Abstract

Most of fiber-optic pressure sensors used in shock wave measurements are based on deformations of sensing elements. These approaches result in low dynamic pressure ranges for these sensors used in the air. A novel fiber-optic method based on the relationship between pressure and the acceleration of a diaphragm is proposed to obtain peak reflected pressure of shock waves in the air. The optical sensor is designed with a thin circular diaphragm as the sensing element, and the Fabry-Perot optical interferometry is used to detect the acceleration of the diaphragm. Shock tube and explosive-blast experiments prove that the proposed fiber optic method is feasible and has the advantages of no calibration, high precision and fast response time. The proposed fiber-optic pressure method has potential in practical applications for shock wave measurements.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Low-cost rapid miniature optical pressure sensors for blast wave measurements

Nan Wu, Wenhui Wang, Ye Tian, Xiaotian Zou, Michael Maffeo, Christopher Niezrecki, Julie Chen, and Xingwei Wang
Opt. Express 19(11) 10797-10804 (2011)

Characterization of laser-driven shock waves in solids using a fiber optic pressure probe

Geoffrey A. Cranch, Robert Lunsford, Jacob Grün, James Weaver, Steve Compton, Mark May, and Natalie Kostinski
Appl. Opt. 52(32) 7791-7796 (2013)

Laser-machined fibers as Fabry-Perot pressure sensors

Stuart Watson, Matthew J. Gander, William N. MacPherson, James S. Barton, Julian D. C. Jones, Thomas Klotzbuecher, Torsten Braune, Johannes Ott, and Felix Schmitz
Appl. Opt. 45(22) 5590-5596 (2006)

References

  • View by:
  • |
  • |
  • |

  1. É. Pinet, “Pressure measurement with fiber-optic sensors: commercial technologies and applications,” in 21st International Conference on Optical Fiber Sensors, Proc. SPIE, 7753 (2011).
  2. Y. Wang, X. Ni, M. Wang, Y. Cui, and Q. Shi, “Demodulation of an optical fiber MEMS pressure sensor based on single bandpass microwave photonic filter,” Opt. Express 25(2), 644–653 (2017).
    [Crossref] [PubMed]
  3. S. H. Aref, M. I. Zibaii, and H. Latifi, “An improved fiber optic pressure and temperature sensor for downhole application,” Meas. Sci. Technol. 20(3), 034009 (2009).
    [Crossref]
  4. M. Li, M. Wang, and H. Li, “Optical MEMS pressure sensor based on Fabry-Perot interferometry,” Opt. Express 14(4), 1497–1504 (2006).
    [Crossref] [PubMed]
  5. Y. Ge, M. Wang, and H. Yan, “Optical MEMS pressure sensor based on a mesa-diaphragm structure,” Opt. Express 16(26), 21746–21752 (2008).
    [Crossref] [PubMed]
  6. D. Wang, B. Xu, Y. Liu, D. Jia, and C. Jiang, “Optical fiber Fabry-Perot Interferometer based on an air cavity for gas pressure sensing,” IEEE Photonics J. 9(2), 1–9 (2017).
    [Crossref]
  7. H. Liu, D. N. Wang, J. Liu, and S. Liu, “Range tunable optical fiber Micro-Fabry-Perot interferometer for pressure sensing,” IEEE Photonics Technol. Lett. 28(4), 402–405 (2016).
    [Crossref]
  8. J. Zhu, M. Wang, M. Shen, L. Chen, and X. Ni, “An optical fiber Fabry-Pérot pressure sensor using an SU-8 structure and angle polished fiber,” IEEE Photonics Technol. Lett. 27(19), 2087–2090 (2015).
    [Crossref]
  9. C. Koch, G. Ludwig, and W. Molkenstruck, “Calibration of a fiber tip ultrasonic sensor up to 50 MHz and the application to shock wave measurement,” Ultrasonics 36(1–5), 721–725 (1998).
    [Crossref]
  10. J. Wang, M. Wang, J. Xu, L. Peng, M. Yang, M. Xia, and D. Jiang, “Underwater blast wave pressure sensor based on polymer film fiber Fabry-Perot cavity,” Appl. Opt. 53(28), 6494–6502 (2014).
    [Crossref] [PubMed]
  11. W. N. MacPherson, J. M. Kilpatrick, J. S. Barton, and J. D. C. Jones, “Miniature fiber optic pressure sensor for turbo machinery applications,” Rev. Sci. Instrum. 70(3), 1868–1874 (1999).
    [Crossref]
  12. W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11(2), 95–102 (2000).
    [Crossref]
  13. N. Wu, X. Zou, Y. Tian, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “An ultra-fast fiber optic pressure sensor for blast event measurements,” Meas. Sci. Technol. 23(5), 055102 (2012).
    [Crossref]
  14. N. Wu, W. Wang, Y. Tian, X. Zou, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “Low-cost rapid miniature optical pressure sensors for blast wave measurements,” Opt. Express 19(11), 10797–10804 (2011).
    [Crossref] [PubMed]
  15. X. Zou, N. Wu, Y. Tian, Y. Zhang, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “Ultrafast Fabry-Perot fiber-optic pressure sensors for multimedia blast event measurements,” Appl. Opt. 52(6), 1248–1254 (2013).
    [Crossref] [PubMed]
  16. M. Chavko, W. A. Koller, W. K. Prusaczyk, and R. M. McCarron, “Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain,” J. Neurosci. Methods 159(2), 277–281 (2007).
    [Crossref] [PubMed]
  17. X. Zou, N. Wu, Y. Tian, C. Niezrecki, J. Chen, and X. Wang, “Rapid miniature fiber optic pressure sensors for blast wave measurements,” Opt. Lasers Eng. 51(2), 134–139 (2013).
    [Crossref]
  18. M. Zelan, F. Arrhén, P. Jarlemark, O. Mollmyr, and H. Johansson, “Characterization of a fiber-optic pressure sensor in a shock tube system for dynamic calibrations,” Metrologia 52(1), 48–53 (2015).
    [Crossref]
  19. J. Staudenraus and W. Eisenmenger, “Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water,” Ultrasonics 31(4), 267–273 (1993).
    [Crossref]
  20. H. J. Plass and E. A. Ripperger, “Stress wave propagation in rods and beams,” Adv. Appl. Mech. 5, 111–194 (1958).
    [Crossref]
  21. S. Rahman, E. Timofeev, and H. Kleine, “Pressure measurements in laboratory-scale blast wave flow fields,” Rev. Sci. Instrum. 78(12), 125106 (2007).
    [Crossref] [PubMed]

