Abstract

In this article, we reported self-pumped stimulated Brillouin scattering (SBS)-induced fast light in a micro-resonator. The optically induced thermal effect in the micro-resonator will lead to a shift of the dispersion spectrum and make the SBS gain occurred in the anomalous dispersion regime. The group delay could be experimentally optimized from −91.0 microsecond to 2.6 microsecond by changing the modulation frequency in a microsphere with its diameter of 175 μm. The experimental results will benefit applications utilizing anomalous dispersion such as gyroscope.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Low-threshold stimulated Brillouin scattering in high-Q whispering gallery mode tellurite microspheres

Changlei Guo, Kaijun Che, Pan Zhang, Jinshu Wu, Yantang Huang, Huiying Xu, and Zhiping Cai
Opt. Express 23(25) 32261-32266 (2015)

Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits

Benjamin J. Eggleton, Christopher G. Poulton, and Ravi Pant
Adv. Opt. Photon. 5(4) 536-587 (2013)

High-fidelity, broadband stimulated-Brillouin-scattering-based slow light using fast noise modulation

Yunhui Zhu, Myungjun Lee, Mark A. Neifeld, and Daniel J. Gauthier
Opt. Express 19(2) 687-697 (2011)

References

  • View by:
  • |
  • |
  • |

  1. E. Abbott and D. Powell, “Land-vehicle navigation using GPS,” Proc. IEEE 87(1), 145–162 (1999).
    [Crossref]
  2. N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell, “A survey of mobile phone sensing,” IEEE Commun. Mag. 48(9), 140–150 (2010).
    [Crossref]
  3. H. Yoon and P. Tsiotras, “Spacecraft adaptive attitude and power tracking with variable speed control moment gyroscopes,” J. Guid. Control Dyn. 25(6), 1081–1090 (2002).
    [Crossref]
  4. B. Culshaw, “The optical fibre Sagnac interferometer:an overview of its principles and applications,” Meas. Sci. Technol. 17(1), R1–R16 (2006).
    [Crossref]
  5. I. Ciufolini and E. C. Pavlis, “A confirmation of the general relativistic prediction of the Lense-Thirring effect,” Nature 431(7011), 958–960 (2004).
    [Crossref] [PubMed]
  6. F. Bosi, G. Cella, A. D. Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio, J. P. Zendri, M. Allegrini, J. Belfi, N. Beverini, B. Bouhadef, G. Carelli, I. Ferrante, E. Maccioni, R. Passaquieti, F. Stefani, M. L. Ruggiero, A. Tartaglia, K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Measuring gravito-magnetic effects by multi ring-laser gyroscope,” Phys. Rev. D Part. Fields Gravit. Cosmol. 84(12), 12 (2011).
    [Crossref]
  7. M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
    [Crossref]
  8. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [Crossref]
  9. B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
    [Crossref] [PubMed]
  10. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29(19), 2291–2293 (2004).
    [Crossref] [PubMed]
  11. G. Zhang, F. Bo, R. Dong, and J. Xu, “Phase-coupling-induced ultraslow light propagation in solids at room temperature,” Phys. Rev. Lett. 93(13), 133903 (2004).
    [Crossref] [PubMed]
  12. F. Gao, J. Xu, G. Q. Zhang, F. Bo, and H. Liu, “Paraxial energy transport of a focused Gaussian beam in ruby with nondegenerate two-wave coupling like mechanism,” Appl. Phys. Lett. 92(2), 021121 (2008).
    [Crossref]
  13. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
    [Crossref] [PubMed]
  14. M. González-Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87(8), 081113 (2005).
    [Crossref]
  15. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS Slow Light in an Optical Fiber,” J. Lightwave Technol. 25(1), 201–206 (2007).
    [Crossref]
  16. L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
    [Crossref]
  17. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13(16), 6234–6249 (2005).
    [Crossref] [PubMed]
  18. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
    [Crossref] [PubMed]
  19. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
    [Crossref] [PubMed]
  20. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
    [Crossref]
  21. B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photonics 5(4), 536–587 (2013).
    [Crossref]
  22. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  23. Y. P. Gao, C. Cao, T. J. Wang, Y. Zhang, and C. Wang, “Cavity-mediated coupling of phonons and magnons,” Phys. Rev. A 96(2), 023826 (2017).
    [Crossref]
  24. X. F. Liu, T. J. Wang, and C. Wang, “Optothermal control of gains in erbium-doped whispering-gallery microresonators,” Opt. Lett. 43(2), 326–329 (2018).
    [Crossref] [PubMed]
  25. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
    [Crossref]
  26. C. Guo, K. Che, Z. Cai, S. Liu, G. Gu, C. Chu, P. Zhang, H. Fu, Z. Luo, and H. Xu, “Ultralow-threshold cascaded Brillouin microlaser for tunable microwave generation,” Opt. Lett. 40(21), 4971–4974 (2015).
    [Crossref] [PubMed]
  27. T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
    [Crossref] [PubMed]
  28. M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102(11), 113601 (2009).
    [Crossref] [PubMed]
  29. E. S. Fry, Y. Emery, X. Quan, and J. W. Katz, “Accuracy limitations on Brillouin lidar measurements of temperature and sound speed in the ocean,” Appl. Opt. 36(27), 6887–6894 (1997).
    [Crossref] [PubMed]
  30. E. Fry, J. Katz, D. Liu, and T. Walther, “Temperature dependence of the Brillouin linewidth in water,” J. Mod. Opt. 49(3-4), 411–418 (2002).
    [Crossref]

