Abstract

We present an ultrafast nanoscale light source utilizing a shifted-core coaxial nano-cavity, with a footprint of merely one-third of its emission wavelength in all three dimensions at telecommunication wavelengths. We show that, by shifting the metallic core off center of the coaxial structure, the effective mode volume of the cavity can be as small as 0.0078 × (λ0/na)3, resulting in a Purcell factor over 390 and a modulation bandwidth exceeding 60GHz. We further show that the evolution trend of the cavity Q factor as a function of core-shifting distance can be engineered by choosing proper substrate material. Compared to its symmetric counterpart, this shifted-core coaxial nano-cavity features not only higher Q factor, Purcell factor, and modulation bandwidth but also an improved emission directivity that is essential in its coupling with other on-chip components. The proposed nano-emitter also features robust single mode operation over the entire core-shifting range, resulting in a near-unity spontaneous emission factor. Therefore, this device can be a good candidate for low power optical interconnect applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical properties of plasmonic light-emitting diodes based on flip-chip III-nitride core-shell nanowires

Mohsen Nami and Daniel F. Feezell
Opt. Express 22(24) 29445-29455 (2014)

Subwavelength semiconductor lasers for dense chip-scale integration

Qing Gu, Joseph S. T. Smalley, Maziar P. Nezhad, Aleksandar Simic, Jin Hyoung Lee, Michael Katz, Olesya Bondarenko, Boris Slutsky, Amit Mizrahi, Vitaliy Lomakin, and Yeshaiahu Fainman
Adv. Opt. Photon. 6(1) 1-56 (2014)

Status and prospects for metallic and plasmonic nano-lasers [Invited]

Martin T. Hill
J. Opt. Soc. Am. B 27(11) B36-B44 (2010)

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Attojoule optoelectronics for low-energy information processing and communications,” J. Lightwave Technol. 35(3), 346–396 (2017).
    [Crossref]
  2. K. Liu, N. Li, D. K. Sadana, and V. J. Sorger, “Integrated nanocavity plasmon light sources for on-chip optical interconnects,” ACS Photonics 3(2), 233–242 (2016).
    [Crossref]
  3. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
    [Crossref]
  4. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
    [Crossref]
  5. K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. Van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B. 85, 041031 (2012).
  6. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
    [Crossref] [PubMed]
  7. E. K. Lau, A. Lakhani, R. S. Tucker, and M. C. Wu, “Enhanced modulation bandwidth of nanocavity light emitting devices,” Opt. Express 17(10), 7790–7799 (2009).
    [Crossref] [PubMed]
  8. E. M. Purcell, “Spontaneous Emission Probabliities at Radio Frquencies,” Phys. Rev. 69, 674 (1946).
  9. C.-Y. A. Ni and S. L. Chuang, “Theory of high-speed nanolasers and nano LEDs,” Opt. Express 20(15), 16450 (2012).
    [Crossref]
  10. M. S. Eggleston and M. C. Wu, “Efficient coupling of an antenna-enhanced nanoLED into an integrated InP waveguide,” Nano Lett. 15(5), 3329–3333 (2015).
    [Crossref] [PubMed]
  11. S. A. Fortuna, C. Heidelberger, K. Messer, K. Han, E. A. Fitzgerald, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission rate in electrically injected nanoscale III-V LED,” in Conf. Dig. - IEEE Int. Semicond. Laser Conf. (2016), pp. 2–3.
  12. T. Baba, M. Fujita, A. Sakai, M. Kihara, and R. Watanabe, “Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10 µm,” IEEE Photonics Technol. Lett. 9(7), 878–880 (1997).
    [Crossref]
  13. M. K. Seo, K. Y. Jeong, J. K. Yang, Y. H. Lee, H. G. Park, and S. B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90(17), 171122 (2007).
    [Crossref]
  14. M.-K. Kim, A. M. Lakhani, and M. C. Wu, “Efficient waveguide-coupling of metal-clad nanolaser cavities,” Opt. Express 19(23), 23504–23512 (2011).
    [Crossref] [PubMed]
  15. M.-K. Kim, Z. Li, K. Huang, R. Going, M. C. Wu, and H. Choo, “Engineering of metal-clad optical nanocavity to optimize coupling with integrated waveguides,” Opt. Express 21(22), 25796–25804 (2013).
    [Crossref] [PubMed]
  16. Y.-H. Jin, B. J. Park, and M.-K. Kim, “Extreme field enhancement in nano-gap plasmonic cavity via 90% efficient coupling with silicon waveguide,” Opt. Express 24(22), 25540–25547 (2016).
    [Crossref] [PubMed]
  17. B. Bahari, R. Tellez-Limon, and B. Kante, “Directive and enhanced spontaneous emission using shifted cubes nanoantenna,” J. Appl. Phys. 120(9), 093106 (2016).
    [Crossref]
  18. D. A. Genov, R. F. Oulton, G. Bartal, and X. Zhang, “Anomalous spectral scaling of light emission rates in low-dimensional metallic nanostructures,” Phys. Rev. B. 83, 245312 (2011).
  19. C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110(23), 237401 (2013).
    [Crossref] [PubMed]
  20. R. C. Ge, P. T. Kristensen, J. F. Young, and S. Hughes, “Quasinormal mode approach to modelling light-emission and propagation in nanoplasmonics,” New J. Phys. 16(11), 113048 (2014).
    [Crossref]
  21. P. T. Kristensen and S. Hughes, “Modes and Mode Volumes of Leaky Optical Cavities and Plasmonic Nanoresonators,” ACS Photonics 1(1), 2–10 (2014).
    [Crossref]
  22. Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
    [Crossref] [PubMed]
  23. Q. Gu, B. Slutsky, F. Vallini, J. S. T. Smalley, M. P. Nezhad, N. C. Frateschi, and Y. Fainman, “Purcell effect in sub-wavelength semiconductor lasers,” Opt. Express 21(13), 15603–15617 (2013).
    [Crossref] [PubMed]
  24. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2009).
  25. N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
    [Crossref]
  26. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  27. K. Ding and C. Z. Ning, “Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers,” Semicond. Sci. Technol. 28(12), 124002 (2013).
    [Crossref]
  28. Q. Gu, J. Shane, F. Vallini, B. Wingad, J. S. T. Smalley, N. C. Frateschi, and Y. Fainman, “Amorphous Al2O3 shield for thermal management in electrically pumped metallo-dielectric nanolasers,” IEEE J. Quantum Electron. 50(7), 499–509 (2014).
    [Crossref]

