Abstract

In this paper, deep level transient spectroscopy (DLTS) characterization was performed on Beryllium compensation doping of InGaAs/GaAsSb type-II superlattice photodiode. Three electron traps with the energy levels located at Ec-0.11 eV (E1), Ec-0.28 eV (E2), Ec-0.17 eV (E3), and a hole trap situated at Ev + 0.25 eV (H1) were revealed. The position distribution and depth concentration of these traps in SL absorption region was also explored. Furthermore, the bandlike states (E2) and localized states (E1 and H1) of extended defects were confirmed by DLTS measurements as a function of the filling-pulse time, these traps as generation-recombination centers are responsible for dominant dark current.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement in speed and responsivity of uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers

Naseem, Zohauddin Ahmad, Rui-Lin Chao, Hsiang-Szu Chang, C.-J. Ni, H.-S. Chen, Jack Jia-Sheng Huang, Emin Chou, Yu-Heng Jan, and Jin-Wei Shi
Opt. Express 27(11) 15495-15504 (2019)

Performance comparison between the InAs-based and GaSb-based type-II superlattice photodiodes for long wavelength infrared detection

Fangfang Wang, Jianxin Chen, Zhicheng Xu, Yi Zhou, and Li He
Opt. Express 25(3) 1629-1635 (2017)

Photomixing at 1.55 μm in ion-irradiated In0.53Ga0.47As on InP

N. Chimot, J. Mangeney, P. Crozat, J. M. Lourtioz, K. Blary, J. F. Lampin, G. Mouret, D. Bigourd, and E. Fertein
Opt. Express 14(5) 1856-1861 (2006)

References

  • View by:
  • |
  • |
  • |

  1. B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
    [Crossref]
  2. A. Yamamoto, Y. Kawamura, H. Naito, and N. Inoue, “Optical properties of GaAs0.5Sb0.5 and In0.53Ga0.47As/GaAs0.5Sb0.5 type II single hetero-structures lattice-matched to InP substrates grown by molecular beam epitaxy,” J. Cryst. Growth 201(3), 872–876 (1999).
    [Crossref]
  3. R. Sidhu, N. Duan, J. C. Campbell, and A. L. Holmes, “A long-wavelength photodiode on InP using lattice-matched GaInAs-GaAsSb type-II quantum wells,” IEEE Photonics Technol. Lett. 17(12), 2715–2717 (2005).
    [Crossref]
  4. B. Chen, “Active region design and gain characteristics of InP-based dilute Bismide type-II quantum wells for Mid-IR lasers,” IEEE Electron Dev. 64(4), 1–6 (2017).
    [Crossref]
  5. B. Chen, A. L. Holmes, W. Y. Jiang, and J. Yuan, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44(3–5), 103–109 (2012).
    [Crossref]
  6. B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
    [Crossref]
  7. B. Chen and A. L. Holmes., “InP-based short-wave infrared and midwave infrared photodiodes using a novel type-II strain-compensated quantum well absorption region,” Opt. Lett. 38(15), 2750–2753 (2013).
    [Crossref] [PubMed]
  8. T. Kawahara, K. Machinaga, B. Sundararajan, K. Miura, M. Migita, H. Obi, T. Fuyuki, K. Fujii, T. Ishizuka, H. Inada, and Y. Iguchi, “InGaAs/GaAsSb type-II quantum-well focal plane array with cutoff-wavelength of 2.5 μm,” Proc. SPIE 10111, 1011115 (2017).
    [Crossref]
  9. G. F. Fulop, “Extended wavelength SWIR detectors with reduced dark current,” Proc. SPIE 9451, 945106 (2015).
    [Crossref]
  10. C. Jin, F. Wang, Q. Xu, C. Yu, J. Chen, and L. He, “Beryllium compensation doped InGaAs/GaAsSb superlattice photodiodes,” J. Cryst. Growth 477, 100–103 (2017).
    [Crossref]
  11. D. Jiang, W. Xiang, F. Guo, H. Hao, X. Han, X. Li, G. Wang, Y. Xu, Q. Yu, and Z. Niu, “Very high quantum efficiency in InAs/GaSb superlattice for very long wavelength detection with cutoff of 21 μm,” Appl. Phys. Lett. 108(12), 61–161 (2016).
    [Crossref]
  12. W. Chen, B. Chen, J. Yuan, A. Holmes, and P. Fay, “Bulk and interfacial deep levels observed in In0.53Ga0.47As/GaAs0.5Sb0.5 multiple quantum well photodiode,” Appl. Phys. Lett. 101(5), 59–390 (2012).
    [Crossref]
  13. D. Hoffman, B. M. Nguyen, P. Y. Delaunay, A. Hood, M. Razeghi, and J. Pellegrino, “Beryllium compensation doping of InAs/GaSb infrared superlattice photodiodes,” Appl. Phys. Lett. 91(14), 085316 (2007).
    [Crossref]
  14. B. Chen, J. Yuan, and A. L. Holmes, “Dark current modeling of InP based SWIR and MWIR InGaAs/GaAsSb type-II MQW photodiodes,” Opt. Quantum Electron. 45(3), 271–277 (2013).
    [Crossref]
  15. G. L. Miller, D. V. L. And, and L. C. Kimerling, “Capacitance transient spectroscopy,” Annu. Rev. Mater. Res. 7(7), 377–448 (1977).
  16. K. Yamasaki, M. Yoshida, and T. Sugano, “Deep level transient spectroscopy of bulk traps and interface states in Si MOS diodes,” Jpn. J. Appl. Phys. 18(1), 113–122 (1979).
    [Crossref]
  17. A. V. P. Coelho, M. C. Adam, and H. Boudinov, “Distinguishing bulk traps and interface states in deep-level transient spectroscopy,” J. Phys. D Appl. Phys. 44(30), 416–426 (2011).
    [Crossref]
  18. W. Chen, B. Chen, A. Holmes, and P. Fayet, “Investigation of traps in strained-well InGaAs/GaAsSb quantum well photodiodes,” Electron. Lett. 51(18), 1439–1440 (2015).
    [Crossref]
  19. W. Chen, B. Chen, J. Yuan, A. Holmes, and P. Fay, “Characterization and impact of traps in lattice-matched and strain-compensated In1−xGaxAs/GaAs1−ySby multiple quantum well photodiodes,” in IEEE Device Research Conference (IEEE, 2012), pp. 251–252.
  20. A. V. P. Coelho and H. Boudinov, “Emission rate dependence on the electric field for two trap levels in proton-irradiated n-type GaAs,” Phys. Rev. B 77(23), 235210 (2008).
    [Crossref]
  21. P. Omling, E. R. Weber, L. Montelius, H. Alexander, and J. Michel, “Electrical properties of dislocations and point defects in plastically deformed silicon,” Phys. Rev. B Condens. Matter 32(10), 6571–6581 (1985).
    [Crossref] [PubMed]
  22. Ł. Gelczuk, M. Dąbrowska-Szata, P. Kamyczek, E. Płaczek-Popko, K. Kopalko, B. Ściana, D. Pucicki, D. Radziewicz, and M. Tłaczała, “Investigation of deep-level defects in InGaAsN/GaAs 3xQWs structures grown by AP-MOVPE,” Solid-State Electron. 8902(21), 306–309 (2013).
  23. T. Wosiński, “Evidence for the electron traps at dislocations in GaAs crystals,” J. Appl. Phys. 65(4), 1566–1570 (1989).
    [Crossref]
  24. D. L. Dexter and F. Seitz, “Effects of dislocations on mobilities in semiconductors,” Phys. Rev. 86(6), 964–965 (1952).
    [Crossref]
  25. A. Y. Du, M. F. Li, T. C. Chong, K. L. Teo, W. S. Lau, and Z. Zhang, “Dislocations and related traps in p-InGaAs/GaAs lattice mismatched heterostructures,” Appl. Phys. Lett. 69(19), 2849–2851 (1996).
    [Crossref]
  26. P. N. Grillot, S. A. Ringel, E. A. Fitzgerald, G. P. Watson, and Y. H. Xie, “Electron trapping kinetics at dislocations in relaxed Ge0.3Si0.7/Si heterostructures,” J. Appl. Phys. 77(7), 3248–3256 (1995).
  27. W. Schröter, J. Kronewitz, U. Gnauert, F. Riedel, and M. Seibt, “Bandlike and localized states at extended defects in silicon,” Phys. Rev. B Condens. Matter 52(19), 13726–13729 (1995).
    [Crossref] [PubMed]

