Abstract

Numerous studies have been made to design pattern reconfigurable THz antennas to achieve optimum performance for particular environmental conditions. However, it is still a challenge to achieve large angle beam steering for reconfigurable antenna in terahertz band. Here we propose a 360-degree beam steering THz antenna using active frequency selective surface (AFSS) based on hybrid graphene-gold structure. The proposed antenna consists of a THz omnidirectional monopole antenna coated with a hexagonal AFSS screen. By adjusting the chemical potential of graphene from 0 to 0.5eV, the AFSS unit cell can be switched from ON state (high transmission) to OFF state (total reflection) in terahertz, which can steer the beam direction as the monopole antenna is surrounded with six parts of AFSS screen with different ON/OFF states. In this way, the antenna can achieve beam scanning covering 360 degrees. Moreover, unlike the conventional AFSS with only two states, the reflection and transmission coefficient of the proposed AFSS are continuously variable due to the tunable chemical potential, which allows the radiation gain of antenna to be enlarged or suppressed. This antenna may serve the reconfigurable THz wireless system with flexible beam direction and gain level.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface

Yu Tong Zhao, Bian Wu, Bei Ju Huang, and Qiang Cheng
Opt. Express 25(7) 7161-7169 (2017)

Real-time two-dimensional beam steering with gate-tunable materials: a theoretical investigation

Jierong Cheng, Samad Jafar-Zanjani, and Hossein Mosallaei
Appl. Opt. 55(22) 6137-6144 (2016)

Experimental demonstration of reflectarray antennas at terahertz frequencies

Tiaoming Niu, Withawat Withayachumnankul, Benjamin S.-Y. Ung, Hakan Menekse, Madhu Bhaskaran, Sharath Sriram, and Christophe Fumeaux
Opt. Express 21(3) 2875-2889 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  2. Y. Yao, X. H. Cheng, S. W. Qu, J. S. Yu, and X. D. Chen, “Graphene-metal based tunable band-pass filters in the terahertz band,” IET Microw. Antennas Propag. 10(14), 1570–1575 (2016).
    [Crossref]
  3. J. Huang, J. Yang, H. Zhang, J. Zhang, W. Wu, and S. Chang, “Analysis of tunable flat-top bandpass filter based on graphene,” IEEE Photonics Technol. Lett. 28(23), 2677–2680 (2016).
    [Crossref]
  4. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
    [Crossref] [PubMed]
  5. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation,” Opt. Express 23(21), 27230–27239 (2015).
    [Crossref] [PubMed]
  6. Y. T. Zhao, B. Wu, B. J. Huang, and Q. Cheng, “Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface,” Opt. Express 25(7), 7161–7169 (2017).
    [Crossref] [PubMed]
  7. L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
    [Crossref] [PubMed]
  8. Y. L. Liao and Y. Zhao, “Graphene-based tunable ultra-narrowband mid-infrared TE-polarization absorber,” Opt. Express 25(25), 32080–32089 (2017).
    [Crossref] [PubMed]
  9. H. Xiong, Y. B. Wu, J. Dong, M. C. Tang, Y. N. Jiang, and X. P. Zeng, “Ultra-thin and broadband tunable metamaterial graphene absorber,” Opt. Express 26(2), 1681–1688 (2018).
    [Crossref] [PubMed]
  10. L. Wang, S. Ge, W. Hu, M. Nakajima, and Y. Lu, “Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber,” Opt. Express 25(20), 23873–23879 (2017).
    [Crossref] [PubMed]
  11. B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
    [Crossref] [PubMed]
  12. D. E. Aznakayeva, F. J. Rodriguez, O. P. Marshall, and A. N. Grigorenko, “Graphene light modulators working at near-infrared wavelengths,” Opt. Express 25(9), 10255–10260 (2017).
    [Crossref] [PubMed]
  13. G. D. Liu, X. Zhai, S. X. Xia, Q. Lin, C. J. Zhao, and L. L. Wang, “Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface,” Opt. Express 25(21), 26045–26054 (2017).
    [Crossref] [PubMed]
  14. B. Huang, W. Lu, Z. Liu, and S. Gao, “Low-energy high-speed plasmonic enhanced modulator using graphene,” Opt. Express 26(6), 7358–7367 (2018).
    [Crossref] [PubMed]
  15. Y. Guo, T. Zhang, W. Y. Yin, and X. H. Wang, “Improved hybrid FDTD method for studying tunable graphene frequency-selective surfaces (GFSS) for THz-wave applications,” IEEE Trans. Terahertz Sci. Technol. 5(3), 358–367 (2015).
    [Crossref]
  16. D. W. Wang, W. S. Zhao, H. Xie, J. Hu, L. Zhou, W. Chen, P. Gao, J. Ye, Y. Xu, and H. Sh, “Tunable THz multiband frequency-selective surface based on hybrid metal-graphene structure,” IEEE Trans. NanoTechnol. 16(6), 1132–1137 (2017).
    [Crossref]
  17. J. Chen, G. Hao, and Q. H. Liu, “Using ADI-FDTD method to simulate graphene-based FSS at terahertz frequency,” IEEE Trans. Electromagn. Compat. 59(4), 1218–1223 (2017).
    [Crossref]
  18. X. Li, L. Lin, L. Sh. Wu, W. Y. Yin, and J. F. Mao, “A bandpass graphene frequency selective surface with tunable polarization rotation for THz application,” IEEE Trans. Antenn. Propag. 65(2), 662–672 (2017).
    [Crossref]
  19. W. Fuscaldo, P. Burghignoli, P. Baccarelli, and A. Galli, “Graphene Fabry-Perot cavity leaky-wave antennas: Plasmonic versus nonplasmonic solutions,” IEEE Trans. Antenn. Propag. 65(4), 1651–1660 (2017).
    [Crossref]
  20. Z. Chang, B. You, L. S. Wu, M. Tang, Y. P. Zhang, and J. F. Mao, “A reconfigurable graphene reflectarray for generation of vortex THz waves,” IEEE Antennas Wirel. Propag. Lett. 15, 1537–1540 (2016).
    [Crossref]
  21. L. Zhang, Q. Wu, and T. A. Denidni, “Electronically Radiation Pattern Steerable Antennas Using Active Frequency Selective Surfaces,” IEEE Trans. Antenn. Propag. 61(12), 6000–6007 (2013).
    [Crossref]
  22. M. Niroojazi and T. A. Denidni, “Electronically Sweeping-Beam Antenna Using a New Cylindrical Frequency-Selective Surface,” IEEE Trans. Antenn. Propag. 61(2), 666–676 (2013).
    [Crossref]
  23. C. Gu, S. Gao, B. Sanz-Izquierdo, E. A. Parker, W. Li, X. Yang, and Z. Cheng, “Frequency-Agile Beam-Switchable Antenna,” IEEE Trans. Antenn. Propag. 65(8), 3819–3826 (2017).
    [Crossref]
  24. Z. Xu, X. D. Dong, and J. Bornemann, “Design of a reconfigurable MIMO system for THz communication based on graphene antenna,” IEEE Trans. Terahertz Sci. Technol. 4(5), 609–617 (2014).
    [Crossref]
  25. M. Esquius-Morote, J. S. Gómez-Díaz, and J. Perruisseau-Carrier, “Sinusoidally modulated graphene leaky-wave antenna for electronic beam scanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4(1), 116–122 (2014).
    [Crossref]
  26. Y. Huang, L. S. Wu, M. Tang, and J. F. Mao, “Design of a beam reconfigurable THz antenna with graphene-based switchable high-impedance surface,” IEEE Trans. NanoTechnol. 11(4), 836–842 (2012).
    [Crossref]
  27. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
    [Crossref]
  28. F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
    [Crossref] [PubMed]
  29. J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Graphene-based plasmonic switches at near infrared frequencies,” Opt. Express 21(13), 15490–15504 (2013).
    [Crossref] [PubMed]