2017 (1)

2016 (3)

K. Liu, N. Li, D. K. Sadana, and V. J. Sorger, “Integrated nanocavity plasmon light sources for on-chip optical interconnects,” ACS Photonics 3(2), 233–242 (2016).
[Crossref]

Y.-H. Jin, B. J. Park, and M.-K. Kim, “Extreme field enhancement in nano-gap plasmonic cavity via 90% efficient coupling with silicon waveguide,” Opt. Express 24(22), 25540–25547 (2016).
[Crossref] [PubMed]

B. Bahari, R. Tellez-Limon, and B. Kante, “Directive and enhanced spontaneous emission using shifted cubes nanoantenna,” J. Appl. Phys. 120(9), 093106 (2016).
[Crossref]

2015 (1)

M. S. Eggleston and M. C. Wu, “Efficient coupling of an antenna-enhanced nanoLED into an integrated InP waveguide,” Nano Lett. 15(5), 3329–3333 (2015).
[Crossref] [PubMed]

2014 (4)

R. C. Ge, P. T. Kristensen, J. F. Young, and S. Hughes, “Quasinormal mode approach to modelling light-emission and propagation in nanoplasmonics,” New J. Phys. 16(11), 113048 (2014).
[Crossref]

P. T. Kristensen and S. Hughes, “Modes and Mode Volumes of Leaky Optical Cavities and Plasmonic Nanoresonators,” ACS Photonics 1(1), 2–10 (2014).
[Crossref]

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Q. Gu, J. Shane, F. Vallini, B. Wingad, J. S. T. Smalley, N. C. Frateschi, and Y. Fainman, “Amorphous Al2O3 shield for thermal management in electrically pumped metallo-dielectric nanolasers,” IEEE J. Quantum Electron. 50(7), 499–509 (2014).
[Crossref]