2017 (2)

D. Wang, B. Xu, Y. Liu, D. Jia, and C. Jiang, “Optical fiber Fabry-Perot Interferometer based on an air cavity for gas pressure sensing,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Y. Wang, X. Ni, M. Wang, Y. Cui, and Q. Shi, “Demodulation of an optical fiber MEMS pressure sensor based on single bandpass microwave photonic filter,” Opt. Express 25(2), 644–653 (2017).
[Crossref] [PubMed]

2016 (1)

H. Liu, D. N. Wang, J. Liu, and S. Liu, “Range tunable optical fiber Micro-Fabry-Perot interferometer for pressure sensing,” IEEE Photonics Technol. Lett. 28(4), 402–405 (2016).
[Crossref]

2015 (2)

J. Zhu, M. Wang, M. Shen, L. Chen, and X. Ni, “An optical fiber Fabry-Pérot pressure sensor using an SU-8 structure and angle polished fiber,” IEEE Photonics Technol. Lett. 27(19), 2087–2090 (2015).
[Crossref]

M. Zelan, F. Arrhén, P. Jarlemark, O. Mollmyr, and H. Johansson, “Characterization of a fiber-optic pressure sensor in a shock tube system for dynamic calibrations,” Metrologia 52(1), 48–53 (2015).
[Crossref]

2014 (1)

2013 (2)

X. Zou, N. Wu, Y. Tian, Y. Zhang, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “Ultrafast Fabry-Perot fiber-optic pressure sensors for multimedia blast event measurements,” Appl. Opt. 52(6), 1248–1254 (2013).
[Crossref] [PubMed]

X. Zou, N. Wu, Y. Tian, C. Niezrecki, J. Chen, and X. Wang, “Rapid miniature fiber optic pressure sensors for blast wave measurements,” Opt. Lasers Eng. 51(2), 134–139 (2013).
[Crossref]

2012 (1)