2017 (3)

C. Jin, F. Wang, Q. Xu, C. Yu, J. Chen, and L. He, “Beryllium compensation doped InGaAs/GaAsSb superlattice photodiodes,” J. Cryst. Growth 477, 100–103 (2017).
[Crossref]

T. Kawahara, K. Machinaga, B. Sundararajan, K. Miura, M. Migita, H. Obi, T. Fuyuki, K. Fujii, T. Ishizuka, H. Inada, and Y. Iguchi, “InGaAs/GaAsSb type-II quantum-well focal plane array with cutoff-wavelength of 2.5 μm,” Proc. SPIE 10111, 1011115 (2017).
[Crossref]

B. Chen, “Active region design and gain characteristics of InP-based dilute Bismide type-II quantum wells for Mid-IR lasers,” IEEE Electron Dev. 64(4), 1–6 (2017).
[Crossref]

2016 (1)

D. Jiang, W. Xiang, F. Guo, H. Hao, X. Han, X. Li, G. Wang, Y. Xu, Q. Yu, and Z. Niu, “Very high quantum efficiency in InAs/GaSb superlattice for very long wavelength detection with cutoff of 21 μm,” Appl. Phys. Lett. 108(12), 61–161 (2016).
[Crossref]

2015 (2)

G. F. Fulop, “Extended wavelength SWIR detectors with reduced dark current,” Proc. SPIE 9451, 945106 (2015).
[Crossref]

W. Chen, B. Chen, A. Holmes, and P. Fayet, “Investigation of traps in strained-well InGaAs/GaAsSb quantum well photodiodes,” Electron. Lett. 51(18), 1439–1440 (2015).
[Crossref]

2013 (3)

Ł. Gelczuk, M. Dąbrowska-Szata, P. Kamyczek, E. Płaczek-Popko, K. Kopalko, B. Ściana, D. Pucicki, D. Radziewicz, and M. Tłaczała, “Investigation of deep-level defects in InGaAsN/GaAs 3xQWs structures grown by AP-MOVPE,” Solid-State Electron. 8902(21), 306–309 (2013).

B. Chen, J. Yuan, and A. L. Holmes, “Dark current modeling of InP based SWIR and MWIR InGaAs/GaAsSb type-II MQW photodiodes,” Opt. Quantum Electron. 45(3), 271–277 (2013).
[Crossref]

B. Chen and A. L. Holmes., “InP-based short-wave infrared and midwave infrared photodiodes using a novel type-II strain-compensated quantum well absorption region,” Opt. Lett. 38(15), 2750–2753 (2013).
[Crossref] [PubMed]

2012 (2)

B. Chen, A. L. Holmes, W. Y. Jiang, and J. Yuan, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44(3–5), 103–109 (2012).
[Crossref]

W. Chen, B. Chen, J. Yuan, A. Holmes, and P. Fay, “Bulk and interfacial deep levels observed in In0.53Ga0.47As/GaAs0.5Sb0.5 multiple quantum well photodiode,” Appl. Phys. Lett. 101(5), 59–390 (2012).
[Crossref]

2011 (3)

A. V. P. Coelho, M. C. Adam, and H. Boudinov, “Distinguishing bulk traps and interface states in deep-level transient spectroscopy,” J. Phys. D Appl. Phys. 44(30), 416–426 (2011).
[Crossref]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

2008 (1)

A. V. P. Coelho and H. Boudinov, “Emission rate dependence on the electric field for two trap levels in proton-irradiated n-type GaAs,” Phys. Rev. B 77(23), 235210 (2008).
[Crossref]

2007 (1)

D. Hoffman, B. M. Nguyen, P. Y. Delaunay, A. Hood, M. Razeghi, and J. Pellegrino, “Beryllium compensation doping of InAs/GaSb infrared superlattice photodiodes,” Appl. Phys. Lett. 91(14), 085316 (2007).
[Crossref]

2005 (1)

R. Sidhu, N. Duan, J. C. Campbell, and A. L. Holmes, “A long-wavelength photodiode on InP using lattice-matched GaInAs-GaAsSb type-II quantum wells,” IEEE Photonics Technol. Lett. 17(12), 2715–2717 (2005).
[Crossref]

1999 (1)

A. Yamamoto, Y. Kawamura, H. Naito, and N. Inoue, “Optical properties of GaAs0.5Sb0.5 and In0.53Ga0.47As/GaAs0.5Sb0.5 type II single hetero-structures lattice-matched to InP substrates grown by molecular beam epitaxy,” J. Cryst. Growth 201(3), 872–876 (1999).
[Crossref]

1996 (1)

A. Y. Du, M. F. Li, T. C. Chong, K. L. Teo, W. S. Lau, and Z. Zhang, “Dislocations and related traps in p-InGaAs/GaAs lattice mismatched heterostructures,” Appl. Phys. Lett. 69(19), 2849–2851 (1996).
[Crossref]

1995 (2)

P. N. Grillot, S. A. Ringel, E. A. Fitzgerald, G. P. Watson, and Y. H. Xie, “Electron trapping kinetics at dislocations in relaxed Ge0.3Si0.7/Si heterostructures,” J. Appl. Phys. 77(7), 3248–3256 (1995).