2013 (5)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

K. Ding and C. Z. Ning, “Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers,” Semicond. Sci. Technol. 28(12), 124002 (2013).
[Crossref]

Q. Gu, B. Slutsky, F. Vallini, J. S. T. Smalley, M. P. Nezhad, N. C. Frateschi, and Y. Fainman, “Purcell effect in sub-wavelength semiconductor lasers,” Opt. Express 21(13), 15603–15617 (2013).
[Crossref] [PubMed]

M.-K. Kim, Z. Li, K. Huang, R. Going, M. C. Wu, and H. Choo, “Engineering of metal-clad optical nanocavity to optimize coupling with integrated waveguides,” Opt. Express 21(22), 25796–25804 (2013).
[Crossref] [PubMed]

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110(23), 237401 (2013).
[Crossref] [PubMed]

2012 (3)

C.-Y. A. Ni and S. L. Chuang, “Theory of high-speed nanolasers and nano LEDs,” Opt. Express 20(15), 16450 (2012).
[Crossref]

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. Van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B. 85, 041031 (2012).

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

2011 (2)

D. A. Genov, R. F. Oulton, G. Bartal, and X. Zhang, “Anomalous spectral scaling of light emission rates in low-dimensional metallic nanostructures,” Phys. Rev. B. 83, 245312 (2011).

M.-K. Kim, A. M. Lakhani, and M. C. Wu, “Efficient waveguide-coupling of metal-clad nanolaser cavities,” Opt. Express 19(23), 23504–23512 (2011).
[Crossref] [PubMed]

2010 (1)

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[Crossref]

2009 (1)

2008 (1)

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

2007 (2)

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[Crossref]

M. K. Seo, K. Y. Jeong, J. K. Yang, Y. H. Lee, H. G. Park, and S. B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90(17), 171122 (2007).
[Crossref]

1997 (1)

T. Baba, M. Fujita, A. Sakai, M. Kihara, and R. Watanabe, “Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10 µm,” IEEE Photonics Technol. Lett. 9(7), 878–880 (1997).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous Emission Probabliities at Radio Frquencies,” Phys. Rev. 69, 674 (1946).

Baba, T.

T. Baba, M. Fujita, A. Sakai, M. Kihara, and R. Watanabe, “Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10 µm,” IEEE Photonics Technol. Lett. 9(7), 878–880 (1997).
[Crossref]

Bahari, B.

B. Bahari, R. Tellez-Limon, and B. Kante, “Directive and enhanced spontaneous emission using shifted cubes nanoantenna,” J. Appl. Phys. 120(9), 093106 (2016).
[Crossref]

Bartal, G.

D. A. Genov, R. F. Oulton, G. Bartal, and X. Zhang, “Anomalous spectral scaling of light emission rates in low-dimensional metallic nanostructures,” Phys. Rev. B. 83, 245312 (2011).

Boltasseva, A.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Bondarenko, O.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[Crossref]

Capasso, F.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

Choo, H.

Chuang, S. L.

de Vries, T.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[Crossref]

de Waardt, H.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[Crossref]

Diehl, L.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

Ding, K.

K. Ding and C. Z. Ning, “Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers,” Semicond. Sci. Technol. 28(12), 124002 (2013).
[Crossref]

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. Van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B. 85, 041031 (2012).

Edamura, T.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

Eggleston, M. S.

M. S. Eggleston and M. C. Wu, “Efficient coupling of an antenna-enhanced nanoLED into an integrated InP waveguide,” Nano Lett. 15(5), 3329–3333 (2015).
[Crossref] [PubMed]

Eijkemans, T. J.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[Crossref]

Fainman, Y.

Q. Gu, J. Shane, F. Vallini, B. Wingad, J. S. T. Smalley, N. C. Frateschi, and Y. Fainman, “Amorphous Al2O3 shield for thermal management in electrically pumped metallo-dielectric nanolasers,” IEEE J. Quantum Electron. 50(7), 499–509 (2014).
[Crossref]

Q. Gu, B. Slutsky, F. Vallini, J. S. T. Smalley, M. P. Nezhad, N. C. Frateschi, and Y. Fainman, “Purcell effect in sub-wavelength semiconductor lasers,” Opt. Express 21(13), 15603–15617 (2013).
[Crossref] [PubMed]

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[Crossref]

Fan, J.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

Feng, L.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[Crossref]

Fitzgerald, E. A.

