Abstract

We propose a three-dimensional (3D) long-period grating structure that has a controllable grating width and depth and can be formed at any chosen position on the surface of a waveguide core with a single photolithography process. The process relies on the partial etching of small structures on the surface of a polymer waveguide through a waveguide mask with narrow apertures that define the grating pattern. The 3D grating structure allows the design of mode converters for any nondegenerate guided modes of a waveguide, regardless of their symmetry properties, and thus relaxes the design constraint of conventional two-dimensional waveguide gratings. To show the flexibility of the 3D grating structure, we present several mode converters fabricated with this structure. The mode-conversion efficiencies achieved are higher than 90% at the resonance wavelengths. In addition, we demonstrate a three-mode multiplexer by integrating a grating-based mode converter with two asymmetric directional couplers. The proposed grating structure together with the fabrication process can greatly facilitate the development of grating-based devices, especially for MDM applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband mode converters based on length-apodized long-period waveguide gratings

Wen Wang, Jieyun Wu, Kaixin Chen, Wei Jin, and Kin Seng Chiang
Opt. Express 25(13) 14341-14350 (2017)

Electro-Optic Long-Period Waveguide Gratings in Lithium Niobate

W. Jin, K. S. Chiang, and Q. Liu
Opt. Express 16(25) 20409-20417 (2008)

Widely tunable long-period waveguide grating couplers

Y. Bai, Q. Liu, K. P. Lor, and K. S. Chiang
Opt. Express 14(26) 12644-12654 (2006)

References

  • View by:
  • |
  • |
  • |

  1. V. Rastogi and K. S. Chiang, “Long-period gratings in planar optical waveguides,” Appl. Opt. 41(30), 6351–6355 (2002).
    [Crossref] [PubMed]
  2. Q. Liu, K. S. Chiang, and V. Rastogi, “Analysis of corrugated long-period waveguide gratings and their polarization dependence,” J. Lightwave Technol. 21(12), 3399–3405 (2003).
    [Crossref]
  3. K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15(8), 1094–1096 (2003).
    [Crossref]
  4. K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, “Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength,” Electron. Lett. 40(7), 422–423 (2004).
    [Crossref]
  5. A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photonics Technol. Lett. 17(12), 2595–2597 (2005).
    [Crossref]
  6. Q. Liu and K. S. Chiang, “Planar long-period grating filter based on long-range surface plasmon mode of buried metal stripe waveguide,” Opt. Express 18(9), 8963–8968 (2010).
    [Crossref] [PubMed]
  7. Y. M. Chu, K. S. Chiang, and Q. Liu, “Widely tunable optical bandpass filter by use of polymer long-period waveguide gratings,” Appl. Opt. 45(12), 2755–2760 (2006).
    [Crossref] [PubMed]
  8. Y. Bai, Q. Liu, K. P. Lor, and K. S. Chiang, “Widely tunable long-period waveguide grating couplers,” Opt. Express 14(26), 12644–12654 (2006).
    [Crossref] [PubMed]
  9. K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, “Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide,” IEEE Photonics Technol. Lett. 18(9), 1109–1111 (2006).
    [Crossref]
  10. M.-S. Kwon and S.-Y. Shin, “Characteristics of polymer waveguide notch filters using thermooptic long-period gratings,” IEEE J. Sel. Top. Quantum Electron. 11(1), 190–196 (2005).
    [Crossref]
  11. W. Jin, K. S. Chiang, and Q. Liu, “Electro-optic long-period waveguide gratings in lithium niobate,” Opt. Express 16(25), 20409–20417 (2008).
    [Crossref] [PubMed]
  12. W. Jin, K. S. Chiang, and Q. Liu, “Analysis of lithium niobate electrooptic long-period waveguide gratings,” J. Lightwave Technol. 28(10), 1477–1484 (2010).
    [Crossref]
  13. W. Jin and K. S. Chiang, “Mode switch based on electro-optic long-period waveguide grating in lithium niobate,” Opt. Lett. 40(2), 237–240 (2015).
    [Crossref] [PubMed]
  14. Y. Yang, K. Chen, W. Jin, and K. S. Chiang, “Widely wavelength-tunable mode converter based on polymer waveguide grating,” IEEE Photonics Technol. Lett. 27(18), 1985–1988 (2015).
    [Crossref]
  15. W. Jin and K. S. Chiang, “Mode converters based on cascaded long-period waveguide gratings,” Opt. Lett. 41(13), 3130–3133 (2016).