W. Schröter, J. Kronewitz, U. Gnauert, F. Riedel, and M. Seibt, “Bandlike and localized states at extended defects in silicon,” Phys. Rev. B Condens. Matter 52(19), 13726–13729 (1995).
[Crossref] [PubMed]

1989 (1)

T. Wosiński, “Evidence for the electron traps at dislocations in GaAs crystals,” J. Appl. Phys. 65(4), 1566–1570 (1989).
[Crossref]

1985 (1)

P. Omling, E. R. Weber, L. Montelius, H. Alexander, and J. Michel, “Electrical properties of dislocations and point defects in plastically deformed silicon,” Phys. Rev. B Condens. Matter 32(10), 6571–6581 (1985).
[Crossref] [PubMed]

1979 (1)

K. Yamasaki, M. Yoshida, and T. Sugano, “Deep level transient spectroscopy of bulk traps and interface states in Si MOS diodes,” Jpn. J. Appl. Phys. 18(1), 113–122 (1979).
[Crossref]

1977 (1)

G. L. Miller, D. V. L. And, and L. C. Kimerling, “Capacitance transient spectroscopy,” Annu. Rev. Mater. Res. 7(7), 377–448 (1977).

1952 (1)

D. L. Dexter and F. Seitz, “Effects of dislocations on mobilities in semiconductors,” Phys. Rev. 86(6), 964–965 (1952).
[Crossref]

Adam, M. C.

A. V. P. Coelho, M. C. Adam, and H. Boudinov, “Distinguishing bulk traps and interface states in deep-level transient spectroscopy,” J. Phys. D Appl. Phys. 44(30), 416–426 (2011).
[Crossref]

Alexander, H.

P. Omling, E. R. Weber, L. Montelius, H. Alexander, and J. Michel, “Electrical properties of dislocations and point defects in plastically deformed silicon,” Phys. Rev. B Condens. Matter 32(10), 6571–6581 (1985).
[Crossref] [PubMed]

And, D. V. L.

G. L. Miller, D. V. L. And, and L. C. Kimerling, “Capacitance transient spectroscopy,” Annu. Rev. Mater. Res. 7(7), 377–448 (1977).

Boudinov, H.

A. V. P. Coelho, M. C. Adam, and H. Boudinov, “Distinguishing bulk traps and interface states in deep-level transient spectroscopy,” J. Phys. D Appl. Phys. 44(30), 416–426 (2011).
[Crossref]

A. V. P. Coelho and H. Boudinov, “Emission rate dependence on the electric field for two trap levels in proton-irradiated n-type GaAs,” Phys. Rev. B 77(23), 235210 (2008).
[Crossref]

Campbell, J. C.

R. Sidhu, N. Duan, J. C. Campbell, and A. L. Holmes, “A long-wavelength photodiode on InP using lattice-matched GaInAs-GaAsSb type-II quantum wells,” IEEE Photonics Technol. Lett. 17(12), 2715–2717 (2005).
[Crossref]

Chen, B.

B. Chen, “Active region design and gain characteristics of InP-based dilute Bismide type-II quantum wells for Mid-IR lasers,” IEEE Electron Dev. 64(4), 1–6 (2017).
[Crossref]

W. Chen, B. Chen, A. Holmes, and P. Fayet, “Investigation of traps in strained-well InGaAs/GaAsSb quantum well photodiodes,” Electron. Lett. 51(18), 1439–1440 (2015).
[Crossref]

B. Chen, J. Yuan, and A. L. Holmes, “Dark current modeling of InP based SWIR and MWIR InGaAs/GaAsSb type-II MQW photodiodes,” Opt. Quantum Electron. 45(3), 271–277 (2013).
[Crossref]

B. Chen and A. L. Holmes., “InP-based short-wave infrared and midwave infrared photodiodes using a novel type-II strain-compensated quantum well absorption region,” Opt. Lett. 38(15), 2750–2753 (2013).
[Crossref] [PubMed]

B. Chen, A. L. Holmes, W. Y. Jiang, and J. Yuan, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44(3–5), 103–109 (2012).
[Crossref]

W. Chen, B. Chen, J. Yuan, A. Holmes, and P. Fay, “Bulk and interfacial deep levels observed in In0.53Ga0.47As/GaAs0.5Sb0.5 multiple quantum well photodiode,” Appl. Phys. Lett. 101(5), 59–390 (2012).
[Crossref]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

Chen, J.

C. Jin, F. Wang, Q. Xu, C. Yu, J. Chen, and L. He, “Beryllium compensation doped InGaAs/GaAsSb superlattice photodiodes,” J. Cryst. Growth 477, 100–103 (2017).
[Crossref]

Chen, W.

W. Chen, B. Chen, A. Holmes, and P. Fayet, “Investigation of traps in strained-well InGaAs/GaAsSb quantum well photodiodes,” Electron. Lett. 51(18), 1439–1440 (2015).
[Crossref]

W. Chen, B. Chen, J. Yuan, A. Holmes, and P. Fay, “Bulk and interfacial deep levels observed in In0.53Ga0.47As/GaAs0.5Sb0.5 multiple quantum well photodiode,” Appl. Phys. Lett. 101(5), 59–390 (2012).
[Crossref]

Chong, T. C.

A. Y. Du, M. F. Li, T. C. Chong, K. L. Teo, W. S. Lau, and Z. Zhang, “Dislocations and related traps in p-InGaAs/GaAs lattice mismatched heterostructures,” Appl. Phys. Lett. 69(19), 2849–2851 (1996).
[Crossref]

Coelho, A. V. P.

A. V. P. Coelho, M. C. Adam, and H. Boudinov, “Distinguishing bulk traps and interface states in deep-level transient spectroscopy,” J. Phys. D Appl. Phys. 44(30), 416–426 (2011).
[Crossref]

A. V. P. Coelho and H. Boudinov, “Emission rate dependence on the electric field for two trap levels in proton-irradiated n-type GaAs,” Phys. Rev. B 77(23), 235210 (2008).
[Crossref]

Dabrowska-Szata, M.

Ł. Gelczuk, M. Dąbrowska-Szata, P. Kamyczek, E. Płaczek-Popko, K. Kopalko, B. Ściana, D. Pucicki, D. Radziewicz, and M. Tłaczała, “Investigation of deep-level defects in InGaAsN/GaAs 3xQWs structures grown by AP-MOVPE,” Solid-State Electron. 8902(21), 306–309 (2013).

Delaunay, P. Y.

D. Hoffman, B. M. Nguyen, P. Y. Delaunay, A. Hood, M. Razeghi, and J. Pellegrino, “Beryllium compensation doping of InAs/GaSb infrared superlattice photodiodes,” Appl. Phys. Lett. 91(14), 085316 (2007).
[Crossref]

Dexter, D. L.

D. L. Dexter and F. Seitz, “Effects of dislocations on mobilities in semiconductors,” Phys. Rev. 86(6), 964–965 (1952).
[Crossref]

Du, A. Y.

A. Y. Du, M. F. Li, T. C. Chong, K. L. Teo, W. S. Lau, and Z. Zhang, “Dislocations and related traps in p-InGaAs/GaAs lattice mismatched heterostructures,” Appl. Phys. Lett. 69(19), 2849–2851 (1996).
[Crossref]

Duan, N.

R. Sidhu, N. Duan, J. C. Campbell, and A. L. Holmes, “A long-wavelength photodiode on InP using lattice-matched GaInAs-GaAsSb type-II quantum wells,” IEEE Photonics Technol. Lett. 17(12), 2715–2717 (2005).
[Crossref]

Fay, P.