S. A. Fortuna, C. Heidelberger, K. Messer, K. Han, E. A. Fitzgerald, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission rate in electrically injected nanoscale III-V LED,” in Conf. Dig. - IEEE Int. Semicond. Laser Conf. (2016), pp. 2–3.

Fortuna, S. A.

S. A. Fortuna, C. Heidelberger, K. Messer, K. Han, E. A. Fitzgerald, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission rate in electrically injected nanoscale III-V LED,” in Conf. Dig. - IEEE Int. Semicond. Laser Conf. (2016), pp. 2–3.

Frateschi, N. C.

Q. Gu, J. Shane, F. Vallini, B. Wingad, J. S. T. Smalley, N. C. Frateschi, and Y. Fainman, “Amorphous Al2O3 shield for thermal management in electrically pumped metallo-dielectric nanolasers,” IEEE J. Quantum Electron. 50(7), 499–509 (2014).
[Crossref]

Q. Gu, B. Slutsky, F. Vallini, J. S. T. Smalley, M. P. Nezhad, N. C. Frateschi, and Y. Fainman, “Purcell effect in sub-wavelength semiconductor lasers,” Opt. Express 21(13), 15603–15617 (2013).
[Crossref] [PubMed]

Fujita, M.

T. Baba, M. Fujita, A. Sakai, M. Kihara, and R. Watanabe, “Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10 µm,” IEEE Photonics Technol. Lett. 9(7), 878–880 (1997).
[Crossref]

Ge, R. C.

R. C. Ge, P. T. Kristensen, J. F. Young, and S. Hughes, “Quasinormal mode approach to modelling light-emission and propagation in nanoplasmonics,” New J. Phys. 16(11), 113048 (2014).
[Crossref]

Geluk, E. J.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[Crossref]

Genov, D. A.

D. A. Genov, R. F. Oulton, G. Bartal, and X. Zhang, “Anomalous spectral scaling of light emission rates in low-dimensional metallic nanostructures,” Phys. Rev. B. 83, 245312 (2011).

Going, R.

Gu, Q.

Q. Gu, J. Shane, F. Vallini, B. Wingad, J. S. T. Smalley, N. C. Frateschi, and Y. Fainman, “Amorphous Al2O3 shield for thermal management in electrically pumped metallo-dielectric nanolasers,” IEEE J. Quantum Electron. 50(7), 499–509 (2014).
[Crossref]

Q. Gu, B. Slutsky, F. Vallini, J. S. T. Smalley, M. P. Nezhad, N. C. Frateschi, and Y. Fainman, “Purcell effect in sub-wavelength semiconductor lasers,” Opt. Express 21(13), 15603–15617 (2013).
[Crossref] [PubMed]

Han, K.

S. A. Fortuna, C. Heidelberger, K. Messer, K. Han, E. A. Fitzgerald, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission rate in electrically injected nanoscale III-V LED,” in Conf. Dig. - IEEE Int. Semicond. Laser Conf. (2016), pp. 2–3.

Heidelberger, C.

S. A. Fortuna, C. Heidelberger, K. Messer, K. Han, E. A. Fitzgerald, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission rate in electrically injected nanoscale III-V LED,” in Conf. Dig. - IEEE Int. Semicond. Laser Conf. (2016), pp. 2–3.

Hill, M. T.

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. Van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B. 85, 041031 (2012).

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[Crossref]

Huang, K.

Hughes, S.

R. C. Ge, P. T. Kristensen, J. F. Young, and S. Hughes, “Quasinormal mode approach to modelling light-emission and propagation in nanoplasmonics,” New J. Phys. 16(11), 113048 (2014).
[Crossref]

P. T. Kristensen and S. Hughes, “Modes and Mode Volumes of Leaky Optical Cavities and Plasmonic Nanoresonators,” ACS Photonics 1(1), 2–10 (2014).
[Crossref]

Hugonin, J. P.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110(23), 237401 (2013).
[Crossref] [PubMed]

Jeong, K. Y.