2018 (1)

2017 (1)

Y. P. Gao, C. Cao, T. J. Wang, Y. Zhang, and C. Wang, “Cavity-mediated coupling of phonons and magnons,” Phys. Rev. A 96(2), 023826 (2017).
[Crossref]

2015 (1)

2014 (1)

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

2013 (1)

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photonics 5(4), 536–587 (2013).
[Crossref]

2012 (1)

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

2011 (1)

F. Bosi, G. Cella, A. D. Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio, J. P. Zendri, M. Allegrini, J. Belfi, N. Beverini, B. Bouhadef, G. Carelli, I. Ferrante, E. Maccioni, R. Passaquieti, F. Stefani, M. L. Ruggiero, A. Tartaglia, K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Measuring gravito-magnetic effects by multi ring-laser gyroscope,” Phys. Rev. D Part. Fields Gravit. Cosmol. 84(12), 12 (2011).
[Crossref]

2010 (1)

N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell, “A survey of mobile phone sensing,” IEEE Commun. Mag. 48(9), 140–150 (2010).
[Crossref]

2009 (1)

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102(11), 113601 (2009).
[Crossref] [PubMed]

2008 (2)

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[Crossref]

F. Gao, J. Xu, G. Q. Zhang, F. Bo, and H. Liu, “Paraxial energy transport of a focused Gaussian beam in ruby with nondegenerate two-wave coupling like mechanism,” Appl. Phys. Lett. 92(2), 021121 (2008).
[Crossref]

2007 (3)

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
[Crossref]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS Slow Light in an Optical Fiber,” J. Lightwave Technol. 25(1), 201–206 (2007).
[Crossref]

2006 (1)

B. Culshaw, “The optical fibre Sagnac interferometer:an overview of its principles and applications,” Meas. Sci. Technol. 17(1), R1–R16 (2006).
[Crossref]

2005 (5)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

M. González-Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87(8), 081113 (2005).
[Crossref]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13(16), 6234–6249 (2005).
[Crossref] [PubMed]

2004 (4)

P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29(19), 2291–2293 (2004).
[Crossref] [PubMed]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref] [PubMed]

I. Ciufolini and E. C. Pavlis, “A confirmation of the general relativistic prediction of the Lense-Thirring effect,” Nature 431(7011), 958–960 (2004).
[Crossref] [PubMed]

G. Zhang, F. Bo, R. Dong, and J. Xu, “Phase-coupling-induced ultraslow light propagation in solids at room temperature,” Phys. Rev. Lett. 93(13), 133903 (2004).
[Crossref] [PubMed]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

2002 (2)

H. Yoon and P. Tsiotras, “Spacecraft adaptive attitude and power tracking with variable speed control moment gyroscopes,” J. Guid. Control Dyn. 25(6), 1081–1090 (2002).
[Crossref]

E. Fry, J. Katz, D. Liu, and T. Walther, “Temperature dependence of the Brillouin linewidth in water,” J. Mod. Opt. 49(3-4), 411–418 (2002).
[Crossref]

1999 (2)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

E. Abbott and D. Powell, “Land-vehicle navigation using GPS,” Proc. IEEE 87(1), 145–162 (1999).
[Crossref]

1997 (1)

Abbott, E.

E. Abbott and D. Powell, “Land-vehicle navigation using GPS,” Proc. IEEE 87(1), 145–162 (1999).
[Crossref]

Allegrini, M.