    [Crossref] [PubMed]
  16. W. Wang, J. Wu, K. Chen, W. Jin, and K. S. Chiang, “Ultra-broadband mode converters based on length-apodized long-period waveguide gratings,” Opt. Express 25(13), 14341–14350 (2017).
    [Crossref] [PubMed]
  17. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  18. G. F. Li, N. Bai, N. B. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
    [Crossref]
  19. Y. Weng, E. Ip, Z. Pan, and T. Wang, “Advanced spatial-division multiplexed measurement systems propositions − from telecommunication to sensing applications: a review,” Sensors (Basel) 16(9), 1387 (2016).
    [Crossref] [PubMed]
  20. S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
    [Crossref]
  21. J. Dong, K. S. Chiang, and W. Jin, “Compact three-dimensional polymer waveguide mode multiplexer,” J. Lightwave Technol. 33(22), 4580–4588 (2015).
    [Crossref]
  22. Y. Wu and K. S. Chiang, “Ultra-broadband mode multiplexers based on three-dimensional asymmetric waveguide branches,” Opt. Lett. 42(3), 407–410 (2017).
    [Crossref] [PubMed]
  23. W. K. Zhao, K. X. Chen, J. Y. Wu, and K. S. Chiang, “Horizontal directional coupler formed with waveguides of different heights for mode-division multiplexing,” IEEE Photon. J. 9(5), Paper 661509 (2017).
  24. M. W. Toepke and P. J. Kenis, “Multilevel microfluidics via single-exposure photolithography,” J. Am. Chem. Soc. 127(21), 7674–7675 (2005).
    [Crossref] [PubMed]
  25. K. Saitoh, T. Uematsu, N. Hanzawa, Y. Ishizaka, K. Masumoto, T. Sakamoto, T. Matsui, K. Tsujikawa, and F. Yamamoto, “PLC-based LP11 mode rotator for mode-division multiplexing transmission,” Opt. Express 22(16), 19117–19130 (2014).
    [Crossref] [PubMed]
  26. K. Saitoh, N. Hanzawa, T. Sakamoto, T. Fujisawa, Y. Yamashita, T. Matsui, K. Tsujikawa, and K. Nakajima, “PLC-based mode multi/demultiplexers for mode division multiplexing,” Opt. Fiber Technol. 35, 80–92 (2017).
    [Crossref]
  27. D. de Felipe, M. Kleinert, C. Zawadzki, A. Polatynski, G. Irmscher, W. Brinker, M. Moehrle, H. G. Bach, N. Keil, and M. Schell, “Recent Developments in Polymer-Based Photonic Components for Disruptive Capacity Upgrade in Data Centers,” J. Lightwave Technol. 35(4), 683–689 (2017).
    [Crossref]
  28. Q. Liu and K. S. Chiang, “Design of long-period waveguide grating filter by control of waveguide cladding profile,” J. Lightwave Technol. 24(9), 3540–3546 (2006).
    [Crossref]

2017 (5)

2016 (2)

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Advanced spatial-division multiplexed measurement systems propositions − from telecommunication to sensing applications: a review,” Sensors (Basel) 16(9), 1387 (2016).
[Crossref] [PubMed]

W. Jin and K. S. Chiang, “Mode converters based on cascaded long-period waveguide gratings,” Opt. Lett. 41(13), 3130–3133 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (3)

G. F. Li, N. Bai, N. B. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

K. Saitoh, T. Uematsu, N. Hanzawa, Y. Ishizaka, K. Masumoto, T. Sakamoto, T. Matsui, K. Tsujikawa, and F. Yamamoto, “PLC-based LP11 mode rotator for mode-division multiplexing transmission,” Opt. Express 22(16), 19117–19130 (2014).
[Crossref] [PubMed]

2013 (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

2010 (2)

2008 (1)

2006 (4)

2005 (3)

M. W. Toepke and P. J. Kenis, “Multilevel microfluidics via single-exposure photolithography,” J. Am. Chem. Soc. 127(21), 7674–7675 (2005).
[Crossref] [PubMed]

M.-S. Kwon and S.-Y. Shin, “Characteristics of polymer waveguide notch filters using thermooptic long-period gratings,” IEEE J. Sel. Top. Quantum Electron. 11(1), 190–196 (2005).
[Crossref]

A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photonics Technol. Lett. 17(12), 2595–2597 (2005).
[Crossref]

2004 (1)

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, “Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength,” Electron. Lett. 40(7), 422–423 (2004).
[Crossref]

2003 (2)

Q. Liu, K. S. Chiang, and V. Rastogi, “Analysis of corrugated long-period waveguide gratings and their polarization dependence,” J. Lightwave Technol. 21(12), 3399–3405 (2003).
[Crossref]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

2002 (1)

Bach, H. G.