M. K. Seo, K. Y. Jeong, J. K. Yang, Y. H. Lee, H. G. Park, and S. B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90(17), 171122 (2007).
[Crossref]

Jin, Y.-H.

Kan, H.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

Kante, B.

B. Bahari, R. Tellez-Limon, and B. Kante, “Directive and enhanced spontaneous emission using shifted cubes nanoantenna,” J. Appl. Phys. 120(9), 093106 (2016).
[Crossref]

Katz, M.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Khajavikhan, M.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Kihara, M.

T. Baba, M. Fujita, A. Sakai, M. Kihara, and R. Watanabe, “Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10 µm,” IEEE Photonics Technol. Lett. 9(7), 878–880 (1997).
[Crossref]

Kim, M.-K.

Kim, S. B.

M. K. Seo, K. Y. Jeong, J. K. Yang, Y. H. Lee, H. G. Park, and S. B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90(17), 171122 (2007).
[Crossref]

Kristensen, P. T.

P. T. Kristensen and S. Hughes, “Modes and Mode Volumes of Leaky Optical Cavities and Plasmonic Nanoresonators,” ACS Photonics 1(1), 2–10 (2014).
[Crossref]

R. C. Ge, P. T. Kristensen, J. F. Young, and S. Hughes, “Quasinormal mode approach to modelling light-emission and propagation in nanoplasmonics,” New J. Phys. 16(11), 113048 (2014).
[Crossref]

Kwon, S.-H.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[Crossref]

Lakhani, A.

Lakhani, A. M.

Lalanne, P.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110(23), 237401 (2013).
[Crossref] [PubMed]

Lau, E. K.

Lee, J. H.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Lee, Y. H.

M. K. Seo, K. Y. Jeong, J. K. Yang, Y. H. Lee, H. G. Park, and S. B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90(17), 171122 (2007).
[Crossref]

Lee, Y.-H.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[Crossref]

Li, G.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Li, N.

K. Liu, N. Li, D. K. Sadana, and V. J. Sorger, “Integrated nanocavity plasmon light sources for on-chip optical interconnects,” ACS Photonics 3(2), 233–242 (2016).
[Crossref]

Li, Y.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Li, Z.

Lieber, C. M.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Liu, K.

K. Liu, N. Li, D. K. Sadana, and V. J. Sorger, “Integrated nanocavity plasmon light sources for on-chip optical interconnects,” ACS Photonics 3(2), 233–242 (2016).
[Crossref]

Liu, X.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Liu, Z. C.

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. Van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B. 85, 041031 (2012).

Lomakin, V.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[Crossref]

Maksymov, I. S.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110(23), 237401 (2013).
[Crossref] [PubMed]

Marell, M. J. H.

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. Van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B. 85, 041031 (2012).

Messer, K.

S. A. Fortuna, C. Heidelberger, K. Messer, K. Han, E. A. Fitzgerald, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission rate in electrically injected nanoscale III-V LED,” in Conf. Dig. - IEEE Int. Semicond. Laser Conf. (2016), pp. 2–3.

Miller, D. A. B.

Mizrahi, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[Crossref]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Nezhad, M. P.

Q. Gu, B. Slutsky, F. Vallini, J. S. T. Smalley, M. P. Nezhad, N. C. Frateschi, and Y. Fainman, “Purcell effect in sub-wavelength semiconductor lasers,” Opt. Express 21(13), 15603–15617 (2013).
[Crossref] [PubMed]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[Crossref]

Ni, C.-Y. A.

Ning, C. Z.

K. Ding and C. Z. Ning, “Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers,” Semicond. Sci. Technol. 28(12), 124002 (2013).
[Crossref]

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. Van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B. 85, 041031 (2012).

Nöetzel, R.

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. Van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B. 85, 041031 (2012).

Nötzel, R.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[Crossref]

Oei, Y.-S.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[Crossref]

Oulton, R. F.

D. A. Genov, R. F. Oulton, G. Bartal, and X. Zhang, “Anomalous spectral scaling of light emission rates in low-dimensional metallic nanostructures,” Phys. Rev. B. 83, 245312 (2011).

Park, B. J.

Park, H. G.