2018 (2)

2017 (11)

D. E. Aznakayeva, F. J. Rodriguez, O. P. Marshall, and A. N. Grigorenko, “Graphene light modulators working at near-infrared wavelengths,” Opt. Express 25(9), 10255–10260 (2017).
[Crossref] [PubMed]

G. D. Liu, X. Zhai, S. X. Xia, Q. Lin, C. J. Zhao, and L. L. Wang, “Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface,” Opt. Express 25(21), 26045–26054 (2017).
[Crossref] [PubMed]

D. W. Wang, W. S. Zhao, H. Xie, J. Hu, L. Zhou, W. Chen, P. Gao, J. Ye, Y. Xu, and H. Sh, “Tunable THz multiband frequency-selective surface based on hybrid metal-graphene structure,” IEEE Trans. NanoTechnol. 16(6), 1132–1137 (2017).
[Crossref]

J. Chen, G. Hao, and Q. H. Liu, “Using ADI-FDTD method to simulate graphene-based FSS at terahertz frequency,” IEEE Trans. Electromagn. Compat. 59(4), 1218–1223 (2017).
[Crossref]

X. Li, L. Lin, L. Sh. Wu, W. Y. Yin, and J. F. Mao, “A bandpass graphene frequency selective surface with tunable polarization rotation for THz application,” IEEE Trans. Antenn. Propag. 65(2), 662–672 (2017).
[Crossref]

W. Fuscaldo, P. Burghignoli, P. Baccarelli, and A. Galli, “Graphene Fabry-Perot cavity leaky-wave antennas: Plasmonic versus nonplasmonic solutions,” IEEE Trans. Antenn. Propag. 65(4), 1651–1660 (2017).
[Crossref]

L. Wang, S. Ge, W. Hu, M. Nakajima, and Y. Lu, “Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber,” Opt. Express 25(20), 23873–23879 (2017).
[Crossref] [PubMed]

Y. T. Zhao, B. Wu, B. J. Huang, and Q. Cheng, “Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface,” Opt. Express 25(7), 7161–7169 (2017).
[Crossref] [PubMed]

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref] [PubMed]

Y. L. Liao and Y. Zhao, “Graphene-based tunable ultra-narrowband mid-infrared TE-polarization absorber,” Opt. Express 25(25), 32080–32089 (2017).
[Crossref] [PubMed]

C. Gu, S. Gao, B. Sanz-Izquierdo, E. A. Parker, W. Li, X. Yang, and Z. Cheng, “Frequency-Agile Beam-Switchable Antenna,” IEEE Trans. Antenn. Propag. 65(8), 3819–3826 (2017).
[Crossref]

2016 (3)

Y. Yao, X. H. Cheng, S. W. Qu, J. S. Yu, and X. D. Chen, “Graphene-metal based tunable band-pass filters in the terahertz band,” IET Microw. Antennas Propag. 10(14), 1570–1575 (2016).
[Crossref]