N. Wu, X. Zou, Y. Tian, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “An ultra-fast fiber optic pressure sensor for blast event measurements,” Meas. Sci. Technol. 23(5), 055102 (2012).
[Crossref]

2011 (1)

2009 (1)

S. H. Aref, M. I. Zibaii, and H. Latifi, “An improved fiber optic pressure and temperature sensor for downhole application,” Meas. Sci. Technol. 20(3), 034009 (2009).
[Crossref]

2008 (1)

2007 (2)

S. Rahman, E. Timofeev, and H. Kleine, “Pressure measurements in laboratory-scale blast wave flow fields,” Rev. Sci. Instrum. 78(12), 125106 (2007).
[Crossref] [PubMed]

M. Chavko, W. A. Koller, W. K. Prusaczyk, and R. M. McCarron, “Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain,” J. Neurosci. Methods 159(2), 277–281 (2007).
[Crossref] [PubMed]

2006 (1)

2000 (1)

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11(2), 95–102 (2000).
[Crossref]

1999 (1)

W. N. MacPherson, J. M. Kilpatrick, J. S. Barton, and J. D. C. Jones, “Miniature fiber optic pressure sensor for turbo machinery applications,” Rev. Sci. Instrum. 70(3), 1868–1874 (1999).
[Crossref]

1998 (1)

C. Koch, G. Ludwig, and W. Molkenstruck, “Calibration of a fiber tip ultrasonic sensor up to 50 MHz and the application to shock wave measurement,” Ultrasonics 36(1–5), 721–725 (1998).
[Crossref]

1993 (1)

J. Staudenraus and W. Eisenmenger, “Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water,” Ultrasonics 31(4), 267–273 (1993).
[Crossref]

1958 (1)

H. J. Plass and E. A. Ripperger, “Stress wave propagation in rods and beams,” Adv. Appl. Mech. 5, 111–194 (1958).
[Crossref]

Allen, R. M.

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11(2), 95–102 (2000).
[Crossref]

Aref, S. H.

S. H. Aref, M. I. Zibaii, and H. Latifi, “An improved fiber optic pressure and temperature sensor for downhole application,” Meas. Sci. Technol. 20(3), 034009 (2009).
[Crossref]

Arrhén, F.

M. Zelan, F. Arrhén, P. Jarlemark, O. Mollmyr, and H. Johansson, “Characterization of a fiber-optic pressure sensor in a shock tube system for dynamic calibrations,” Metrologia 52(1), 48–53 (2015).
[Crossref]

Barton, J. S.

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11(2), 95–102 (2000).
[Crossref]

W. N. MacPherson, J. M. Kilpatrick, J. S. Barton, and J. D. C. Jones, “Miniature fiber optic pressure sensor for turbo machinery applications,” Rev. Sci. Instrum. 70(3), 1868–1874 (1999).
[Crossref]

Chavko, M.

M. Chavko, W. A. Koller, W. K. Prusaczyk, and R. M. McCarron, “Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain,” J. Neurosci. Methods 159(2), 277–281 (2007).
[Crossref] [PubMed]

Chen, J.

X. Zou, N. Wu, Y. Tian, C. Niezrecki, J. Chen, and X. Wang, “Rapid miniature fiber optic pressure sensors for blast wave measurements,” Opt. Lasers Eng. 51(2), 134–139 (2013).
[Crossref]

X. Zou, N. Wu, Y. Tian, Y. Zhang, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “Ultrafast Fabry-Perot fiber-optic pressure sensors for multimedia blast event measurements,” Appl. Opt. 52(6), 1248–1254 (2013).
[Crossref] [PubMed]

N. Wu, X. Zou, Y. Tian, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “An ultra-fast fiber optic pressure sensor for blast event measurements,” Meas. Sci. Technol. 23(5), 055102 (2012).
[Crossref]

N. Wu, W. Wang, Y. Tian, X. Zou, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “Low-cost rapid miniature optical pressure sensors for blast wave measurements,” Opt. Express 19(11), 10797–10804 (2011).
[Crossref] [PubMed]

Chen, L.

J. Zhu, M. Wang, M. Shen, L. Chen, and X. Ni, “An optical fiber Fabry-Pérot pressure sensor using an SU-8 structure and angle polished fiber,” IEEE Photonics Technol. Lett. 27(19), 2087–2090 (2015).
[Crossref]

Cui, Y.

Eisenmenger, W.