Bai, N.

G. F. Li, N. Bai, N. B. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Bai, Y.

Brinker, W.

Chan, H. P.

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, “Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide,” IEEE Photonics Technol. Lett. 18(9), 1109–1111 (2006).
[Crossref]

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, “Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength,” Electron. Lett. 40(7), 422–423 (2004).
[Crossref]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

Chen, K.

W. Wang, J. Wu, K. Chen, W. Jin, and K. S. Chiang, “Ultra-broadband mode converters based on length-apodized long-period waveguide gratings,” Opt. Express 25(13), 14341–14350 (2017).
[Crossref] [PubMed]

Y. Yang, K. Chen, W. Jin, and K. S. Chiang, “Widely wavelength-tunable mode converter based on polymer waveguide grating,” IEEE Photonics Technol. Lett. 27(18), 1985–1988 (2015).
[Crossref]

Chen, K. X.

W. K. Zhao, K. X. Chen, J. Y. Wu, and K. S. Chiang, “Horizontal directional coupler formed with waveguides of different heights for mode-division multiplexing,” IEEE Photon. J. 9(5), Paper 661509 (2017).

Chiang, K. S.

W. K. Zhao, K. X. Chen, J. Y. Wu, and K. S. Chiang, “Horizontal directional coupler formed with waveguides of different heights for mode-division multiplexing,” IEEE Photon. J. 9(5), Paper 661509 (2017).

W. Wang, J. Wu, K. Chen, W. Jin, and K. S. Chiang, “Ultra-broadband mode converters based on length-apodized long-period waveguide gratings,” Opt. Express 25(13), 14341–14350 (2017).
[Crossref] [PubMed]

Y. Wu and K. S. Chiang, “Ultra-broadband mode multiplexers based on three-dimensional asymmetric waveguide branches,” Opt. Lett. 42(3), 407–410 (2017).
[Crossref] [PubMed]

W. Jin and K. S. Chiang, “Mode converters based on cascaded long-period waveguide gratings,” Opt. Lett. 41(13), 3130–3133 (2016).
[Crossref] [PubMed]

W. Jin and K. S. Chiang, “Mode switch based on electro-optic long-period waveguide grating in lithium niobate,” Opt. Lett. 40(2), 237–240 (2015).
[Crossref] [PubMed]

J. Dong, K. S. Chiang, and W. Jin, “Compact three-dimensional polymer waveguide mode multiplexer,” J. Lightwave Technol. 33(22), 4580–4588 (2015).
[Crossref]

Y. Yang, K. Chen, W. Jin, and K. S. Chiang, “Widely wavelength-tunable mode converter based on polymer waveguide grating,” IEEE Photonics Technol. Lett. 27(18), 1985–1988 (2015).
[Crossref]

Q. Liu and K. S. Chiang, “Planar long-period grating filter based on long-range surface plasmon mode of buried metal stripe waveguide,” Opt. Express 18(9), 8963–8968 (2010).
[Crossref] [PubMed]

W. Jin, K. S. Chiang, and Q. Liu, “Analysis of lithium niobate electrooptic long-period waveguide gratings,” J. Lightwave Technol. 28(10), 1477–1484 (2010).
[Crossref]

W. Jin, K. S. Chiang, and Q. Liu, “Electro-optic long-period waveguide gratings in lithium niobate,” Opt. Express 16(25), 20409–20417 (2008).
[Crossref] [PubMed]

Y. Bai, Q. Liu, K. P. Lor, and K. S. Chiang, “Widely tunable long-period waveguide grating couplers,” Opt. Express 14(26), 12644–12654 (2006).
[Crossref] [PubMed]