J. Huang, J. Yang, H. Zhang, J. Zhang, W. Wu, and S. Chang, “Analysis of tunable flat-top bandpass filter based on graphene,” IEEE Photonics Technol. Lett. 28(23), 2677–2680 (2016).
[Crossref]

Z. Chang, B. You, L. S. Wu, M. Tang, Y. P. Zhang, and J. F. Mao, “A reconfigurable graphene reflectarray for generation of vortex THz waves,” IEEE Antennas Wirel. Propag. Lett. 15, 1537–1540 (2016).
[Crossref]

2015 (3)

Y. Guo, T. Zhang, W. Y. Yin, and X. H. Wang, “Improved hybrid FDTD method for studying tunable graphene frequency-selective surfaces (GFSS) for THz-wave applications,” IEEE Trans. Terahertz Sci. Technol. 5(3), 358–367 (2015).
[Crossref]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation,” Opt. Express 23(21), 27230–27239 (2015).
[Crossref] [PubMed]

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
[Crossref] [PubMed]

2014 (3)

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
[Crossref] [PubMed]

Z. Xu, X. D. Dong, and J. Bornemann, “Design of a reconfigurable MIMO system for THz communication based on graphene antenna,” IEEE Trans. Terahertz Sci. Technol. 4(5), 609–617 (2014).
[Crossref]

M. Esquius-Morote, J. S. Gómez-Díaz, and J. Perruisseau-Carrier, “Sinusoidally modulated graphene leaky-wave antenna for electronic beam scanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4(1), 116–122 (2014).
[Crossref]

2013 (4)

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Graphene-based plasmonic switches at near infrared frequencies,” Opt. Express 21(13), 15490–15504 (2013).
[Crossref] [PubMed]

L. Zhang, Q. Wu, and T. A. Denidni, “Electronically Radiation Pattern Steerable Antennas Using Active Frequency Selective Surfaces,” IEEE Trans. Antenn. Propag. 61(12), 6000–6007 (2013).
[Crossref]

M. Niroojazi and T. A. Denidni, “Electronically Sweeping-Beam Antenna Using a New Cylindrical Frequency-Selective Surface,” IEEE Trans. Antenn. Propag. 61(2), 666–676 (2013).
[Crossref]

2012 (1)

Y. Huang, L. S. Wu, M. Tang, and J. F. Mao, “Design of a beam reconfigurable THz antenna with graphene-based switchable high-impedance surface,” IEEE Trans. NanoTechnol. 11(4), 836–842 (2012).
[Crossref]

2007 (1)

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Aznakayeva, D. E.

Baccarelli, P.

W. Fuscaldo, P. Burghignoli, P. Baccarelli, and A. Galli, “Graphene Fabry-Perot cavity leaky-wave antennas: Plasmonic versus nonplasmonic solutions,” IEEE Trans. Antenn. Propag. 65(4), 1651–1660 (2017).
[Crossref]

Beck, M.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Bornemann, J.

Z. Xu, X. D. Dong, and J. Bornemann, “Design of a reconfigurable MIMO system for THz communication based on graphene antenna,” IEEE Trans. Terahertz Sci. Technol. 4(5), 609–617 (2014).
[Crossref]

Burghignoli, P.

W. Fuscaldo, P. Burghignoli, P. Baccarelli, and A. Galli, “Graphene Fabry-Perot cavity leaky-wave antennas: Plasmonic versus nonplasmonic solutions,” IEEE Trans. Antenn. Propag. 65(4), 1651–1660 (2017).
[Crossref]

Cai, G.

Carbotte, J. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

Chang, S.

J. Huang, J. Yang, H. Zhang, J. Zhang, W. Wu, and S. Chang, “Analysis of tunable flat-top bandpass filter based on graphene,” IEEE Photonics Technol. Lett. 28(23), 2677–2680 (2016).
[Crossref]

Chang, Z.

Z. Chang, B. You, L. S. Wu, M. Tang, Y. P. Zhang, and J. F. Mao, “A reconfigurable graphene reflectarray for generation of vortex THz waves,” IEEE Antennas Wirel. Propag. Lett. 15, 1537–1540 (2016).
[Crossref]

Chen, J.

J. Chen, G. Hao, and Q. H. Liu, “Using ADI-FDTD method to simulate graphene-based FSS at terahertz frequency,” IEEE Trans. Electromagn. Compat. 59(4), 1218–1223 (2017).
[Crossref]

Chen, W.

D. W. Wang, W. S. Zhao, H. Xie, J. Hu, L. Zhou, W. Chen, P. Gao, J. Ye, Y. Xu, and H. Sh, “Tunable THz multiband frequency-selective surface based on hybrid metal-graphene structure,” IEEE Trans. NanoTechnol. 16(6), 1132–1137 (2017).
[Crossref]

Chen, X. D.

Y. Yao, X. H. Cheng, S. W. Qu, J. S. Yu, and X. D. Chen, “Graphene-metal based tunable band-pass filters in the terahertz band,” IET Microw. Antennas Propag. 10(14), 1570–1575 (2016).
[Crossref]

Chen, Y.

Cheng, Q.

Cheng, X. H.

Y. Yao, X. H. Cheng, S. W. Qu, J. S. Yu, and X. D. Chen, “Graphene-metal based tunable band-pass filters in the terahertz band,” IET Microw. Antennas Propag. 10(14), 1570–1575 (2016).
[Crossref]

Cheng, Z.