J. Staudenraus and W. Eisenmenger, “Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water,” Ultrasonics 31(4), 267–273 (1993).
[Crossref]

Fitek, J.

X. Zou, N. Wu, Y. Tian, Y. Zhang, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “Ultrafast Fabry-Perot fiber-optic pressure sensors for multimedia blast event measurements,” Appl. Opt. 52(6), 1248–1254 (2013).
[Crossref] [PubMed]

N. Wu, X. Zou, Y. Tian, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “An ultra-fast fiber optic pressure sensor for blast event measurements,” Meas. Sci. Technol. 23(5), 055102 (2012).
[Crossref]

Gander, M. J.

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11(2), 95–102 (2000).
[Crossref]

Ge, Y.

Jarlemark, P.

M. Zelan, F. Arrhén, P. Jarlemark, O. Mollmyr, and H. Johansson, “Characterization of a fiber-optic pressure sensor in a shock tube system for dynamic calibrations,” Metrologia 52(1), 48–53 (2015).
[Crossref]

Jia, D.

D. Wang, B. Xu, Y. Liu, D. Jia, and C. Jiang, “Optical fiber Fabry-Perot Interferometer based on an air cavity for gas pressure sensing,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Jiang, C.

D. Wang, B. Xu, Y. Liu, D. Jia, and C. Jiang, “Optical fiber Fabry-Perot Interferometer based on an air cavity for gas pressure sensing,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Jiang, D.

Johansson, H.

M. Zelan, F. Arrhén, P. Jarlemark, O. Mollmyr, and H. Johansson, “Characterization of a fiber-optic pressure sensor in a shock tube system for dynamic calibrations,” Metrologia 52(1), 48–53 (2015).
[Crossref]

Jones, J. D. C.

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11(2), 95–102 (2000).
[Crossref]

W. N. MacPherson, J. M. Kilpatrick, J. S. Barton, and J. D. C. Jones, “Miniature fiber optic pressure sensor for turbo machinery applications,” Rev. Sci. Instrum. 70(3), 1868–1874 (1999).
[Crossref]

Kilpatrick, J. M.

W. N. MacPherson, J. M. Kilpatrick, J. S. Barton, and J. D. C. Jones, “Miniature fiber optic pressure sensor for turbo machinery applications,” Rev. Sci. Instrum. 70(3), 1868–1874 (1999).
[Crossref]

Kleine, H.

S. Rahman, E. Timofeev, and H. Kleine, “Pressure measurements in laboratory-scale blast wave flow fields,” Rev. Sci. Instrum. 78(12), 125106 (2007).
[Crossref] [PubMed]

Koch, C.

C. Koch, G. Ludwig, and W. Molkenstruck, “Calibration of a fiber tip ultrasonic sensor up to 50 MHz and the application to shock wave measurement,” Ultrasonics 36(1–5), 721–725 (1998).
[Crossref]

Koller, W. A.

M. Chavko, W. A. Koller, W. K. Prusaczyk, and R. M. McCarron, “Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain,” J. Neurosci. Methods 159(2), 277–281 (2007).
[Crossref] [PubMed]

Latifi, H.

S. H. Aref, M. I. Zibaii, and H. Latifi, “An improved fiber optic pressure and temperature sensor for downhole application,” Meas. Sci. Technol. 20(3), 034009 (2009).
[Crossref]

Li, H.

Li, M.

Liu, H.

H. Liu, D. N. Wang, J. Liu, and S. Liu, “Range tunable optical fiber Micro-Fabry-Perot interferometer for pressure sensing,” IEEE Photonics Technol. Lett. 28(4), 402–405 (2016).
[Crossref]

Liu, J.

H. Liu, D. N. Wang, J. Liu, and S. Liu, “Range tunable optical fiber Micro-Fabry-Perot interferometer for pressure sensing,” IEEE Photonics Technol. Lett. 28(4), 402–405 (2016).
[Crossref]

Liu, S.

H. Liu, D. N. Wang, J. Liu, and S. Liu, “Range tunable optical fiber Micro-Fabry-Perot interferometer for pressure sensing,” IEEE Photonics Technol. Lett. 28(4), 402–405 (2016).
[Crossref]

Liu, Y.

D. Wang, B. Xu, Y. Liu, D. Jia, and C. Jiang, “Optical fiber Fabry-Perot Interferometer based on an air cavity for gas pressure sensing,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Ludwig, G.