Y. M. Chu, K. S. Chiang, and Q. Liu, “Widely tunable optical bandpass filter by use of polymer long-period waveguide gratings,” Appl. Opt. 45(12), 2755–2760 (2006).
[Crossref] [PubMed]

Q. Liu and K. S. Chiang, “Design of long-period waveguide grating filter by control of waveguide cladding profile,” J. Lightwave Technol. 24(9), 3540–3546 (2006).
[Crossref]

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, “Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide,” IEEE Photonics Technol. Lett. 18(9), 1109–1111 (2006).
[Crossref]

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, “Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength,” Electron. Lett. 40(7), 422–423 (2004).
[Crossref]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

Q. Liu, K. S. Chiang, and V. Rastogi, “Analysis of corrugated long-period waveguide gratings and their polarization dependence,” J. Lightwave Technol. 21(12), 3399–3405 (2003).
[Crossref]

V. Rastogi and K. S. Chiang, “Long-period gratings in planar optical waveguides,” Appl. Opt. 41(30), 6351–6355 (2002).
[Crossref] [PubMed]

Chow, C. K.

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, “Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide,” IEEE Photonics Technol. Lett. 18(9), 1109–1111 (2006).
[Crossref]

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, “Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength,” Electron. Lett. 40(7), 422–423 (2004).
[Crossref]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

Chu, Y. M.

Y. M. Chu, K. S. Chiang, and Q. Liu, “Widely tunable optical bandpass filter by use of polymer long-period waveguide gratings,” Appl. Opt. 45(12), 2755–2760 (2006).
[Crossref] [PubMed]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

de Felipe, D.

Dong, J.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Fujisawa, T.

K. Saitoh, N. Hanzawa, T. Sakamoto, T. Fujisawa, Y. Yamashita, T. Matsui, K. Tsujikawa, and K. Nakajima, “PLC-based mode multi/demultiplexers for mode division multiplexing,” Opt. Fiber Technol. 35, 80–92 (2017).
[Crossref]

Gross, S.

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

Hanzawa, N.

K. Saitoh, N. Hanzawa, T. Sakamoto, T. Fujisawa, Y. Yamashita, T. Matsui, K. Tsujikawa, and K. Nakajima, “PLC-based mode multi/demultiplexers for mode division multiplexing,” Opt. Fiber Technol. 35, 80–92 (2017).
[Crossref]

K. Saitoh, T. Uematsu, N. Hanzawa, Y. Ishizaka, K. Masumoto, T. Sakamoto, T. Matsui, K. Tsujikawa, and F. Yamamoto, “PLC-based LP11 mode rotator for mode-division multiplexing transmission,” Opt. Express 22(16), 19117–19130 (2014).
[Crossref] [PubMed]

Ip, E.

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Advanced spatial-division multiplexed measurement systems propositions − from telecommunication to sensing applications: a review,” Sensors (Basel) 16(9), 1387 (2016).
[Crossref] [PubMed]

Irmscher, G.

Ishizaka, Y.

Jin, W.

Keil, N.

Kenis, P. J.

M. W. Toepke and P. J. Kenis, “Multilevel microfluidics via single-exposure photolithography,” J. Am. Chem. Soc. 127(21), 7674–7675 (2005).
[Crossref] [PubMed]

Kleinert, M.

Kostovski, G.

A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photonics Technol. Lett. 17(12), 2595–2597 (2005).
[Crossref]

Kwon, M.-S.

M.-S. Kwon and S.-Y. Shin, “Characteristics of polymer waveguide notch filters using thermooptic long-period gratings,” IEEE J. Sel. Top. Quantum Electron. 11(1), 190–196 (2005).
[Crossref]

Li, G. F.

G. F. Li, N. Bai, N. B. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Liu, Q.

W. Jin, K. S. Chiang, and Q. Liu, “Analysis of lithium niobate electrooptic long-period waveguide gratings,” J. Lightwave Technol. 28(10), 1477–1484 (2010).
[Crossref]

Q. Liu and K. S. Chiang, “Planar long-period grating filter based on long-range surface plasmon mode of buried metal stripe waveguide,” Opt. Express 18(9), 8963–8968 (2010).
[Crossref] [PubMed]

W. Jin, K. S. Chiang, and Q. Liu, “Electro-optic long-period waveguide gratings in lithium niobate,” Opt. Express 16(25), 20409–20417 (2008).
[Crossref] [PubMed]