C. Gu, S. Gao, B. Sanz-Izquierdo, E. A. Parker, W. Li, X. Yang, and Z. Cheng, “Frequency-Agile Beam-Switchable Antenna,” IEEE Trans. Antenn. Propag. 65(8), 3819–3826 (2017).
[Crossref]

Choi, J. W.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Cole, M. T.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
[Crossref] [PubMed]

Denidni, T. A.

L. Zhang, Q. Wu, and T. A. Denidni, “Electronically Radiation Pattern Steerable Antennas Using Active Frequency Selective Surfaces,” IEEE Trans. Antenn. Propag. 61(12), 6000–6007 (2013).
[Crossref]

M. Niroojazi and T. A. Denidni, “Electronically Sweeping-Beam Antenna Using a New Cylindrical Frequency-Selective Surface,” IEEE Trans. Antenn. Propag. 61(2), 666–676 (2013).
[Crossref]

Dong, J.

Dong, X. D.

Z. Xu, X. D. Dong, and J. Bornemann, “Design of a reconfigurable MIMO system for THz communication based on graphene antenna,” IEEE Trans. Terahertz Sci. Technol. 4(5), 609–617 (2014).
[Crossref]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Esquius-Morote, M.

M. Esquius-Morote, J. S. Gómez-Díaz, and J. Perruisseau-Carrier, “Sinusoidally modulated graphene leaky-wave antenna for electronic beam scanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4(1), 116–122 (2014).
[Crossref]

Faist, J.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Feng, Y.

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Fu, W.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Fuscaldo, W.

W. Fuscaldo, P. Burghignoli, P. Baccarelli, and A. Galli, “Graphene Fabry-Perot cavity leaky-wave antennas: Plasmonic versus nonplasmonic solutions,” IEEE Trans. Antenn. Propag. 65(4), 1651–1660 (2017).
[Crossref]

Galli, A.

W. Fuscaldo, P. Burghignoli, P. Baccarelli, and A. Galli, “Graphene Fabry-Perot cavity leaky-wave antennas: Plasmonic versus nonplasmonic solutions,” IEEE Trans. Antenn. Propag. 65(4), 1651–1660 (2017).
[Crossref]

Gao, P.

D. W. Wang, W. S. Zhao, H. Xie, J. Hu, L. Zhou, W. Chen, P. Gao, J. Ye, Y. Xu, and H. Sh, “Tunable THz multiband frequency-selective surface based on hybrid metal-graphene structure,” IEEE Trans. NanoTechnol. 16(6), 1132–1137 (2017).
[Crossref]

Gao, S.

B. Huang, W. Lu, Z. Liu, and S. Gao, “Low-energy high-speed plasmonic enhanced modulator using graphene,” Opt. Express 26(6), 7358–7367 (2018).
[Crossref] [PubMed]

C. Gu, S. Gao, B. Sanz-Izquierdo, E. A. Parker, W. Li, X. Yang, and Z. Cheng, “Frequency-Agile Beam-Switchable Antenna,” IEEE Trans. Antenn. Propag. 65(8), 3819–3826 (2017).
[Crossref]

Ge, S.

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gómez-Díaz, J. S.

M. Esquius-Morote, J. S. Gómez-Díaz, and J. Perruisseau-Carrier, “Sinusoidally modulated graphene leaky-wave antenna for electronic beam scanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4(1), 116–122 (2014).
[Crossref]

J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Graphene-based plasmonic switches at near infrared frequencies,” Opt. Express 21(13), 15490–15504 (2013).
[Crossref] [PubMed]

Grigorenko, A. N.

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gu, C.

C. Gu, S. Gao, B. Sanz-Izquierdo, E. A. Parker, W. Li, X. Yang, and Z. Cheng, “Frequency-Agile Beam-Switchable Antenna,” IEEE Trans. Antenn. Propag. 65(8), 3819–3826 (2017).
[Crossref]

Guo, Y.

Y. Guo, T. Zhang, W. Y. Yin, and X. H. Wang, “Improved hybrid FDTD method for studying tunable graphene frequency-selective surfaces (GFSS) for THz-wave applications,” IEEE Trans. Terahertz Sci. Technol. 5(3), 358–367 (2015).
[Crossref]

Gusynin, V. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

Hao, G.

J. Chen, G. Hao, and Q. H. Liu, “Using ADI-FDTD method to simulate graphene-based FSS at terahertz frequency,” IEEE Trans. Electromagn. Compat. 59(4), 1218–1223 (2017).
[Crossref]

Hao, Y.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
[Crossref] [PubMed]

Hu, J.

D. W. Wang, W. S. Zhao, H. Xie, J. Hu, L. Zhou, W. Chen, P. Gao, J. Ye, Y. Xu, and H. Sh, “Tunable THz multiband frequency-selective surface based on hybrid metal-graphene structure,” IEEE Trans. NanoTechnol. 16(6), 1132–1137 (2017).
[Crossref]

Hu, W.

Huang, B.

Huang, B. J.

Huang, J.

J. Huang, J. Yang, H. Zhang, J. Zhang, W. Wu, and S. Chang, “Analysis of tunable flat-top bandpass filter based on graphene,” IEEE Photonics Technol. Lett. 28(23), 2677–2680 (2016).
[Crossref]

Huang, Y.

Y. Huang, L. S. Wu, M. Tang, and J. F. Mao, “Design of a beam reconfigurable THz antenna with graphene-based switchable high-impedance surface,” IEEE Trans. NanoTechnol. 11(4), 836–842 (2012).
[Crossref]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jiang, T.