W. Chen, B. Chen, J. Yuan, A. Holmes, and P. Fay, “Bulk and interfacial deep levels observed in In0.53Ga0.47As/GaAs0.5Sb0.5 multiple quantum well photodiode,” Appl. Phys. Lett. 101(5), 59–390 (2012).
[Crossref]

Fayet, P.

W. Chen, B. Chen, A. Holmes, and P. Fayet, “Investigation of traps in strained-well InGaAs/GaAsSb quantum well photodiodes,” Electron. Lett. 51(18), 1439–1440 (2015).
[Crossref]

Fitzgerald, E. A.

P. N. Grillot, S. A. Ringel, E. A. Fitzgerald, G. P. Watson, and Y. H. Xie, “Electron trapping kinetics at dislocations in relaxed Ge0.3Si0.7/Si heterostructures,” J. Appl. Phys. 77(7), 3248–3256 (1995).

Fujii, K.

T. Kawahara, K. Machinaga, B. Sundararajan, K. Miura, M. Migita, H. Obi, T. Fuyuki, K. Fujii, T. Ishizuka, H. Inada, and Y. Iguchi, “InGaAs/GaAsSb type-II quantum-well focal plane array with cutoff-wavelength of 2.5 μm,” Proc. SPIE 10111, 1011115 (2017).
[Crossref]

Fulop, G. F.

G. F. Fulop, “Extended wavelength SWIR detectors with reduced dark current,” Proc. SPIE 9451, 945106 (2015).
[Crossref]

Fuyuki, T.

T. Kawahara, K. Machinaga, B. Sundararajan, K. Miura, M. Migita, H. Obi, T. Fuyuki, K. Fujii, T. Ishizuka, H. Inada, and Y. Iguchi, “InGaAs/GaAsSb type-II quantum-well focal plane array with cutoff-wavelength of 2.5 μm,” Proc. SPIE 10111, 1011115 (2017).
[Crossref]

Gelczuk, L.

Ł. Gelczuk, M. Dąbrowska-Szata, P. Kamyczek, E. Płaczek-Popko, K. Kopalko, B. Ściana, D. Pucicki, D. Radziewicz, and M. Tłaczała, “Investigation of deep-level defects in InGaAsN/GaAs 3xQWs structures grown by AP-MOVPE,” Solid-State Electron. 8902(21), 306–309 (2013).

Gnauert, U.

W. Schröter, J. Kronewitz, U. Gnauert, F. Riedel, and M. Seibt, “Bandlike and localized states at extended defects in silicon,” Phys. Rev. B Condens. Matter 52(19), 13726–13729 (1995).
[Crossref] [PubMed]

Grillot, P. N.

P. N. Grillot, S. A. Ringel, E. A. Fitzgerald, G. P. Watson, and Y. H. Xie, “Electron trapping kinetics at dislocations in relaxed Ge0.3Si0.7/Si heterostructures,” J. Appl. Phys. 77(7), 3248–3256 (1995).

Guo, F.

D. Jiang, W. Xiang, F. Guo, H. Hao, X. Han, X. Li, G. Wang, Y. Xu, Q. Yu, and Z. Niu, “Very high quantum efficiency in InAs/GaSb superlattice for very long wavelength detection with cutoff of 21 μm,” Appl. Phys. Lett. 108(12), 61–161 (2016).
[Crossref]

Han, X.

D. Jiang, W. Xiang, F. Guo, H. Hao, X. Han, X. Li, G. Wang, Y. Xu, Q. Yu, and Z. Niu, “Very high quantum efficiency in InAs/GaSb superlattice for very long wavelength detection with cutoff of 21 μm,” Appl. Phys. Lett. 108(12), 61–161 (2016).
[Crossref]

Hao, H.

D. Jiang, W. Xiang, F. Guo, H. Hao, X. Han, X. Li, G. Wang, Y. Xu, Q. Yu, and Z. Niu, “Very high quantum efficiency in InAs/GaSb superlattice for very long wavelength detection with cutoff of 21 μm,” Appl. Phys. Lett. 108(12), 61–161 (2016).
[Crossref]

He, L.

C. Jin, F. Wang, Q. Xu, C. Yu, J. Chen, and L. He, “Beryllium compensation doped InGaAs/GaAsSb superlattice photodiodes,” J. Cryst. Growth 477, 100–103 (2017).
[Crossref]

Hoffman, D.

D. Hoffman, B. M. Nguyen, P. Y. Delaunay, A. Hood, M. Razeghi, and J. Pellegrino, “Beryllium compensation doping of InAs/GaSb infrared superlattice photodiodes,” Appl. Phys. Lett. 91(14), 085316 (2007).
[Crossref]

Holmes, A.

W. Chen, B. Chen, A. Holmes, and P. Fayet, “Investigation of traps in strained-well InGaAs/GaAsSb quantum well photodiodes,” Electron. Lett. 51(18), 1439–1440 (2015).
[Crossref]

W. Chen, B. Chen, J. Yuan, A. Holmes, and P. Fay, “Bulk and interfacial deep levels observed in In0.53Ga0.47As/GaAs0.5Sb0.5 multiple quantum well photodiode,” Appl. Phys. Lett. 101(5), 59–390 (2012).
[Crossref]

Holmes, A. L.

B. Chen, J. Yuan, and A. L. Holmes, “Dark current modeling of InP based SWIR and MWIR InGaAs/GaAsSb type-II MQW photodiodes,” Opt. Quantum Electron. 45(3), 271–277 (2013).
[Crossref]

B. Chen and A. L. Holmes., “InP-based short-wave infrared and midwave infrared photodiodes using a novel type-II strain-compensated quantum well absorption region,” Opt. Lett. 38(15), 2750–2753 (2013).
[Crossref] [PubMed]

B. Chen, A. L. Holmes, W. Y. Jiang, and J. Yuan, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44(3–5), 103–109 (2012).
[Crossref]

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

R. Sidhu, N. Duan, J. C. Campbell, and A. L. Holmes, “A long-wavelength photodiode on InP using lattice-matched GaInAs-GaAsSb type-II quantum wells,” IEEE Photonics Technol. Lett. 17(12), 2715–2717 (2005).
[Crossref]

Hood, A.

D. Hoffman, B. M. Nguyen, P. Y. Delaunay, A. Hood, M. Razeghi, and J. Pellegrino, “Beryllium compensation doping of InAs/GaSb infrared superlattice photodiodes,” Appl. Phys. Lett. 91(14), 085316 (2007).
[Crossref]

Iguchi, Y.

T. Kawahara, K. Machinaga, B. Sundararajan, K. Miura, M. Migita, H. Obi, T. Fuyuki, K. Fujii, T. Ishizuka, H. Inada, and Y. Iguchi, “InGaAs/GaAsSb type-II quantum-well focal plane array with cutoff-wavelength of 2.5 μm,” Proc. SPIE 10111, 1011115 (2017).
[Crossref]

Inada, H.