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, “Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide,” IEEE Photonics Technol. Lett. 18(9), 1109–1111 (2006).
[Crossref]

Y. Bai, Q. Liu, K. P. Lor, and K. S. Chiang, “Widely tunable long-period waveguide grating couplers,” Opt. Express 14(26), 12644–12654 (2006).
[Crossref] [PubMed]

Y. M. Chu, K. S. Chiang, and Q. Liu, “Widely tunable optical bandpass filter by use of polymer long-period waveguide gratings,” Appl. Opt. 45(12), 2755–2760 (2006).
[Crossref] [PubMed]

Q. Liu and K. S. Chiang, “Design of long-period waveguide grating filter by control of waveguide cladding profile,” J. Lightwave Technol. 24(9), 3540–3546 (2006).
[Crossref]

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, “Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength,” Electron. Lett. 40(7), 422–423 (2004).
[Crossref]

Q. Liu, K. S. Chiang, and V. Rastogi, “Analysis of corrugated long-period waveguide gratings and their polarization dependence,” J. Lightwave Technol. 21(12), 3399–3405 (2003).
[Crossref]

Lor, K. P.

Y. Bai, Q. Liu, K. P. Lor, and K. S. Chiang, “Widely tunable long-period waveguide grating couplers,” Opt. Express 14(26), 12644–12654 (2006).
[Crossref] [PubMed]

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, “Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide,” IEEE Photonics Technol. Lett. 18(9), 1109–1111 (2006).
[Crossref]

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, “Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength,” Electron. Lett. 40(7), 422–423 (2004).
[Crossref]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

Love, J. D.

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

Masumoto, K.

Matsui, T.

K. Saitoh, N. Hanzawa, T. Sakamoto, T. Fujisawa, Y. Yamashita, T. Matsui, K. Tsujikawa, and K. Nakajima, “PLC-based mode multi/demultiplexers for mode division multiplexing,” Opt. Fiber Technol. 35, 80–92 (2017).
[Crossref]

K. Saitoh, T. Uematsu, N. Hanzawa, Y. Ishizaka, K. Masumoto, T. Sakamoto, T. Matsui, K. Tsujikawa, and F. Yamamoto, “PLC-based LP11 mode rotator for mode-division multiplexing transmission,” Opt. Express 22(16), 19117–19130 (2014).
[Crossref] [PubMed]

Mitchell, A.

A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photonics Technol. Lett. 17(12), 2595–2597 (2005).
[Crossref]

Moehrle, M.

Nakajima, K.

K. Saitoh, N. Hanzawa, T. Sakamoto, T. Fujisawa, Y. Yamashita, T. Matsui, K. Tsujikawa, and K. Nakajima, “PLC-based mode multi/demultiplexers for mode division multiplexing,” Opt. Fiber Technol. 35, 80–92 (2017).
[Crossref]

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Pan, Z.

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Advanced spatial-division multiplexed measurement systems propositions − from telecommunication to sensing applications: a review,” Sensors (Basel) 16(9), 1387 (2016).
[Crossref] [PubMed]

Perentos, A.

A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photonics Technol. Lett. 17(12), 2595–2597 (2005).
[Crossref]

Polatynski, A.

Rastogi, V.

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

Q. Liu, K. S. Chiang, and V. Rastogi, “Analysis of corrugated long-period waveguide gratings and their polarization dependence,” J. Lightwave Technol. 21(12), 3399–3405 (2003).
[Crossref]

V. Rastogi and K. S. Chiang, “Long-period gratings in planar optical waveguides,” Appl. Opt. 41(30), 6351–6355 (2002).
[Crossref] [PubMed]

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Riesen, N.

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

Saitoh, K.

K. Saitoh, N. Hanzawa, T. Sakamoto, T. Fujisawa, Y. Yamashita, T. Matsui, K. Tsujikawa, and K. Nakajima, “PLC-based mode multi/demultiplexers for mode division multiplexing,” Opt. Fiber Technol. 35, 80–92 (2017).
[Crossref]

K. Saitoh, T. Uematsu, N. Hanzawa, Y. Ishizaka, K. Masumoto, T. Sakamoto, T. Matsui, K. Tsujikawa, and F. Yamamoto, “PLC-based LP11 mode rotator for mode-division multiplexing transmission,” Opt. Express 22(16), 19117–19130 (2014).
[Crossref] [PubMed]

Sakamoto, T.