Jiang, Y. N.

Li, W.

C. Gu, S. Gao, B. Sanz-Izquierdo, E. A. Parker, W. Li, X. Yang, and Z. Cheng, “Frequency-Agile Beam-Switchable Antenna,” IEEE Trans. Antenn. Propag. 65(8), 3819–3826 (2017).
[Crossref]

Li, X.

X. Li, L. Lin, L. Sh. Wu, W. Y. Yin, and J. F. Mao, “A bandpass graphene frequency selective surface with tunable polarization rotation for THz application,” IEEE Trans. Antenn. Propag. 65(2), 662–672 (2017).
[Crossref]

Liao, Y. L.

Lin, L.

X. Li, L. Lin, L. Sh. Wu, W. Y. Yin, and J. F. Mao, “A bandpass graphene frequency selective surface with tunable polarization rotation for THz application,” IEEE Trans. Antenn. Propag. 65(2), 662–672 (2017).
[Crossref]

Lin, Q.

Liu, G. D.

Liu, N.

Liu, Q. H.

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref] [PubMed]

J. Chen, G. Hao, and Q. H. Liu, “Using ADI-FDTD method to simulate graphene-based FSS at terahertz frequency,” IEEE Trans. Electromagn. Compat. 59(4), 1218–1223 (2017).
[Crossref]

Liu, Z.

Lu, W.

Lu, Y.

Maissen, C.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Mao, J. F.

X. Li, L. Lin, L. Sh. Wu, W. Y. Yin, and J. F. Mao, “A bandpass graphene frequency selective surface with tunable polarization rotation for THz application,” IEEE Trans. Antenn. Propag. 65(2), 662–672 (2017).
[Crossref]

Z. Chang, B. You, L. S. Wu, M. Tang, Y. P. Zhang, and J. F. Mao, “A reconfigurable graphene reflectarray for generation of vortex THz waves,” IEEE Antennas Wirel. Propag. Lett. 15, 1537–1540 (2016).
[Crossref]

Y. Huang, L. S. Wu, M. Tang, and J. F. Mao, “Design of a beam reconfigurable THz antenna with graphene-based switchable high-impedance surface,” IEEE Trans. NanoTechnol. 11(4), 836–842 (2012).
[Crossref]

Marshall, O. P.

Milne, W. I.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
[Crossref] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Naeem, M.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
[Crossref] [PubMed]

Nakajima, M.

Niroojazi, M.

M. Niroojazi and T. A. Denidni, “Electronically Sweeping-Beam Antenna Using a New Cylindrical Frequency-Selective Surface,” IEEE Trans. Antenn. Propag. 61(2), 666–676 (2013).
[Crossref]

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Park, H. G.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Parker, E. A.

C. Gu, S. Gao, B. Sanz-Izquierdo, E. A. Parker, W. Li, X. Yang, and Z. Cheng, “Frequency-Agile Beam-Switchable Antenna,” IEEE Trans. Antenn. Propag. 65(8), 3819–3826 (2017).
[Crossref]

Perruisseau-Carrier, J.

M. Esquius-Morote, J. S. Gómez-Díaz, and J. Perruisseau-Carrier, “Sinusoidally modulated graphene leaky-wave antenna for electronic beam scanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4(1), 116–122 (2014).
[Crossref]

J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Graphene-based plasmonic switches at near infrared frequencies,” Opt. Express 21(13), 15490–15504 (2013).
[Crossref] [PubMed]

Qu, S. W.

Y. Yao, X. H. Cheng, S. W. Qu, J. S. Yu, and X. D. Chen, “Graphene-metal based tunable band-pass filters in the terahertz band,” IET Microw. Antennas Propag. 10(14), 1570–1575 (2016).
[Crossref]

Rodriguez, F. J.

Sanz-Izquierdo, B.

C. Gu, S. Gao, B. Sanz-Izquierdo, E. A. Parker, W. Li, X. Yang, and Z. Cheng, “Frequency-Agile Beam-Switchable Antenna,” IEEE Trans. Antenn. Propag. 65(8), 3819–3826 (2017).
[Crossref]

Scalari, G.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Schönenberger, C.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Sh, H.

D. W. Wang, W. S. Zhao, H. Xie, J. Hu, L. Zhou, W. Chen, P. Gao, J. Ye, Y. Xu, and H. Sh, “Tunable THz multiband frequency-selective surface based on hybrid metal-graphene structure,” IEEE Trans. NanoTechnol. 16(6), 1132–1137 (2017).
[Crossref]

Sharapov, S. G.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

Song, Z.

Tang, M.

Z. Chang, B. You, L. S. Wu, M. Tang, Y. P. Zhang, and J. F. Mao, “A reconfigurable graphene reflectarray for generation of vortex THz waves,” IEEE Antennas Wirel. Propag. Lett. 15, 1537–1540 (2016).
[Crossref]

Y. Huang, L. S. Wu, M. Tang, and J. F. Mao, “Design of a beam reconfigurable THz antenna with graphene-based switchable high-impedance surface,” IEEE Trans. NanoTechnol. 11(4), 836–842 (2012).
[Crossref]

Tang, M. C.

Tuncer, H. M.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
[Crossref] [PubMed]

Valmorra, F.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Wang, D. W.

D. W. Wang, W. S. Zhao, H. Xie, J. Hu, L. Zhou, W. Chen, P. Gao, J. Ye, Y. Xu, and H. Sh, “Tunable THz multiband frequency-selective surface based on hybrid metal-graphene structure,” IEEE Trans. NanoTechnol. 16(6), 1132–1137 (2017).
[Crossref]

Wang, L.

