commun. (2)

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref] [PubMed]

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7, 13004–13012 (2016).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Optica (1)

Photon. Res. (2)

Science (1)

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Other (7)

X. Jiang, H. Zhang, C. Qiu, Y. Zhang, Y. Su, and R. Soref, “Compact and power-efficient 2 x 2 thermo-optical switch based on the dual-nanobeam MZI,” Optical Fiber Communication Conference, paper Th2A.7, San Diego, 25 March 2018.
[Crossref]

R. Soref, “Resonant and slow-light 2 x 2 switches enabled by nanobeams and grating-assisted waveguides,” Progress in Electromagnetics Research Symposium, invited paper IP5.9, St. Petersburg, Russia (2017).

A. D. Simard and S. LaRochelle, “High Performance Narrow Bandpass Filters Based on Integrated Bragg Gratings in Silicon-on-Insulator,” in Proceedings of OFC (2015), Tu3A.2.

S. LaRochelle and A. D. Simard, “Silicon Photonic Bragg Grating Devices,” in Proceedings of OFC (2017), Th1G.3.

R. Soref, F. De Leonardis, and V. M. N. Passaro, Mach-Zehnder Crossbar Switching and Tunable Filtering Using N-coupled Waveguide Bragg Resonators (submitted).

R. Soref, F. De Leonardis, V. M. N. Passaro, “Tunable Optical-Microwave Filters Optimized for 100 MHz Resolution, Opt. Express (submitted).

L. Zhou, Q. Sun, L. Lu, and J. Chen, “Programmable universal microwave-photonic filter based on cascadeddual-ring assisted MZIs,” in Proceedings of the SPIE Photonics West Conference, San Francisco (29 Jan 2018), paper 10536–52.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Schematic top view of TO-actuated 2 x 2 MZI crossbar switch in which each arm consists of two coupled Bragg-grating resonators; (b) Schematic top view of 2x2 MZI, showing the incoming and outcoming field amplitudes.
Fig. 2
Fig. 2 (a) The 2-cascade of resonant 2 × 2 TO MZI building blocks, showing the middle seven states broadband optical switch (red box); (b) Architecture of the seven states broadband optical switch.
Fig. 3
Fig. 3 (a) Four-bank Three-cascade RCFA;(b) One-bank, Three-cascade RCFA expanded laterally to four filters.
Fig. 4
Fig. 4 Spectral features of different Types of WBR- MZI; (a) Power transmission spectrum; (b) Phase transmission spectrum; (c) Power reflection spectrum; (d) Phase reflection spectrum The simulations are performed by considering: W = 450 nm, H = 250 nm, W t = 100 nm, α l = 1dB/cm, assuming 1550 nm as the center resonance wavelength.
Fig. 5
Fig. 5 Cascade interconnection for notch-in-band output profile.
Fig. 6
Fig. 6 Through spectra for 2-cascaded MZIs; (a)turning-Off TO1 ( Δ n 1 = 0) and turning-Off TO2( Δ n 2 = 0); (b) turning-Off TO1 ( Δ n 1 = 0) and switching-On TO2 ( Δ n 2 = 0.0007);The simulations are performed by considering: W = 450 nm, H = 250 nm, W t = 100 nm, α l = 1dB/cm, MZI-1 = Type-B (at 1551 nm), MZI-2 = Type-C (at 1550.9 nm).
Fig. 7
Fig. 7 Cascade interconnection for dual notch outputs.
Fig. 8
Fig. 8 Drop spectra for 2-cascaded MZI; (a) turning-Off TO1 ( Δ n 1 = 0) and turning-Off TO2( Δ n 2 = 0); (b) switching-OnTO1 ( Δ n 1 = 0.0007) and turning-Off TO2 ( Δ n 2 = 0);(c) turning-Off TO1 ( Δ n 1 = 0) and switching-On TO2 ( Δ n 2 = 0.0015);(d) switching-On TO1 ( Δ n 1 = 0.0015) andturning-OffTO2 ( Δ n 2 = 0);(e) turning-Off TO1 ( Δ n 1 = 0) and switching-On TO2 ( Δ n 2 = 0.003);(f) switching-OnTO1 ( Δ n 1 = 0.003) andturning-OffTO2 ( Δ n 2 = 0);(g) turning-Off TO1 ( Δ n 1 = 0) and switching-On TO2 ( Δ n 2 = 0.004);(h) switching-OnTO1 ( Δ n 1 = 0.004) and turning-Off TO2 ( Δ n 2 = 0); The simulations are performed by considering: W = 450 nm, H = 250 nm, W t = 100 nm, α l = 1dB/cm, MZI-1 = Type-C (at 1550 nm), MZI-2 = Type-C (at 1552 nm).
Fig. 9
Fig. 9 Cascade interconnection for dual peaks or dual notches.
Fig. 10
Fig. 10 Through and Drop spectra for 2-cascaded MZI; (a) turning-Off TO1 ( Δ n 1 = 0) and turning-Off TO2 ( Δ n 2 = 0); (b) turning-Off TO1 ( Δ n 1 = 0) and switching-On TO2 ( Δ n 2 = 0.004). The simulations are performed by considering: W = 450 nm, H = 250 nm, W t = 100 nm, α l = 1dB/cm, MZI-1 = Type-C (at 1550 nm), MZI-2 = Type-C (at 1551 nm).
Fig. 11
Fig. 11 (a) Grating coupling coefficient as a function of the corrugation width; (b) Hamming outside apodized Bragg grating profile. The black and red curves show the corrugation width profile in the ideal case ( δ W t = 0), and δ W t = 5 nm of tolerance, respectively. (c) Drop spectra for 2-cascaded MZI for different values of Δ n 2 , assuming W = 50 nm, H = 250 nm, W t = 100 nm, α l = 1dB/cm, MZI-1 = Type-D (at 1550 nm), MZI-2 = Type-D (at 1578nm), and the crossbar switch in the Bar-upper state.
Fig. 12
Fig. 12 Outputs of 4 × 4 RFCA, assuming all TOs in the Off state. Cases (a)-(d) of MZIs and the crossbar matrix switch are set as in Table 3.

Tables (3)

Tables Icon

Table 1 States of the broadband optical switch

Tables Icon

Table 2 MZI-filter features utilized in this work

Tables Icon

Table 3 Illustrative example of Fig. 3(a) listing the operation conditions with all of the TO heaters Off

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

κ B ( z ) = κ B 0 [ 0.54 0.46 cos ( 2 π L B z ) ]
E o u t 1 = ( s 2 e j ϕ 2 + t 2 ) ( E i n 1 t 2 e j ϕ 1 j E i n 2 s t e j ϕ 1 j E i n 2 s t s 2 E i n 1 )
E o u t 2 = ( t 2 e j ϕ 3 s 2 ) ( E i n 2 s 2 e j ϕ 1 j E i n 1 s t e j ϕ 1 j E i n 1 s t + t 2 E i n 2 )
[ b 2 a 2 b 4 a 4 ] = T M Z I m n [ b 1 a 1 b 3 a 3 ] = [ E m n F m n G m n H m n ] [ b 1 a 1 b 3 a 3 ]

Metrics