C. Koch, G. Ludwig, and W. Molkenstruck, “Calibration of a fiber tip ultrasonic sensor up to 50 MHz and the application to shock wave measurement,” Ultrasonics 36(1–5), 721–725 (1998).
[Crossref]

MacPherson, W. N.

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11(2), 95–102 (2000).
[Crossref]

W. N. MacPherson, J. M. Kilpatrick, J. S. Barton, and J. D. C. Jones, “Miniature fiber optic pressure sensor for turbo machinery applications,” Rev. Sci. Instrum. 70(3), 1868–1874 (1999).
[Crossref]

Maffeo, M.

McCarron, R. M.

M. Chavko, W. A. Koller, W. K. Prusaczyk, and R. M. McCarron, “Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain,” J. Neurosci. Methods 159(2), 277–281 (2007).
[Crossref] [PubMed]

Molkenstruck, W.

C. Koch, G. Ludwig, and W. Molkenstruck, “Calibration of a fiber tip ultrasonic sensor up to 50 MHz and the application to shock wave measurement,” Ultrasonics 36(1–5), 721–725 (1998).
[Crossref]

Mollmyr, O.

M. Zelan, F. Arrhén, P. Jarlemark, O. Mollmyr, and H. Johansson, “Characterization of a fiber-optic pressure sensor in a shock tube system for dynamic calibrations,” Metrologia 52(1), 48–53 (2015).
[Crossref]

Ni, X.

Y. Wang, X. Ni, M. Wang, Y. Cui, and Q. Shi, “Demodulation of an optical fiber MEMS pressure sensor based on single bandpass microwave photonic filter,” Opt. Express 25(2), 644–653 (2017).
[Crossref] [PubMed]

J. Zhu, M. Wang, M. Shen, L. Chen, and X. Ni, “An optical fiber Fabry-Pérot pressure sensor using an SU-8 structure and angle polished fiber,” IEEE Photonics Technol. Lett. 27(19), 2087–2090 (2015).
[Crossref]

Niezrecki, C.

X. Zou, N. Wu, Y. Tian, C. Niezrecki, J. Chen, and X. Wang, “Rapid miniature fiber optic pressure sensors for blast wave measurements,” Opt. Lasers Eng. 51(2), 134–139 (2013).
[Crossref]

X. Zou, N. Wu, Y. Tian, Y. Zhang, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “Ultrafast Fabry-Perot fiber-optic pressure sensors for multimedia blast event measurements,” Appl. Opt. 52(6), 1248–1254 (2013).
[Crossref] [PubMed]

N. Wu, X. Zou, Y. Tian, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “An ultra-fast fiber optic pressure sensor for blast event measurements,” Meas. Sci. Technol. 23(5), 055102 (2012).
[Crossref]

N. Wu, W. Wang, Y. Tian, X. Zou, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “Low-cost rapid miniature optical pressure sensors for blast wave measurements,” Opt. Express 19(11), 10797–10804 (2011).
[Crossref] [PubMed]

Owen, C. L.

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11(2), 95–102 (2000).
[Crossref]

Peng, L.

Plass, H. J.

H. J. Plass and E. A. Ripperger, “Stress wave propagation in rods and beams,” Adv. Appl. Mech. 5, 111–194 (1958).
[Crossref]

Prusaczyk, W. K.

M. Chavko, W. A. Koller, W. K. Prusaczyk, and R. M. McCarron, “Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain,” J. Neurosci. Methods 159(2), 277–281 (2007).
[Crossref] [PubMed]

Rahman, S.

S. Rahman, E. Timofeev, and H. Kleine, “Pressure measurements in laboratory-scale blast wave flow fields,” Rev. Sci. Instrum. 78(12), 125106 (2007).
[Crossref] [PubMed]

Ripperger, E. A.

H. J. Plass and E. A. Ripperger, “Stress wave propagation in rods and beams,” Adv. Appl. Mech. 5, 111–194 (1958).
[Crossref]

Shen, M.

J. Zhu, M. Wang, M. Shen, L. Chen, and X. Ni, “An optical fiber Fabry-Pérot pressure sensor using an SU-8 structure and angle polished fiber,” IEEE Photonics Technol. Lett. 27(19), 2087–2090 (2015).
[Crossref]

Shi, Q.