M. K. Seo, K. Y. Jeong, J. K. Yang, Y. H. Lee, H. G. Park, and S. B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90(17), 171122 (2007).
[Crossref]

Pflügl, C.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

Purcell, E. M.

E. M. Purcell, “Spontaneous Emission Probabliities at Radio Frquencies,” Phys. Rev. 69, 674 (1946).

Qian, F.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Sadana, D. K.

K. Liu, N. Li, D. K. Sadana, and V. J. Sorger, “Integrated nanocavity plasmon light sources for on-chip optical interconnects,” ACS Photonics 3(2), 233–242 (2016).
[Crossref]

Sakai, A.

T. Baba, M. Fujita, A. Sakai, M. Kihara, and R. Watanabe, “Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10 µm,” IEEE Photonics Technol. Lett. 9(7), 878–880 (1997).
[Crossref]

Sauvan, C.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110(23), 237401 (2013).
[Crossref] [PubMed]

Seo, M. K.

M. K. Seo, K. Y. Jeong, J. K. Yang, Y. H. Lee, H. G. Park, and S. B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90(17), 171122 (2007).
[Crossref]

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Shane, J.

Q. Gu, J. Shane, F. Vallini, B. Wingad, J. S. T. Smalley, N. C. Frateschi, and Y. Fainman, “Amorphous Al2O3 shield for thermal management in electrically pumped metallo-dielectric nanolasers,” IEEE J. Quantum Electron. 50(7), 499–509 (2014).
[Crossref]

Simic, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[Crossref]

Slutsky, B.

Q. Gu, B. Slutsky, F. Vallini, J. S. T. Smalley, M. P. Nezhad, N. C. Frateschi, and Y. Fainman, “Purcell effect in sub-wavelength semiconductor lasers,” Opt. Express 21(13), 15603–15617 (2013).
[Crossref] [PubMed]

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[Crossref]

Smalbrugge, B.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[Crossref]

Smalley, J. S. T.

Q. Gu, J. Shane, F. Vallini, B. Wingad, J. S. T. Smalley, N. C. Frateschi, and Y. Fainman, “Amorphous Al2O3 shield for thermal management in electrically pumped metallo-dielectric nanolasers,” IEEE J. Quantum Electron. 50(7), 499–509 (2014).
[Crossref]

Q. Gu, B. Slutsky, F. Vallini, J. S. T. Smalley, M. P. Nezhad, N. C. Frateschi, and Y. Fainman, “Purcell effect in sub-wavelength semiconductor lasers,” Opt. Express 21(13), 15603–15617 (2013).
[Crossref] [PubMed]

Smit, M. K.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[Crossref]

Sorger, V. J.

K. Liu, N. Li, D. K. Sadana, and V. J. Sorger, “Integrated nanocavity plasmon light sources for on-chip optical interconnects,” ACS Photonics 3(2), 233–242 (2016).
[Crossref]

Sum, T. C.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Tellez-Limon, R.

B. Bahari, R. Tellez-Limon, and B. Kante, “Directive and enhanced spontaneous emission using shifted cubes nanoantenna,” J. Appl. Phys. 120(9), 093106 (2016).
[Crossref]

Tucker, R. S.

Turkiewicz, J. P.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[Crossref]

Vallini, F.

Q. Gu, J. Shane, F. Vallini, B. Wingad, J. S. T. Smalley, N. C. Frateschi, and Y. Fainman, “Amorphous Al2O3 shield for thermal management in electrically pumped metallo-dielectric nanolasers,” IEEE J. Quantum Electron. 50(7), 499–509 (2014).
[Crossref]

Q. Gu, B. Slutsky, F. Vallini, J. S. T. Smalley, M. P. Nezhad, N. C. Frateschi, and Y. Fainman, “Purcell effect in sub-wavelength semiconductor lasers,” Opt. Express 21(13), 15603–15617 (2013).
[Crossref] [PubMed]

van Otten, F. W. M.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[Crossref]

Van Veldhoven, P. J.

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. Van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B. 85, 041031 (2012).

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[Crossref]

Wang, Q. J.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

Watanabe, R.

T. Baba, M. Fujita, A. Sakai, M. Kihara, and R. Watanabe, “Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10 µm,” IEEE Photonics Technol. Lett. 9(7), 878–880 (1997).
[Crossref]

Wingad, B.