T. Kawahara, K. Machinaga, B. Sundararajan, K. Miura, M. Migita, H. Obi, T. Fuyuki, K. Fujii, T. Ishizuka, H. Inada, and Y. Iguchi, “InGaAs/GaAsSb type-II quantum-well focal plane array with cutoff-wavelength of 2.5 μm,” Proc. SPIE 10111, 1011115 (2017).
[Crossref]

Inoue, N.

A. Yamamoto, Y. Kawamura, H. Naito, and N. Inoue, “Optical properties of GaAs0.5Sb0.5 and In0.53Ga0.47As/GaAs0.5Sb0.5 type II single hetero-structures lattice-matched to InP substrates grown by molecular beam epitaxy,” J. Cryst. Growth 201(3), 872–876 (1999).
[Crossref]

Ishizuka, T.

T. Kawahara, K. Machinaga, B. Sundararajan, K. Miura, M. Migita, H. Obi, T. Fuyuki, K. Fujii, T. Ishizuka, H. Inada, and Y. Iguchi, “InGaAs/GaAsSb type-II quantum-well focal plane array with cutoff-wavelength of 2.5 μm,” Proc. SPIE 10111, 1011115 (2017).
[Crossref]

Jiang, D.

D. Jiang, W. Xiang, F. Guo, H. Hao, X. Han, X. Li, G. Wang, Y. Xu, Q. Yu, and Z. Niu, “Very high quantum efficiency in InAs/GaSb superlattice for very long wavelength detection with cutoff of 21 μm,” Appl. Phys. Lett. 108(12), 61–161 (2016).
[Crossref]

Jiang, W.

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

Jiang, W. Y.

B. Chen, A. L. Holmes, W. Y. Jiang, and J. Yuan, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44(3–5), 103–109 (2012).
[Crossref]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

Jin, C.

C. Jin, F. Wang, Q. Xu, C. Yu, J. Chen, and L. He, “Beryllium compensation doped InGaAs/GaAsSb superlattice photodiodes,” J. Cryst. Growth 477, 100–103 (2017).
[Crossref]

Kamyczek, P.

Ł. Gelczuk, M. Dąbrowska-Szata, P. Kamyczek, E. Płaczek-Popko, K. Kopalko, B. Ściana, D. Pucicki, D. Radziewicz, and M. Tłaczała, “Investigation of deep-level defects in InGaAsN/GaAs 3xQWs structures grown by AP-MOVPE,” Solid-State Electron. 8902(21), 306–309 (2013).

Kawahara, T.

T. Kawahara, K. Machinaga, B. Sundararajan, K. Miura, M. Migita, H. Obi, T. Fuyuki, K. Fujii, T. Ishizuka, H. Inada, and Y. Iguchi, “InGaAs/GaAsSb type-II quantum-well focal plane array with cutoff-wavelength of 2.5 μm,” Proc. SPIE 10111, 1011115 (2017).
[Crossref]

Kawamura, Y.

A. Yamamoto, Y. Kawamura, H. Naito, and N. Inoue, “Optical properties of GaAs0.5Sb0.5 and In0.53Ga0.47As/GaAs0.5Sb0.5 type II single hetero-structures lattice-matched to InP substrates grown by molecular beam epitaxy,” J. Cryst. Growth 201(3), 872–876 (1999).
[Crossref]

Kimerling, L. C.

G. L. Miller, D. V. L. And, and L. C. Kimerling, “Capacitance transient spectroscopy,” Annu. Rev. Mater. Res. 7(7), 377–448 (1977).

Kopalko, K.

Ł. Gelczuk, M. Dąbrowska-Szata, P. Kamyczek, E. Płaczek-Popko, K. Kopalko, B. Ściana, D. Pucicki, D. Radziewicz, and M. Tłaczała, “Investigation of deep-level defects in InGaAsN/GaAs 3xQWs structures grown by AP-MOVPE,” Solid-State Electron. 8902(21), 306–309 (2013).

Kronewitz, J.

W. Schröter, J. Kronewitz, U. Gnauert, F. Riedel, and M. Seibt, “Bandlike and localized states at extended defects in silicon,” Phys. Rev. B Condens. Matter 52(19), 13726–13729 (1995).
[Crossref] [PubMed]

Lau, W. S.

A. Y. Du, M. F. Li, T. C. Chong, K. L. Teo, W. S. Lau, and Z. Zhang, “Dislocations and related traps in p-InGaAs/GaAs lattice mismatched heterostructures,” Appl. Phys. Lett. 69(19), 2849–2851 (1996).
[Crossref]

Li, M. F.

A. Y. Du, M. F. Li, T. C. Chong, K. L. Teo, W. S. Lau, and Z. Zhang, “Dislocations and related traps in p-InGaAs/GaAs lattice mismatched heterostructures,” Appl. Phys. Lett. 69(19), 2849–2851 (1996).
[Crossref]

Li, X.

D. Jiang, W. Xiang, F. Guo, H. Hao, X. Han, X. Li, G. Wang, Y. Xu, Q. Yu, and Z. Niu, “Very high quantum efficiency in InAs/GaSb superlattice for very long wavelength detection with cutoff of 21 μm,” Appl. Phys. Lett. 108(12), 61–161 (2016).
[Crossref]

Machinaga, K.

T. Kawahara, K. Machinaga, B. Sundararajan, K. Miura, M. Migita, H. Obi, T. Fuyuki, K. Fujii, T. Ishizuka, H. Inada, and Y. Iguchi, “InGaAs/GaAsSb type-II quantum-well focal plane array with cutoff-wavelength of 2.5 μm,” Proc. SPIE 10111, 1011115 (2017).
[Crossref]

Michel, J.

P. Omling, E. R. Weber, L. Montelius, H. Alexander, and J. Michel, “Electrical properties of dislocations and point defects in plastically deformed silicon,” Phys. Rev. B Condens. Matter 32(10), 6571–6581 (1985).
[Crossref] [PubMed]

Migita, M.

T. Kawahara, K. Machinaga, B. Sundararajan, K. Miura, M. Migita, H. Obi, T. Fuyuki, K. Fujii, T. Ishizuka, H. Inada, and Y. Iguchi, “InGaAs/GaAsSb type-II quantum-well focal plane array with cutoff-wavelength of 2.5 μm,” Proc. SPIE 10111, 1011115 (2017).
[Crossref]

Miller, G. L.

G. L. Miller, D. V. L. And, and L. C. Kimerling, “Capacitance transient spectroscopy,” Annu. Rev. Mater. Res. 7(7), 377–448 (1977).

Miura, K.

T. Kawahara, K. Machinaga, B. Sundararajan, K. Miura, M. Migita, H. Obi, T. Fuyuki, K. Fujii, T. Ishizuka, H. Inada, and Y. Iguchi, “InGaAs/GaAsSb type-II quantum-well focal plane array with cutoff-wavelength of 2.5 μm,” Proc. SPIE 10111, 1011115 (2017).
[Crossref]

Montelius, L.

P. Omling, E. R. Weber, L. Montelius, H. Alexander, and J. Michel, “Electrical properties of dislocations and point defects in plastically deformed silicon,” Phys. Rev. B Condens. Matter 32(10), 6571–6581 (1985).
[Crossref] [PubMed]

Naito, H.