Wang, L. L.

Wang, X. H.

Y. Guo, T. Zhang, W. Y. Yin, and X. H. Wang, “Improved hybrid FDTD method for studying tunable graphene frequency-selective surfaces (GFSS) for THz-wave applications,” IEEE Trans. Terahertz Sci. Technol. 5(3), 358–367 (2015).
[Crossref]

Wu, B.

Y. T. Zhao, B. Wu, B. J. Huang, and Q. Cheng, “Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface,” Opt. Express 25(7), 7161–7169 (2017).
[Crossref] [PubMed]

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
[Crossref] [PubMed]

Wu, L. S.

Z. Chang, B. You, L. S. Wu, M. Tang, Y. P. Zhang, and J. F. Mao, “A reconfigurable graphene reflectarray for generation of vortex THz waves,” IEEE Antennas Wirel. Propag. Lett. 15, 1537–1540 (2016).
[Crossref]

Y. Huang, L. S. Wu, M. Tang, and J. F. Mao, “Design of a beam reconfigurable THz antenna with graphene-based switchable high-impedance surface,” IEEE Trans. NanoTechnol. 11(4), 836–842 (2012).
[Crossref]

Wu, L. Sh.

X. Li, L. Lin, L. Sh. Wu, W. Y. Yin, and J. F. Mao, “A bandpass graphene frequency selective surface with tunable polarization rotation for THz application,” IEEE Trans. Antenn. Propag. 65(2), 662–672 (2017).
[Crossref]

Wu, Q.

L. Zhang, Q. Wu, and T. A. Denidni, “Electronically Radiation Pattern Steerable Antennas Using Active Frequency Selective Surfaces,” IEEE Trans. Antenn. Propag. 61(12), 6000–6007 (2013).
[Crossref]

Wu, W.

J. Huang, J. Yang, H. Zhang, J. Zhang, W. Wu, and S. Chang, “Analysis of tunable flat-top bandpass filter based on graphene,” IEEE Photonics Technol. Lett. 28(23), 2677–2680 (2016).
[Crossref]

Wu, Y. B.

Xia, S. X.

Xie, H.

D. W. Wang, W. S. Zhao, H. Xie, J. Hu, L. Zhou, W. Chen, P. Gao, J. Ye, Y. Xu, and H. Sh, “Tunable THz multiband frequency-selective surface based on hybrid metal-graphene structure,” IEEE Trans. NanoTechnol. 16(6), 1132–1137 (2017).
[Crossref]

Xiong, H.

Xu, Y.

D. W. Wang, W. S. Zhao, H. Xie, J. Hu, L. Zhou, W. Chen, P. Gao, J. Ye, Y. Xu, and H. Sh, “Tunable THz multiband frequency-selective surface based on hybrid metal-graphene structure,” IEEE Trans. NanoTechnol. 16(6), 1132–1137 (2017).
[Crossref]

Xu, Z.

Z. Xu, X. D. Dong, and J. Bornemann, “Design of a reconfigurable MIMO system for THz communication based on graphene antenna,” IEEE Trans. Terahertz Sci. Technol. 4(5), 609–617 (2014).
[Crossref]

Yang, B.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
[Crossref] [PubMed]

Yang, J.

J. Huang, J. Yang, H. Zhang, J. Zhang, W. Wu, and S. Chang, “Analysis of tunable flat-top bandpass filter based on graphene,” IEEE Photonics Technol. Lett. 28(23), 2677–2680 (2016).
[Crossref]

Yang, X.

C. Gu, S. Gao, B. Sanz-Izquierdo, E. A. Parker, W. Li, X. Yang, and Z. Cheng, “Frequency-Agile Beam-Switchable Antenna,” IEEE Trans. Antenn. Propag. 65(8), 3819–3826 (2017).
[Crossref]

Yao, Y.

Y. Yao, X. H. Cheng, S. W. Qu, J. S. Yu, and X. D. Chen, “Graphene-metal based tunable band-pass filters in the terahertz band,” IET Microw. Antennas Propag. 10(14), 1570–1575 (2016).
[Crossref]

Ye, J.

D. W. Wang, W. S. Zhao, H. Xie, J. Hu, L. Zhou, W. Chen, P. Gao, J. Ye, Y. Xu, and H. Sh, “Tunable THz multiband frequency-selective surface based on hybrid metal-graphene structure,” IEEE Trans. NanoTechnol. 16(6), 1132–1137 (2017).
[Crossref]

Ye, L.

Yin, W. Y.

X. Li, L. Lin, L. Sh. Wu, W. Y. Yin, and J. F. Mao, “A bandpass graphene frequency selective surface with tunable polarization rotation for THz application,” IEEE Trans. Antenn. Propag. 65(2), 662–672 (2017).
[Crossref]

Y. Guo, T. Zhang, W. Y. Yin, and X. H. Wang, “Improved hybrid FDTD method for studying tunable graphene frequency-selective surfaces (GFSS) for THz-wave applications,” IEEE Trans. Terahertz Sci. Technol. 5(3), 358–367 (2015).
[Crossref]

You, B.

Z. Chang, B. You, L. S. Wu, M. Tang, Y. P. Zhang, and J. F. Mao, “A reconfigurable graphene reflectarray for generation of vortex THz waves,” IEEE Antennas Wirel. Propag. Lett. 15, 1537–1540 (2016).
[Crossref]

Yu, J. S.