Q. Gu, J. Shane, F. Vallini, B. Wingad, J. S. T. Smalley, N. C. Frateschi, and Y. Fainman, “Amorphous Al2O3 shield for thermal management in electrically pumped metallo-dielectric nanolasers,” IEEE J. Quantum Electron. 50(7), 499–509 (2014).
[Crossref]

Wu, M. C.

M. S. Eggleston and M. C. Wu, “Efficient coupling of an antenna-enhanced nanoLED into an integrated InP waveguide,” Nano Lett. 15(5), 3329–3333 (2015).
[Crossref] [PubMed]

M.-K. Kim, Z. Li, K. Huang, R. Going, M. C. Wu, and H. Choo, “Engineering of metal-clad optical nanocavity to optimize coupling with integrated waveguides,” Opt. Express 21(22), 25796–25804 (2013).
[Crossref] [PubMed]

M.-K. Kim, A. M. Lakhani, and M. C. Wu, “Efficient waveguide-coupling of metal-clad nanolaser cavities,” Opt. Express 19(23), 23504–23512 (2011).
[Crossref] [PubMed]

E. K. Lau, A. Lakhani, R. S. Tucker, and M. C. Wu, “Enhanced modulation bandwidth of nanocavity light emitting devices,” Opt. Express 17(10), 7790–7799 (2009).
[Crossref] [PubMed]

S. A. Fortuna, C. Heidelberger, K. Messer, K. Han, E. A. Fitzgerald, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission rate in electrically injected nanoscale III-V LED,” in Conf. Dig. - IEEE Int. Semicond. Laser Conf. (2016), pp. 2–3.

Xiong, Q.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Yablonovitch, E.

S. A. Fortuna, C. Heidelberger, K. Messer, K. Han, E. A. Fitzgerald, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission rate in electrically injected nanoscale III-V LED,” in Conf. Dig. - IEEE Int. Semicond. Laser Conf. (2016), pp. 2–3.

Yamanishi, M.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

Yang, J. K.

M. K. Seo, K. Y. Jeong, J. K. Yang, Y. H. Lee, H. G. Park, and S. B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90(17), 171122 (2007).
[Crossref]

Yin, L. J.

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. Van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B. 85, 041031 (2012).

Young, J. F.

R. C. Ge, P. T. Kristensen, J. F. Young, and S. Hughes, “Quasinormal mode approach to modelling light-emission and propagation in nanoplasmonics,” New J. Phys. 16(11), 113048 (2014).
[Crossref]

Yu, N.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

Zhang, Q.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Zhang, X.

D. A. Genov, R. F. Oulton, G. Bartal, and X. Zhang, “Anomalous spectral scaling of light emission rates in low-dimensional metallic nanostructures,” Phys. Rev. B. 83, 245312 (2011).

Zhu, Y.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[Crossref]

ACS Photonics (2)

K. Liu, N. Li, D. K. Sadana, and V. J. Sorger, “Integrated nanocavity plasmon light sources for on-chip optical interconnects,” ACS Photonics 3(2), 233–242 (2016).
[Crossref]

P. T. Kristensen and S. Hughes, “Modes and Mode Volumes of Leaky Optical Cavities and Plasmonic Nanoresonators,” ACS Photonics 1(1), 2–10 (2014).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

M. K. Seo, K. Y. Jeong, J. K. Yang, Y. H. Lee, H. G. Park, and S. B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90(17), 171122 (2007).
[Crossref]

IEEE J. Quantum Electron. (1)

Q. Gu, J. Shane, F. Vallini, B. Wingad, J. S. T. Smalley, N. C. Frateschi, and Y. Fainman, “Amorphous Al2O3 shield for thermal management in electrically pumped metallo-dielectric nanolasers,” IEEE J. Quantum Electron. 50(7), 499–509 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. Baba, M. Fujita, A. Sakai, M. Kihara, and R. Watanabe, “Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10 µm,” IEEE Photonics Technol. Lett. 9(7), 878–880 (1997).
[Crossref]