A. Yamamoto, Y. Kawamura, H. Naito, and N. Inoue, “Optical properties of GaAs0.5Sb0.5 and In0.53Ga0.47As/GaAs0.5Sb0.5 type II single hetero-structures lattice-matched to InP substrates grown by molecular beam epitaxy,” J. Cryst. Growth 201(3), 872–876 (1999).
[Crossref]

Nguyen, B. M.

D. Hoffman, B. M. Nguyen, P. Y. Delaunay, A. Hood, M. Razeghi, and J. Pellegrino, “Beryllium compensation doping of InAs/GaSb infrared superlattice photodiodes,” Appl. Phys. Lett. 91(14), 085316 (2007).
[Crossref]

Niu, Z.

D. Jiang, W. Xiang, F. Guo, H. Hao, X. Han, X. Li, G. Wang, Y. Xu, Q. Yu, and Z. Niu, “Very high quantum efficiency in InAs/GaSb superlattice for very long wavelength detection with cutoff of 21 μm,” Appl. Phys. Lett. 108(12), 61–161 (2016).
[Crossref]

Obi, H.

T. Kawahara, K. Machinaga, B. Sundararajan, K. Miura, M. Migita, H. Obi, T. Fuyuki, K. Fujii, T. Ishizuka, H. Inada, and Y. Iguchi, “InGaAs/GaAsSb type-II quantum-well focal plane array with cutoff-wavelength of 2.5 μm,” Proc. SPIE 10111, 1011115 (2017).
[Crossref]

Omling, P.

P. Omling, E. R. Weber, L. Montelius, H. Alexander, and J. Michel, “Electrical properties of dislocations and point defects in plastically deformed silicon,” Phys. Rev. B Condens. Matter 32(10), 6571–6581 (1985).
[Crossref] [PubMed]

Onat, B. M.

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

Pellegrino, J.

D. Hoffman, B. M. Nguyen, P. Y. Delaunay, A. Hood, M. Razeghi, and J. Pellegrino, “Beryllium compensation doping of InAs/GaSb infrared superlattice photodiodes,” Appl. Phys. Lett. 91(14), 085316 (2007).
[Crossref]

Placzek-Popko, E.

Ł. Gelczuk, M. Dąbrowska-Szata, P. Kamyczek, E. Płaczek-Popko, K. Kopalko, B. Ściana, D. Pucicki, D. Radziewicz, and M. Tłaczała, “Investigation of deep-level defects in InGaAsN/GaAs 3xQWs structures grown by AP-MOVPE,” Solid-State Electron. 8902(21), 306–309 (2013).

Pucicki, D.

Ł. Gelczuk, M. Dąbrowska-Szata, P. Kamyczek, E. Płaczek-Popko, K. Kopalko, B. Ściana, D. Pucicki, D. Radziewicz, and M. Tłaczała, “Investigation of deep-level defects in InGaAsN/GaAs 3xQWs structures grown by AP-MOVPE,” Solid-State Electron. 8902(21), 306–309 (2013).

Radziewicz, D.

Ł. Gelczuk, M. Dąbrowska-Szata, P. Kamyczek, E. Płaczek-Popko, K. Kopalko, B. Ściana, D. Pucicki, D. Radziewicz, and M. Tłaczała, “Investigation of deep-level defects in InGaAsN/GaAs 3xQWs structures grown by AP-MOVPE,” Solid-State Electron. 8902(21), 306–309 (2013).

Razeghi, M.

D. Hoffman, B. M. Nguyen, P. Y. Delaunay, A. Hood, M. Razeghi, and J. Pellegrino, “Beryllium compensation doping of InAs/GaSb infrared superlattice photodiodes,” Appl. Phys. Lett. 91(14), 085316 (2007).
[Crossref]

Riedel, F.

W. Schröter, J. Kronewitz, U. Gnauert, F. Riedel, and M. Seibt, “Bandlike and localized states at extended defects in silicon,” Phys. Rev. B Condens. Matter 52(19), 13726–13729 (1995).
[Crossref] [PubMed]

Ringel, S. A.

P. N. Grillot, S. A. Ringel, E. A. Fitzgerald, G. P. Watson, and Y. H. Xie, “Electron trapping kinetics at dislocations in relaxed Ge0.3Si0.7/Si heterostructures,” J. Appl. Phys. 77(7), 3248–3256 (1995).

Schröter, W.

W. Schröter, J. Kronewitz, U. Gnauert, F. Riedel, and M. Seibt, “Bandlike and localized states at extended defects in silicon,” Phys. Rev. B Condens. Matter 52(19), 13726–13729 (1995).
[Crossref] [PubMed]

Sciana, B.

Ł. Gelczuk, M. Dąbrowska-Szata, P. Kamyczek, E. Płaczek-Popko, K. Kopalko, B. Ściana, D. Pucicki, D. Radziewicz, and M. Tłaczała, “Investigation of deep-level defects in InGaAsN/GaAs 3xQWs structures grown by AP-MOVPE,” Solid-State Electron. 8902(21), 306–309 (2013).

Seibt, M.

W. Schröter, J. Kronewitz, U. Gnauert, F. Riedel, and M. Seibt, “Bandlike and localized states at extended defects in silicon,” Phys. Rev. B Condens. Matter 52(19), 13726–13729 (1995).
[Crossref] [PubMed]

Seitz, F.

D. L. Dexter and F. Seitz, “Effects of dislocations on mobilities in semiconductors,” Phys. Rev. 86(6), 964–965 (1952).
[Crossref]

Sidhu, R.

R. Sidhu, N. Duan, J. C. Campbell, and A. L. Holmes, “A long-wavelength photodiode on InP using lattice-matched GaInAs-GaAsSb type-II quantum wells,” IEEE Photonics Technol. Lett. 17(12), 2715–2717 (2005).
[Crossref]

Sugano, T.

K. Yamasaki, M. Yoshida, and T. Sugano, “Deep level transient spectroscopy of bulk traps and interface states in Si MOS diodes,” Jpn. J. Appl. Phys. 18(1), 113–122 (1979).
[Crossref]

Sundararajan, B.

T. Kawahara, K. Machinaga, B. Sundararajan, K. Miura, M. Migita, H. Obi, T. Fuyuki, K. Fujii, T. Ishizuka, H. Inada, and Y. Iguchi, “InGaAs/GaAsSb type-II quantum-well focal plane array with cutoff-wavelength of 2.5 μm,” Proc. SPIE 10111, 1011115 (2017).
[Crossref]

Teo, K. L.

A. Y. Du, M. F. Li, T. C. Chong, K. L. Teo, W. S. Lau, and Z. Zhang, “Dislocations and related traps in p-InGaAs/GaAs lattice mismatched heterostructures,” Appl. Phys. Lett. 69(19), 2849–2851 (1996).
[Crossref]

Tlaczala, M.

Ł. Gelczuk, M. Dąbrowska-Szata, P. Kamyczek, E. Płaczek-Popko, K. Kopalko, B. Ściana, D. Pucicki, D. Radziewicz, and M. Tłaczała, “Investigation of deep-level defects in InGaAsN/GaAs 3xQWs structures grown by AP-MOVPE,” Solid-State Electron. 8902(21), 306–309 (2013).