Y. Yao, X. H. Cheng, S. W. Qu, J. S. Yu, and X. D. Chen, “Graphene-metal based tunable band-pass filters in the terahertz band,” IET Microw. Antennas Propag. 10(14), 1570–1575 (2016).
[Crossref]

Zeng, X. P.

Zhai, X.

Zhang, H.

J. Huang, J. Yang, H. Zhang, J. Zhang, W. Wu, and S. Chang, “Analysis of tunable flat-top bandpass filter based on graphene,” IEEE Photonics Technol. Lett. 28(23), 2677–2680 (2016).
[Crossref]

Zhang, J.

J. Huang, J. Yang, H. Zhang, J. Zhang, W. Wu, and S. Chang, “Analysis of tunable flat-top bandpass filter based on graphene,” IEEE Photonics Technol. Lett. 28(23), 2677–2680 (2016).
[Crossref]

Zhang, L.

L. Zhang, Q. Wu, and T. A. Denidni, “Electronically Radiation Pattern Steerable Antennas Using Active Frequency Selective Surfaces,” IEEE Trans. Antenn. Propag. 61(12), 6000–6007 (2013).
[Crossref]

Zhang, T.

Y. Guo, T. Zhang, W. Y. Yin, and X. H. Wang, “Improved hybrid FDTD method for studying tunable graphene frequency-selective surfaces (GFSS) for THz-wave applications,” IEEE Trans. Terahertz Sci. Technol. 5(3), 358–367 (2015).
[Crossref]

Zhang, Y.

Zhang, Y. P.

Z. Chang, B. You, L. S. Wu, M. Tang, Y. P. Zhang, and J. F. Mao, “A reconfigurable graphene reflectarray for generation of vortex THz waves,” IEEE Antennas Wirel. Propag. Lett. 15, 1537–1540 (2016).
[Crossref]

Zhao, C. J.

Zhao, J.

Zhao, W. S.

D. W. Wang, W. S. Zhao, H. Xie, J. Hu, L. Zhou, W. Chen, P. Gao, J. Ye, Y. Xu, and H. Sh, “Tunable THz multiband frequency-selective surface based on hybrid metal-graphene structure,” IEEE Trans. NanoTechnol. 16(6), 1132–1137 (2017).
[Crossref]

Zhao, Y.

Zhao, Y. T.

Zhou, L.

D. W. Wang, W. S. Zhao, H. Xie, J. Hu, L. Zhou, W. Chen, P. Gao, J. Ye, Y. Xu, and H. Sh, “Tunable THz multiband frequency-selective surface based on hybrid metal-graphene structure,” IEEE Trans. NanoTechnol. 16(6), 1132–1137 (2017).
[Crossref]

Zhu, B.

Zhu, J.

IEEE Antennas Wirel. Propag. Lett. (1)

Z. Chang, B. You, L. S. Wu, M. Tang, Y. P. Zhang, and J. F. Mao, “A reconfigurable graphene reflectarray for generation of vortex THz waves,” IEEE Antennas Wirel. Propag. Lett. 15, 1537–1540 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Huang, J. Yang, H. Zhang, J. Zhang, W. Wu, and S. Chang, “Analysis of tunable flat-top bandpass filter based on graphene,” IEEE Photonics Technol. Lett. 28(23), 2677–2680 (2016).
[Crossref]

IEEE Trans. Antenn. Propag. (5)

X. Li, L. Lin, L. Sh. Wu, W. Y. Yin, and J. F. Mao, “A bandpass graphene frequency selective surface with tunable polarization rotation for THz application,” IEEE Trans. Antenn. Propag. 65(2), 662–672 (2017).
[Crossref]

W. Fuscaldo, P. Burghignoli, P. Baccarelli, and A. Galli, “Graphene Fabry-Perot cavity leaky-wave antennas: Plasmonic versus nonplasmonic solutions,” IEEE Trans. Antenn. Propag. 65(4), 1651–1660 (2017).
[Crossref]

L. Zhang, Q. Wu, and T. A. Denidni, “Electronically Radiation Pattern Steerable Antennas Using Active Frequency Selective Surfaces,” IEEE Trans. Antenn. Propag. 61(12), 6000–6007 (2013).
[Crossref]

M. Niroojazi and T. A. Denidni, “Electronically Sweeping-Beam Antenna Using a New Cylindrical Frequency-Selective Surface,” IEEE Trans. Antenn. Propag. 61(2), 666–676 (2013).
[Crossref]

C. Gu, S. Gao, B. Sanz-Izquierdo, E. A. Parker, W. Li, X. Yang, and Z. Cheng, “Frequency-Agile Beam-Switchable Antenna,” IEEE Trans. Antenn. Propag. 65(8), 3819–3826 (2017).
[Crossref]

IEEE Trans. Electromagn. Compat. (1)

J. Chen, G. Hao, and Q. H. Liu, “Using ADI-FDTD method to simulate graphene-based FSS at terahertz frequency,” IEEE Trans. Electromagn. Compat. 59(4), 1218–1223 (2017).
[Crossref]

IEEE Trans. NanoTechnol. (2)

D. W. Wang, W. S. Zhao, H. Xie, J. Hu, L. Zhou, W. Chen, P. Gao, J. Ye, Y. Xu, and H. Sh, “Tunable THz multiband frequency-selective surface based on hybrid metal-graphene structure,” IEEE Trans. NanoTechnol. 16(6), 1132–1137 (2017).
[Crossref]