Staudenraus, J.

J. Staudenraus and W. Eisenmenger, “Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water,” Ultrasonics 31(4), 267–273 (1993).
[Crossref]

Tian, Y.

X. Zou, N. Wu, Y. Tian, C. Niezrecki, J. Chen, and X. Wang, “Rapid miniature fiber optic pressure sensors for blast wave measurements,” Opt. Lasers Eng. 51(2), 134–139 (2013).
[Crossref]

X. Zou, N. Wu, Y. Tian, Y. Zhang, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “Ultrafast Fabry-Perot fiber-optic pressure sensors for multimedia blast event measurements,” Appl. Opt. 52(6), 1248–1254 (2013).
[Crossref] [PubMed]

N. Wu, X. Zou, Y. Tian, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “An ultra-fast fiber optic pressure sensor for blast event measurements,” Meas. Sci. Technol. 23(5), 055102 (2012).
[Crossref]

N. Wu, W. Wang, Y. Tian, X. Zou, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “Low-cost rapid miniature optical pressure sensors for blast wave measurements,” Opt. Express 19(11), 10797–10804 (2011).
[Crossref] [PubMed]

Timofeev, E.

S. Rahman, E. Timofeev, and H. Kleine, “Pressure measurements in laboratory-scale blast wave flow fields,” Rev. Sci. Instrum. 78(12), 125106 (2007).
[Crossref] [PubMed]

Wang, D.

D. Wang, B. Xu, Y. Liu, D. Jia, and C. Jiang, “Optical fiber Fabry-Perot Interferometer based on an air cavity for gas pressure sensing,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Wang, D. N.

H. Liu, D. N. Wang, J. Liu, and S. Liu, “Range tunable optical fiber Micro-Fabry-Perot interferometer for pressure sensing,” IEEE Photonics Technol. Lett. 28(4), 402–405 (2016).
[Crossref]

Wang, J.

Wang, M.

Wang, W.

Wang, X.

X. Zou, N. Wu, Y. Tian, C. Niezrecki, J. Chen, and X. Wang, “Rapid miniature fiber optic pressure sensors for blast wave measurements,” Opt. Lasers Eng. 51(2), 134–139 (2013).
[Crossref]

X. Zou, N. Wu, Y. Tian, Y. Zhang, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “Ultrafast Fabry-Perot fiber-optic pressure sensors for multimedia blast event measurements,” Appl. Opt. 52(6), 1248–1254 (2013).
[Crossref] [PubMed]

N. Wu, X. Zou, Y. Tian, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “An ultra-fast fiber optic pressure sensor for blast event measurements,” Meas. Sci. Technol. 23(5), 055102 (2012).
[Crossref]

N. Wu, W. Wang, Y. Tian, X. Zou, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “Low-cost rapid miniature optical pressure sensors for blast wave measurements,” Opt. Express 19(11), 10797–10804 (2011).
[Crossref] [PubMed]

Wang, Y.

Watson, A. J.

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11(2), 95–102 (2000).
[Crossref]

Wu, N.

X. Zou, N. Wu, Y. Tian, C. Niezrecki, J. Chen, and X. Wang, “Rapid miniature fiber optic pressure sensors for blast wave measurements,” Opt. Lasers Eng. 51(2), 134–139 (2013).
[Crossref]

X. Zou, N. Wu, Y. Tian, Y. Zhang, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “Ultrafast Fabry-Perot fiber-optic pressure sensors for multimedia blast event measurements,” Appl. Opt. 52(6), 1248–1254 (2013).
[Crossref] [PubMed]

N. Wu, X. Zou, Y. Tian, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “An ultra-fast fiber optic pressure sensor for blast event measurements,” Meas. Sci. Technol. 23(5), 055102 (2012).
[Crossref]

N. Wu, W. Wang, Y. Tian, X. Zou, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “Low-cost rapid miniature optical pressure sensors for blast wave measurements,” Opt. Express 19(11), 10797–10804 (2011).
[Crossref] [PubMed]

Xia, M.

Xu, B.

D. Wang, B. Xu, Y. Liu, D. Jia, and C. Jiang, “Optical fiber Fabry-Perot Interferometer based on an air cavity for gas pressure sensing,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Xu, J.

Yan, H.