Wang, F.

C. Jin, F. Wang, Q. Xu, C. Yu, J. Chen, and L. He, “Beryllium compensation doped InGaAs/GaAsSb superlattice photodiodes,” J. Cryst. Growth 477, 100–103 (2017).
[Crossref]

Wang, G.

D. Jiang, W. Xiang, F. Guo, H. Hao, X. Han, X. Li, G. Wang, Y. Xu, Q. Yu, and Z. Niu, “Very high quantum efficiency in InAs/GaSb superlattice for very long wavelength detection with cutoff of 21 μm,” Appl. Phys. Lett. 108(12), 61–161 (2016).
[Crossref]

Watson, G. P.

P. N. Grillot, S. A. Ringel, E. A. Fitzgerald, G. P. Watson, and Y. H. Xie, “Electron trapping kinetics at dislocations in relaxed Ge0.3Si0.7/Si heterostructures,” J. Appl. Phys. 77(7), 3248–3256 (1995).

Weber, E. R.

P. Omling, E. R. Weber, L. Montelius, H. Alexander, and J. Michel, “Electrical properties of dislocations and point defects in plastically deformed silicon,” Phys. Rev. B Condens. Matter 32(10), 6571–6581 (1985).
[Crossref] [PubMed]

Wosinski, T.

T. Wosiński, “Evidence for the electron traps at dislocations in GaAs crystals,” J. Appl. Phys. 65(4), 1566–1570 (1989).
[Crossref]

Xiang, W.

D. Jiang, W. Xiang, F. Guo, H. Hao, X. Han, X. Li, G. Wang, Y. Xu, Q. Yu, and Z. Niu, “Very high quantum efficiency in InAs/GaSb superlattice for very long wavelength detection with cutoff of 21 μm,” Appl. Phys. Lett. 108(12), 61–161 (2016).
[Crossref]

Xie, Y. H.

P. N. Grillot, S. A. Ringel, E. A. Fitzgerald, G. P. Watson, and Y. H. Xie, “Electron trapping kinetics at dislocations in relaxed Ge0.3Si0.7/Si heterostructures,” J. Appl. Phys. 77(7), 3248–3256 (1995).

Xu, Q.

C. Jin, F. Wang, Q. Xu, C. Yu, J. Chen, and L. He, “Beryllium compensation doped InGaAs/GaAsSb superlattice photodiodes,” J. Cryst. Growth 477, 100–103 (2017).
[Crossref]

Xu, Y.

D. Jiang, W. Xiang, F. Guo, H. Hao, X. Han, X. Li, G. Wang, Y. Xu, Q. Yu, and Z. Niu, “Very high quantum efficiency in InAs/GaSb superlattice for very long wavelength detection with cutoff of 21 μm,” Appl. Phys. Lett. 108(12), 61–161 (2016).
[Crossref]

Yamamoto, A.

A. Yamamoto, Y. Kawamura, H. Naito, and N. Inoue, “Optical properties of GaAs0.5Sb0.5 and In0.53Ga0.47As/GaAs0.5Sb0.5 type II single hetero-structures lattice-matched to InP substrates grown by molecular beam epitaxy,” J. Cryst. Growth 201(3), 872–876 (1999).
[Crossref]

Yamasaki, K.

K. Yamasaki, M. Yoshida, and T. Sugano, “Deep level transient spectroscopy of bulk traps and interface states in Si MOS diodes,” Jpn. J. Appl. Phys. 18(1), 113–122 (1979).
[Crossref]

Yoshida, M.

K. Yamasaki, M. Yoshida, and T. Sugano, “Deep level transient spectroscopy of bulk traps and interface states in Si MOS diodes,” Jpn. J. Appl. Phys. 18(1), 113–122 (1979).
[Crossref]

Yu, C.

C. Jin, F. Wang, Q. Xu, C. Yu, J. Chen, and L. He, “Beryllium compensation doped InGaAs/GaAsSb superlattice photodiodes,” J. Cryst. Growth 477, 100–103 (2017).
[Crossref]

Yu, Q.

D. Jiang, W. Xiang, F. Guo, H. Hao, X. Han, X. Li, G. Wang, Y. Xu, Q. Yu, and Z. Niu, “Very high quantum efficiency in InAs/GaSb superlattice for very long wavelength detection with cutoff of 21 μm,” Appl. Phys. Lett. 108(12), 61–161 (2016).
[Crossref]

Yuan, J.

B. Chen, J. Yuan, and A. L. Holmes, “Dark current modeling of InP based SWIR and MWIR InGaAs/GaAsSb type-II MQW photodiodes,” Opt. Quantum Electron. 45(3), 271–277 (2013).
[Crossref]

W. Chen, B. Chen, J. Yuan, A. Holmes, and P. Fay, “Bulk and interfacial deep levels observed in In0.53Ga0.47As/GaAs0.5Sb0.5 multiple quantum well photodiode,” Appl. Phys. Lett. 101(5), 59–390 (2012).
[Crossref]

B. Chen, A. L. Holmes, W. Y. Jiang, and J. Yuan, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44(3–5), 103–109 (2012).
[Crossref]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

Zhang, Z.

A. Y. Du, M. F. Li, T. C. Chong, K. L. Teo, W. S. Lau, and Z. Zhang, “Dislocations and related traps in p-InGaAs/GaAs lattice mismatched heterostructures,” Appl. Phys. Lett. 69(19), 2849–2851 (1996).
[Crossref]

Annu. Rev. Mater. Res. (1)

G. L. Miller, D. V. L. And, and L. C. Kimerling, “Capacitance transient spectroscopy,” Annu. Rev. Mater. Res. 7(7), 377–448 (1977).

Appl. Phys. Lett. (4)

D. Jiang, W. Xiang, F. Guo, H. Hao, X. Han, X. Li, G. Wang, Y. Xu, Q. Yu, and Z. Niu, “Very high quantum efficiency in InAs/GaSb superlattice for very long wavelength detection with cutoff of 21 μm,” Appl. Phys. Lett. 108(12), 61–161 (2016).
[Crossref]

W. Chen, B. Chen, J. Yuan, A. Holmes, and P. Fay, “Bulk and interfacial deep levels observed in In0.53Ga0.47As/GaAs0.5Sb0.5 multiple quantum well photodiode,” Appl. Phys. Lett. 101(5), 59–390 (2012).
[Crossref]

D. Hoffman, B. M. Nguyen, P. Y. Delaunay, A. Hood, M. Razeghi, and J. Pellegrino, “Beryllium compensation doping of InAs/GaSb infrared superlattice photodiodes,” Appl. Phys. Lett. 91(14), 085316 (2007).
[Crossref]

A. Y. Du, M. F. Li, T. C. Chong, K. L. Teo, W. S. Lau, and Z. Zhang, “Dislocations and related traps in p-InGaAs/GaAs lattice mismatched heterostructures,” Appl. Phys. Lett. 69(19), 2849–2851 (1996).
[Crossref]

Electron. Lett. (1)