J. Appl. Phys. (1)

B. Bahari, R. Tellez-Limon, and B. Kante, “Directive and enhanced spontaneous emission using shifted cubes nanoantenna,” J. Appl. Phys. 120(9), 093106 (2016).
[Crossref]

J. Lightwave Technol. (1)

Nano Lett. (1)

M. S. Eggleston and M. C. Wu, “Efficient coupling of an antenna-enhanced nanoLED into an integrated InP waveguide,” Nano Lett. 15(5), 3329–3333 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Nat. Photonics (3)

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[Crossref]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[Crossref]

Nature (1)

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

New J. Phys. (1)

R. C. Ge, P. T. Kristensen, J. F. Young, and S. Hughes, “Quasinormal mode approach to modelling light-emission and propagation in nanoplasmonics,” New J. Phys. 16(11), 113048 (2014).
[Crossref]

Opt. Express (6)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous Emission Probabliities at Radio Frquencies,” Phys. Rev. 69, 674 (1946).

Phys. Rev. B. (2)

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. Van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B. 85, 041031 (2012).

D. A. Genov, R. F. Oulton, G. Bartal, and X. Zhang, “Anomalous spectral scaling of light emission rates in low-dimensional metallic nanostructures,” Phys. Rev. B. 83, 245312 (2011).

Phys. Rev. Lett. (1)

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110(23), 237401 (2013).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

K. Ding and C. Z. Ning, “Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers,” Semicond. Sci. Technol. 28(12), 124002 (2013).
[Crossref]

Other (2)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2009).

S. A. Fortuna, C. Heidelberger, K. Messer, K. Han, E. A. Fitzgerald, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission rate in electrically injected nanoscale III-V LED,” in Conf. Dig. - IEEE Int. Semicond. Laser Conf. (2016), pp. 2–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Structure of the shifted-core coaxial nano-cavity. (a) 3D view. The SiO2/InGaAsP/InP/SiO2 layer stack forms a Fabry-Perot cavity in the vertical direction (InP layer functions as a protection layer). The Ag/InGaAsP/Ag structure forms a coaxial cavity in the horizontal direction. “d” denotes core-shifting distance in the xy-plane. (b) Cross sectional view of the un-shifted cavity.
Fig. 2
Fig. 2 Properties of the shifted core coaxial nano-cavity for different core shifting distance d (quasi-TEM mode). (a) Evolution of freespace resonance wavelength and quality factors. Inset: evolution of quality factors of whispering gallery mode (WGM1 and WGM2). (b) Anomalous spectral scaling of light. (c) yz-plane mode profile (|E|2) at d = 0nm. (d) yz-plane mode profile (|E|2) at d = 110nm.
Fig. 3
Fig. 3 Properties of the shifted core coaxial nano-cavity for different core shifting distance d. (a) Purcell factor comparison between calculation using electric energy and total electromagnetic energy. (b) Purcell factor’s dependence on effective mode volume.
Fig. 4
Fig. 4 Properties of the shifted core coaxial nano-cavity for different core shifting distance d. (a) Modulation bandwidth. (b) Photon lifetime and spontaneous emission lifetime. Inset: expanded figure of photon lifetime.
Fig. 5
Fig. 5 (a) Q factor as a function of d and n (refractive index of cavity lower plug and substrate material) at 295K. (b) Normalized energy distribution as a function of d (SiO2 as lower plug and substrate material). (c) Q factor at different temperatures for SiO2 lower plug and substrate material; (d) Q factor at different temperatures for air plug and no substrate.
Fig. 6
Fig. 6 Far-field emission pattern of the shifted core coaxial nano-cavity. (a) d = 0nm; (b) d = 110nm. Omni-directional emission can be changed to in-line bi-directional emission; (c) Evolution of emission directivity as a function of core-shifting distance d.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

V eff = α V α W( r α ) d 3 r α max( W(r) ) = α V α d 3 r α ( ε g,α ( r α ) | E α ( r α ) | 2 + μ α ( r α ) | H α ( r α ) | 2 ) max( ε g (r) | E(r) | 2 +μ(r) | H(r) | 2 ) .
F p = 3 4 π 2 ( λ c n a ) 3 ( Q V eff ).
f 3dB,max 1 2π 1 τ p 2 + τ sp 2 .

Metrics