Yang, M.

Zelan, M.

M. Zelan, F. Arrhén, P. Jarlemark, O. Mollmyr, and H. Johansson, “Characterization of a fiber-optic pressure sensor in a shock tube system for dynamic calibrations,” Metrologia 52(1), 48–53 (2015).
[Crossref]

Zhang, Y.

Zhu, J.

J. Zhu, M. Wang, M. Shen, L. Chen, and X. Ni, “An optical fiber Fabry-Pérot pressure sensor using an SU-8 structure and angle polished fiber,” IEEE Photonics Technol. Lett. 27(19), 2087–2090 (2015).
[Crossref]

Zibaii, M. I.

S. H. Aref, M. I. Zibaii, and H. Latifi, “An improved fiber optic pressure and temperature sensor for downhole application,” Meas. Sci. Technol. 20(3), 034009 (2009).
[Crossref]

Zou, X.

X. Zou, N. Wu, Y. Tian, Y. Zhang, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “Ultrafast Fabry-Perot fiber-optic pressure sensors for multimedia blast event measurements,” Appl. Opt. 52(6), 1248–1254 (2013).
[Crossref] [PubMed]

X. Zou, N. Wu, Y. Tian, C. Niezrecki, J. Chen, and X. Wang, “Rapid miniature fiber optic pressure sensors for blast wave measurements,” Opt. Lasers Eng. 51(2), 134–139 (2013).
[Crossref]

N. Wu, X. Zou, Y. Tian, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “An ultra-fast fiber optic pressure sensor for blast event measurements,” Meas. Sci. Technol. 23(5), 055102 (2012).
[Crossref]

N. Wu, W. Wang, Y. Tian, X. Zou, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “Low-cost rapid miniature optical pressure sensors for blast wave measurements,” Opt. Express 19(11), 10797–10804 (2011).
[Crossref] [PubMed]

Adv. Appl. Mech. (1)

H. J. Plass and E. A. Ripperger, “Stress wave propagation in rods and beams,” Adv. Appl. Mech. 5, 111–194 (1958).
[Crossref]

Appl. Opt. (2)

IEEE Photonics J. (1)

D. Wang, B. Xu, Y. Liu, D. Jia, and C. Jiang, “Optical fiber Fabry-Perot Interferometer based on an air cavity for gas pressure sensing,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (2)

H. Liu, D. N. Wang, J. Liu, and S. Liu, “Range tunable optical fiber Micro-Fabry-Perot interferometer for pressure sensing,” IEEE Photonics Technol. Lett. 28(4), 402–405 (2016).
[Crossref]

J. Zhu, M. Wang, M. Shen, L. Chen, and X. Ni, “An optical fiber Fabry-Pérot pressure sensor using an SU-8 structure and angle polished fiber,” IEEE Photonics Technol. Lett. 27(19), 2087–2090 (2015).
[Crossref]

J. Neurosci. Methods (1)

M. Chavko, W. A. Koller, W. K. Prusaczyk, and R. M. McCarron, “Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain,” J. Neurosci. Methods 159(2), 277–281 (2007).
[Crossref] [PubMed]

Meas. Sci. Technol. (3)

S. H. Aref, M. I. Zibaii, and H. Latifi, “An improved fiber optic pressure and temperature sensor for downhole application,” Meas. Sci. Technol. 20(3), 034009 (2009).
[Crossref]

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11(2), 95–102 (2000).
[Crossref]

N. Wu, X. Zou, Y. Tian, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “An ultra-fast fiber optic pressure sensor for blast event measurements,” Meas. Sci. Technol. 23(5), 055102 (2012).
[Crossref]

Metrologia (1)

M. Zelan, F. Arrhén, P. Jarlemark, O. Mollmyr, and H. Johansson, “Characterization of a fiber-optic pressure sensor in a shock tube system for dynamic calibrations,” Metrologia 52(1), 48–53 (2015).
[Crossref]

Opt. Express (4)

Opt. Lasers Eng. (1)

X. Zou, N. Wu, Y. Tian, C. Niezrecki, J. Chen, and X. Wang, “Rapid miniature fiber optic pressure sensors for blast wave measurements,” Opt. Lasers Eng. 51(2), 134–139 (2013).
[Crossref]

Rev. Sci. Instrum. (2)