W. Chen, B. Chen, A. Holmes, and P. Fayet, “Investigation of traps in strained-well InGaAs/GaAsSb quantum well photodiodes,” Electron. Lett. 51(18), 1439–1440 (2015).
[Crossref]

IEEE Electron Dev. (1)

B. Chen, “Active region design and gain characteristics of InP-based dilute Bismide type-II quantum wells for Mid-IR lasers,” IEEE Electron Dev. 64(4), 1–6 (2017).
[Crossref]

IEEE J. Quantum Electron. (1)

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (2)

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

R. Sidhu, N. Duan, J. C. Campbell, and A. L. Holmes, “A long-wavelength photodiode on InP using lattice-matched GaInAs-GaAsSb type-II quantum wells,” IEEE Photonics Technol. Lett. 17(12), 2715–2717 (2005).
[Crossref]

J. Appl. Phys. (2)

P. N. Grillot, S. A. Ringel, E. A. Fitzgerald, G. P. Watson, and Y. H. Xie, “Electron trapping kinetics at dislocations in relaxed Ge0.3Si0.7/Si heterostructures,” J. Appl. Phys. 77(7), 3248–3256 (1995).

T. Wosiński, “Evidence for the electron traps at dislocations in GaAs crystals,” J. Appl. Phys. 65(4), 1566–1570 (1989).
[Crossref]

J. Cryst. Growth (2)

C. Jin, F. Wang, Q. Xu, C. Yu, J. Chen, and L. He, “Beryllium compensation doped InGaAs/GaAsSb superlattice photodiodes,” J. Cryst. Growth 477, 100–103 (2017).
[Crossref]

A. Yamamoto, Y. Kawamura, H. Naito, and N. Inoue, “Optical properties of GaAs0.5Sb0.5 and In0.53Ga0.47As/GaAs0.5Sb0.5 type II single hetero-structures lattice-matched to InP substrates grown by molecular beam epitaxy,” J. Cryst. Growth 201(3), 872–876 (1999).
[Crossref]

J. Phys. D Appl. Phys. (1)

A. V. P. Coelho, M. C. Adam, and H. Boudinov, “Distinguishing bulk traps and interface states in deep-level transient spectroscopy,” J. Phys. D Appl. Phys. 44(30), 416–426 (2011).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Yamasaki, M. Yoshida, and T. Sugano, “Deep level transient spectroscopy of bulk traps and interface states in Si MOS diodes,” Jpn. J. Appl. Phys. 18(1), 113–122 (1979).
[Crossref]

Opt. Lett. (1)

Opt. Quantum Electron. (2)

B. Chen, A. L. Holmes, W. Y. Jiang, and J. Yuan, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44(3–5), 103–109 (2012).
[Crossref]

B. Chen, J. Yuan, and A. L. Holmes, “Dark current modeling of InP based SWIR and MWIR InGaAs/GaAsSb type-II MQW photodiodes,” Opt. Quantum Electron. 45(3), 271–277 (2013).
[Crossref]

Phys. Rev. (1)

D. L. Dexter and F. Seitz, “Effects of dislocations on mobilities in semiconductors,” Phys. Rev. 86(6), 964–965 (1952).
[Crossref]

Phys. Rev. B (1)

A. V. P. Coelho and H. Boudinov, “Emission rate dependence on the electric field for two trap levels in proton-irradiated n-type GaAs,” Phys. Rev. B 77(23), 235210 (2008).
[Crossref]

Phys. Rev. B Condens. Matter (2)

P. Omling, E. R. Weber, L. Montelius, H. Alexander, and J. Michel, “Electrical properties of dislocations and point defects in plastically deformed silicon,” Phys. Rev. B Condens. Matter 32(10), 6571–6581 (1985).
[Crossref] [PubMed]

W. Schröter, J. Kronewitz, U. Gnauert, F. Riedel, and M. Seibt, “Bandlike and localized states at extended defects in silicon,” Phys. Rev. B Condens. Matter 52(19), 13726–13729 (1995).
[Crossref] [PubMed]

Proc. SPIE (2)

T. Kawahara, K. Machinaga, B. Sundararajan, K. Miura, M. Migita, H. Obi, T. Fuyuki, K. Fujii, T. Ishizuka, H. Inada, and Y. Iguchi, “InGaAs/GaAsSb type-II quantum-well focal plane array with cutoff-wavelength of 2.5 μm,” Proc. SPIE 10111, 1011115 (2017).
[Crossref]

G. F. Fulop, “Extended wavelength SWIR detectors with reduced dark current,” Proc. SPIE 9451, 945106 (2015).
[Crossref]

Solid-State Electron. (1)

Ł. Gelczuk, M. Dąbrowska-Szata, P. Kamyczek, E. Płaczek-Popko, K. Kopalko, B. Ściana, D. Pucicki, D. Radziewicz, and M. Tłaczała, “Investigation of deep-level defects in InGaAsN/GaAs 3xQWs structures grown by AP-MOVPE,” Solid-State Electron. 8902(21), 306–309 (2013).

Other (1)

W. Chen, B. Chen, J. Yuan, A. Holmes, and P. Fay, “Characterization and impact of traps in lattice-matched and strain-compensated In1−xGaxAs/GaAs1−ySby multiple quantum well photodiodes,” in IEEE Device Research Conference (IEEE, 2012), pp. 251–252.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The schematic structure of Beryllium compensation doping of InGaAs/GaAsSb T2SL photodiode.
Fig. 2
Fig. 2 I-V characteristics on the InGaAs/GaAsSb T2SL photodiode in the temperature ranging from 77 K to 300 K (a), dark current density vs. inverse of temperature at a bias of −0.05 V (b) and dark current mechanism in the inset.
Fig. 3
Fig. 3 DLTS spectra measured for different reverse voltage bias (VR = −0.2~-2 V) and for fixed other parameters: VP = 0.5 V, f0 = 680 Hz and tp = 20 μs, using the InGaAs/GaAsSb T2SL photodiode in a temperature range of 77~300 K.
Fig. 4
Fig. 4 DLTS spectra measured for different lock-in frequencies and fixed other parameters: VP = 0.5 V, tp = 20 μs, (a) VR = −2 V, (b) VR = −0.7 V and (c) VR = −0.5 V, (d) the Arrhenius plot for all traps in the InGaAs/GaAsSb T2SL photodiode, (e) the positions of all deep levels in the bandgap of SL.
Fig. 5
Fig. 5 DLTS spectra measured for different widths of filling-pulse times. The other parameters were: VP = 0.5 V, f0 = 20 Hz, (a) VR = −2 V and (b) VR = −0.5 V. The DLTS-peak amplitude of the trap E1 (c) and the trap H1 (d) vs. filling-pulse time showing logarithmic dependence characteristic for extend defects.

Tables (1)

Tables Icon

Table 1 Defect parameters obtained from the DLTS measurements.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ C = C 0 N t N D T e n e x p ( e n T d )   [ 1 e x p ( ( T 2 T d ) e n 2 ) ] 2
ln ( T e n ( T ) T 2 ) = E a k T + ln ( γ σ )
N t = 8 N D Δ C m a x C 0

Metrics