K. Saitoh, N. Hanzawa, T. Sakamoto, T. Fujisawa, Y. Yamashita, T. Matsui, K. Tsujikawa, and K. Nakajima, “PLC-based mode multi/demultiplexers for mode division multiplexing,” Opt. Fiber Technol. 35, 80–92 (2017).
[Crossref]

K. Saitoh, T. Uematsu, N. Hanzawa, Y. Ishizaka, K. Masumoto, T. Sakamoto, T. Matsui, K. Tsujikawa, and F. Yamamoto, “PLC-based LP11 mode rotator for mode-division multiplexing transmission,” Opt. Express 22(16), 19117–19130 (2014).
[Crossref] [PubMed]

Schell, M.

Shin, S.-Y.

M.-S. Kwon and S.-Y. Shin, “Characteristics of polymer waveguide notch filters using thermooptic long-period gratings,” IEEE J. Sel. Top. Quantum Electron. 11(1), 190–196 (2005).
[Crossref]

Toepke, M. W.

M. W. Toepke and P. J. Kenis, “Multilevel microfluidics via single-exposure photolithography,” J. Am. Chem. Soc. 127(21), 7674–7675 (2005).
[Crossref] [PubMed]

Tsujikawa, K.

K. Saitoh, N. Hanzawa, T. Sakamoto, T. Fujisawa, Y. Yamashita, T. Matsui, K. Tsujikawa, and K. Nakajima, “PLC-based mode multi/demultiplexers for mode division multiplexing,” Opt. Fiber Technol. 35, 80–92 (2017).
[Crossref]

K. Saitoh, T. Uematsu, N. Hanzawa, Y. Ishizaka, K. Masumoto, T. Sakamoto, T. Matsui, K. Tsujikawa, and F. Yamamoto, “PLC-based LP11 mode rotator for mode-division multiplexing transmission,” Opt. Express 22(16), 19117–19130 (2014).
[Crossref] [PubMed]

Uematsu, T.

Wang, T.

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Advanced spatial-division multiplexed measurement systems propositions − from telecommunication to sensing applications: a review,” Sensors (Basel) 16(9), 1387 (2016).
[Crossref] [PubMed]

Wang, W.

Weng, Y.

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Advanced spatial-division multiplexed measurement systems propositions − from telecommunication to sensing applications: a review,” Sensors (Basel) 16(9), 1387 (2016).
[Crossref] [PubMed]

Withford, M. J.

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

Wu, J.

Wu, J. Y.

W. K. Zhao, K. X. Chen, J. Y. Wu, and K. S. Chiang, “Horizontal directional coupler formed with waveguides of different heights for mode-division multiplexing,” IEEE Photon. J. 9(5), Paper 661509 (2017).

Wu, Y.

Xia, C.

G. F. Li, N. Bai, N. B. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Yamamoto, F.

Yamashita, Y.

K. Saitoh, N. Hanzawa, T. Sakamoto, T. Fujisawa, Y. Yamashita, T. Matsui, K. Tsujikawa, and K. Nakajima, “PLC-based mode multi/demultiplexers for mode division multiplexing,” Opt. Fiber Technol. 35, 80–92 (2017).
[Crossref]

Yang, Y.

Y. Yang, K. Chen, W. Jin, and K. S. Chiang, “Widely wavelength-tunable mode converter based on polymer waveguide grating,” IEEE Photonics Technol. Lett. 27(18), 1985–1988 (2015).
[Crossref]

Zawadzki, C.

Zhao, N. B.

G. F. Li, N. Bai, N. B. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Zhao, W. K.

W. K. Zhao, K. X. Chen, J. Y. Wu, and K. S. Chiang, “Horizontal directional coupler formed with waveguides of different heights for mode-division multiplexing,” IEEE Photon. J. 9(5), Paper 661509 (2017).

Adv. Opt. Photonics (1)

G. F. Li, N. Bai, N. B. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Appl. Opt. (2)

Electron. Lett. (1)

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, “Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength,” Electron. Lett. 40(7), 422–423 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M.-S. Kwon and S.-Y. Shin, “Characteristics of polymer waveguide notch filters using thermooptic long-period gratings,” IEEE J. Sel. Top. Quantum Electron. 11(1), 190–196 (2005).
[Crossref]

IEEE Photon. J. (1)

W. K. Zhao, K. X. Chen, J. Y. Wu, and K. S. Chiang, “Horizontal directional coupler formed with waveguides of different heights for mode-division multiplexing,” IEEE Photon. J. 9(5), Paper 661509 (2017).