Y. Huang, L. S. Wu, M. Tang, and J. F. Mao, “Design of a beam reconfigurable THz antenna with graphene-based switchable high-impedance surface,” IEEE Trans. NanoTechnol. 11(4), 836–842 (2012).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (3)

Z. Xu, X. D. Dong, and J. Bornemann, “Design of a reconfigurable MIMO system for THz communication based on graphene antenna,” IEEE Trans. Terahertz Sci. Technol. 4(5), 609–617 (2014).
[Crossref]

M. Esquius-Morote, J. S. Gómez-Díaz, and J. Perruisseau-Carrier, “Sinusoidally modulated graphene leaky-wave antenna for electronic beam scanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4(1), 116–122 (2014).
[Crossref]

Y. Guo, T. Zhang, W. Y. Yin, and X. H. Wang, “Improved hybrid FDTD method for studying tunable graphene frequency-selective surfaces (GFSS) for THz-wave applications,” IEEE Trans. Terahertz Sci. Technol. 5(3), 358–367 (2015).
[Crossref]

IET Microw. Antennas Propag. (1)

Y. Yao, X. H. Cheng, S. W. Qu, J. S. Yu, and X. D. Chen, “Graphene-metal based tunable band-pass filters in the terahertz band,” IET Microw. Antennas Propag. 10(14), 1570–1575 (2016).
[Crossref]

J. Phys. Condens. Matter (1)

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

Nano Lett. (1)

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Opt. Express (11)

J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Graphene-based plasmonic switches at near infrared frequencies,” Opt. Express 21(13), 15490–15504 (2013).
[Crossref] [PubMed]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
[Crossref] [PubMed]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation,” Opt. Express 23(21), 27230–27239 (2015).
[Crossref] [PubMed]

Y. T. Zhao, B. Wu, B. J. Huang, and Q. Cheng, “Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface,” Opt. Express 25(7), 7161–7169 (2017).
[Crossref] [PubMed]

D. E. Aznakayeva, F. J. Rodriguez, O. P. Marshall, and A. N. Grigorenko, “Graphene light modulators working at near-infrared wavelengths,” Opt. Express 25(9), 10255–10260 (2017).
[Crossref] [PubMed]

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref] [PubMed]

L. Wang, S. Ge, W. Hu, M. Nakajima, and Y. Lu, “Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber,” Opt. Express 25(20), 23873–23879 (2017).
[Crossref] [PubMed]

G. D. Liu, X. Zhai, S. X. Xia, Q. Lin, C. J. Zhao, and L. L. Wang, “Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface,” Opt. Express 25(21), 26045–26054 (2017).
[Crossref] [PubMed]

Y. L. Liao and Y. Zhao, “Graphene-based tunable ultra-narrowband mid-infrared TE-polarization absorber,” Opt. Express 25(25), 32080–32089 (2017).
[Crossref] [PubMed]

H. Xiong, Y. B. Wu, J. Dong, M. C. Tang, Y. N. Jiang, and X. P. Zeng, “Ultra-thin and broadband tunable metamaterial graphene absorber,” Opt. Express 26(2), 1681–1688 (2018).
[Crossref] [PubMed]

B. Huang, W. Lu, Z. Liu, and S. Gao, “Low-energy high-speed plasmonic enhanced modulator using graphene,” Opt. Express 26(6), 7358–7367 (2018).
[Crossref] [PubMed]

Sci. Rep. (1)

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
[Crossref] [PubMed]

Science (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of (a) 3D view, and (b) top view of the proposed AFSS unit cell. The relevant geometrical dimensions are l = 50, a1 = 44, a2 = 22, a3 = 7, d = 48, s = 2, all in μm. The thickness of the silicon dioxide, p-type Si, foam substrate are t1 = 0.3μm, t2 = 5μm, t3 = 6μm, respectively. (c) Structure of the gold feed lines under the p-type Si layer. A direct current (DC) bias voltage is applied between the fractal gold ring on the graphene sheet and gold lines under the p-type Si to change the surface conductivity of graphene.
Fig. 2
Fig. 2 Surface current distribution on the gold ring, electric field on the P-type Si, and equivalent circuit of the AFSS unit cell at (a) 0.89THz; (b) 1.44THz; (c) 2.11THz.
Fig. 3
Fig. 3 (a)The reflection coefficients, and (b) transmission coefficients of the AFSS unit cell with different chemical potentials; (c)The reflection and transmission coefficient with various incident angles from 0° to 40° for TE polarization when μc = 0eV.
Fig. 4
Fig. 4 (a) 3D view of the proposed beam steering THz antenna. (b) Front view of the proposed beam steering THz antenna. (c) Reflection coefficient of the omnidirectional antenna, with the operating frequency around 1.44THz, and geometry of the omnidirectional monopole antenna. The relevant geometrical dimensions are W = 40μm, L = 69μm, a = 20μm, b = 29μm. (d) Radiation patterns of the original omnidirectional antenna in both the azimuth and horizontal planes.
Fig. 5
Fig. 5 (a) Topologies of the beam steering antenna under three different ON/OFF states. (b) Radiation patterns in the azimuth plane of Case A with different states. (c) Radiation patterns in the azimuth plane of Case A with different chemical potentials; (d) Radiation patterns in the azimuth plane of Case B. (e) Radiation patterns in the azimuth plane of Case C.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

μ c v f π ε r ε 0 V dc e t s

Metrics