S. Rahman, E. Timofeev, and H. Kleine, “Pressure measurements in laboratory-scale blast wave flow fields,” Rev. Sci. Instrum. 78(12), 125106 (2007).
[Crossref] [PubMed]

W. N. MacPherson, J. M. Kilpatrick, J. S. Barton, and J. D. C. Jones, “Miniature fiber optic pressure sensor for turbo machinery applications,” Rev. Sci. Instrum. 70(3), 1868–1874 (1999).
[Crossref]

Ultrasonics (2)

J. Staudenraus and W. Eisenmenger, “Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water,” Ultrasonics 31(4), 267–273 (1993).
[Crossref]

C. Koch, G. Ludwig, and W. Molkenstruck, “Calibration of a fiber tip ultrasonic sensor up to 50 MHz and the application to shock wave measurement,” Ultrasonics 36(1–5), 721–725 (1998).
[Crossref]

Other (1)

É. Pinet, “Pressure measurement with fiber-optic sensors: commercial technologies and applications,” in 21st International Conference on Optical Fiber Sensors, Proc. SPIE, 7753 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Sketch of the optical fiber pressure principle. The diaphragm moves under shock wave, and the pressure is proportional to the acceleration of the diaphragm. The F-P cavity structure formed on the surface of the fiber end and the diaphragm is used to get the acceleration of diaphragm.
Fig. 2
Fig. 2 The steel diaphragm velocity obtained by numerical simulation. (a) The thickness of the diaphragm is 35 µm, and the period of the velocity oscillation is 12 ns as shown in the zoomed-in curve. (b) The thickness of the diaphragm is 500 µm, and the period of the velocity oscillation is 172 ns.
Fig. 3
Fig. 3 Photograph of a pressure sensor. (a) The section drawing of the sensor. These mechanical parts are used to support the diaphragm and form the F-P cavity. The hollow bushing is conducive to the stability of the optical probe. (b) The sample of the sensor.
Fig. 4
Fig. 4 Schematic of the pressure measurement system. The interference signal generated by the pressure sensor passes the circulator, is converted by the detector and collected by the oscillograph.
Fig. 5
Fig. 5 Schematic diagram of the shock tube experiment. The shock wave forms in the shock tube. The optical sensor and reference sensor are subjected by the shock wave at same time.
Fig. 6
Fig. 6 The optical signal of the shock tube experiment. (a) The original voltage signal of the optical pressure sensor. (b) The frequency of the voltage signal and its linear fit. The least squares method is used to fit the frequency signal between 0.4 µs and 3.0 µs. The fitting line is shown in red, and the slope k is 4.7944 MHz/µs.
Fig. 7
Fig. 7 The experiment results of shock tube experiment. (a) The pressure curves of the reference sensor. The green line shows that the average of the pressure signal between 200 µs and 500 µs is 0.9994 MPa. (b) The zoomed-in pressure curves. The red line shows that the pressure value obtained by the optical sensor is 0.9934 MPa.
Fig. 8
Fig. 8 Schematic diagram of the explosive-blast experiment. The shock wave is generated by explosive detonation. The optical sensor and electrical sensor are subjected by the shock wave at the same distance from the explosive charge.
Fig. 9
Fig. 9 The optical signal of the explosive-blast experiment. (a) The original voltage signal of the optical pressure sensor. (b) The frequency of the voltage signal and its linear fit. The least squares method is used to fit the frequency signal between 0.15 µs and 0.58 µs. The fitting line is shown in red, and the slope k is 138.56 MHz/µs.
Fig. 10
Fig. 10 Experimental results of the explosive-blast experiment. (a) The pressure curve of the electrical sensor. There are three peaks at time 4.7 µs, 14.8 µs, and 143.0 µs. (b) The zoomed-in pressure curves. The blue curve is the exponential fitting curve of the pressure data obtained by the electrical sensor, and the peak of the blue curve is 29.5 MPa. The red line shows that the pressure value obtained by the optical sensor is 28.7 MPa.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P(t)=hρa(t)
T= 2h C
T t = r C t
ϕ= 4πnl λ + ϕ 0
dl dt = λ 4π dϕ dt = λ 2 ν(t)
a(t)= λ 2 d(ν(t)) dt
P(t)= λhρ 2 d(ν(t)) dt
ν(t)= 1 2π dϕ dt

Metrics