IEEE Photonics Technol. Lett. (4)

Y. Yang, K. Chen, W. Jin, and K. S. Chiang, “Widely wavelength-tunable mode converter based on polymer waveguide grating,” IEEE Photonics Technol. Lett. 27(18), 1985–1988 (2015).
[Crossref]

A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photonics Technol. Lett. 17(12), 2595–2597 (2005).
[Crossref]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, “Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide,” IEEE Photonics Technol. Lett. 18(9), 1109–1111 (2006).
[Crossref]

J. Am. Chem. Soc. (1)

M. W. Toepke and P. J. Kenis, “Multilevel microfluidics via single-exposure photolithography,” J. Am. Chem. Soc. 127(21), 7674–7675 (2005).
[Crossref] [PubMed]

J. Lightwave Technol. (5)

Laser Photonics Rev. (1)

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (1)

K. Saitoh, N. Hanzawa, T. Sakamoto, T. Fujisawa, Y. Yamashita, T. Matsui, K. Tsujikawa, and K. Nakajima, “PLC-based mode multi/demultiplexers for mode division multiplexing,” Opt. Fiber Technol. 35, 80–92 (2017).
[Crossref]

Opt. Lett. (3)

Sensors (Basel) (1)

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Advanced spatial-division multiplexed measurement systems propositions − from telecommunication to sensing applications: a review,” Sensors (Basel) 16(9), 1387 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic diagram of the proposed 3D grating structure and (b) mode-conversion functions achievable with the grating structure for a waveguide that supports 6 spatial modes.
Fig. 2
Fig. 2 Steps for the fabrication of the proposed grating structure with polymer material.
Fig. 3
Fig. 3 (a) Photos of three Cr masks (from top to bottom): a 2-μm strip placed at the center of the core, a 2-μm strip placed near one side of the core, and a 1.0-μm strip placed at the center of the core. (b) Cross sections of waveguides fabricated at an UV dose of 360 mJ/cm2 using a mask without a Cr strip in the core area (left) and a mask with a 2-μm Cr strip in the core area (right).
Fig. 4
Fig. 4 (a) Photos showing the dents produced at an UV dose of 360 mJ/cm as the width of the Cr strip in the core increases from 1.0 to 2.1 μm and (b) dependence of the cross-sectional area of the corrugation (i.e., the size of the dent) produced on the width of the Cr strip in the core measured at three different UV doses.
Fig. 5
Fig. 5 (a) Schematic diagram of the proposed E11–E12 mode converter, where the grating is placed along the central axis of the core; (b) cross-sectional (upper) and top views (lower) of the fabricated E11–E12 mode converter; (c) transmission spectra of the E11 mode measured for the E11–E12 mode converter; and (d) output near-field images of the E11–E12 mode converter taken at different wavelengths with only the E11 mode launched into the device.
Fig. 6
Fig. 6 (a) Schematic diagram of the proposed E11–E22 mode converter, where the grating is placed off the central axis of the core; (b) cross-sectional (upper) and top views (lower) of the fabricated E11–E22 mode converter; (c) transmission spectra of the E11 mode measured for the E11–E22 mode converter; and (d) output near-field images of the E11–E22 mode converter taken at different wavelengths with only the E11 mode launched into the device.
Fig. 7
Fig. 7 (a) Schematic diagram of the proposed E12–E21 mode converter, where the grating is placed off the central axis of the core; (b) layout of the proposed grating-based three-mode multiplexer; (c) microscopic image of the top view of the fabricated multiplexer taken before applying the upper cladding; and (d) cross-sectional views of the fabricated mode multiplexer.
Fig. 8
Fig. 8 (a) Output near-field images and (b) coupling ratios to Core 1 measured at the multiplexing end of the device for the x-polarization and the y-polarization, when laser light at different wavelengths was launched into Core 1, Core 2, and Core 3 individually from the demultiplexing end.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Λ= λ 0 /( N 1 Ν 2 ),

Metrics