F. Bosi, G. Cella, A. D. Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio, J. P. Zendri, M. Allegrini, J. Belfi, N. Beverini, B. Bouhadef, G. Carelli, I. Ferrante, E. Maccioni, R. Passaquieti, F. Stefani, M. L. Ruggiero, A. Tartaglia, K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Measuring gravito-magnetic effects by multi ring-laser gyroscope,” Phys. Rev. D Part. Fields Gravit. Cosmol. 84(12), 12 (2011).
[Crossref]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Belfi, J.

F. Bosi, G. Cella, A. D. Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio, J. P. Zendri, M. Allegrini, J. Belfi, N. Beverini, B. Bouhadef, G. Carelli, I. Ferrante, E. Maccioni, R. Passaquieti, F. Stefani, M. L. Ruggiero, A. Tartaglia, K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Measuring gravito-magnetic effects by multi ring-laser gyroscope,” Phys. Rev. D Part. Fields Gravit. Cosmol. 84(12), 12 (2011).
[Crossref]

Beverini, N.

F. Bosi, G. Cella, A. D. Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio, J. P. Zendri, M. Allegrini, J. Belfi, N. Beverini, B. Bouhadef, G. Carelli, I. Ferrante, E. Maccioni, R. Passaquieti, F. Stefani, M. L. Ruggiero, A. Tartaglia, K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Measuring gravito-magnetic effects by multi ring-laser gyroscope,” Phys. Rev. D Part. Fields Gravit. Cosmol. 84(12), 12 (2011).
[Crossref]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Bo, F.

F. Gao, J. Xu, G. Q. Zhang, F. Bo, and H. Liu, “Paraxial energy transport of a focused Gaussian beam in ruby with nondegenerate two-wave coupling like mechanism,” Appl. Phys. Lett. 92(2), 021121 (2008).
[Crossref]

G. Zhang, F. Bo, R. Dong, and J. Xu, “Phase-coupling-induced ultraslow light propagation in solids at room temperature,” Phys. Rev. Lett. 93(13), 133903 (2004).
[Crossref] [PubMed]

Bogaerts, W.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref] [PubMed]

Bosi, F.

F. Bosi, G. Cella, A. D. Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio, J. P. Zendri, M. Allegrini, J. Belfi, N. Beverini, B. Bouhadef, G. Carelli, I. Ferrante, E. Maccioni, R. Passaquieti, F. Stefani, M. L. Ruggiero, A. Tartaglia, K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Measuring gravito-magnetic effects by multi ring-laser gyroscope,” Phys. Rev. D Part. Fields Gravit. Cosmol. 84(12), 12 (2011).
[Crossref]

Bouhadef, B.

F. Bosi, G. Cella, A. D. Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio, J. P. Zendri, M. Allegrini, J. Belfi, N. Beverini, B. Bouhadef, G. Carelli, I. Ferrante, E. Maccioni, R. Passaquieti, F. Stefani, M. L. Ruggiero, A. Tartaglia, K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Measuring gravito-magnetic effects by multi ring-laser gyroscope,” Phys. Rev. D Part. Fields Gravit. Cosmol. 84(12), 12 (2011).
[Crossref]

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Cai, Z.

Campbell, A. T.

N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell, “A survey of mobile phone sensing,” IEEE Commun. Mag. 48(9), 140–150 (2010).
[Crossref]

Cao, C.

Y. P. Gao, C. Cao, T. J. Wang, Y. Zhang, and C. Wang, “Cavity-mediated coupling of phonons and magnons,” Phys. Rev. A 96(2), 023826 (2017).
[Crossref]

Carelli, G.

F. Bosi, G. Cella, A. D. Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio, J. P. Zendri, M. Allegrini, J. Belfi, N. Beverini, B. Bouhadef, G. Carelli, I. Ferrante, E. Maccioni, R. Passaquieti, F. Stefani, M. L. Ruggiero, A. Tartaglia, K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Measuring gravito-magnetic effects by multi ring-laser gyroscope,” Phys. Rev. D Part. Fields Gravit. Cosmol. 84(12), 12 (2011).
[Crossref]

Carmon, T.

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102(11), 113601 (2009).
[Crossref] [PubMed]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref] [PubMed]

Cella, G.

F. Bosi, G. Cella, A. D. Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio, J. P. Zendri, M. Allegrini, J. Belfi, N. Beverini, B. Bouhadef, G. Carelli, I. Ferrante, E. Maccioni, R. Passaquieti, F. Stefani, M. L. Ruggiero, A. Tartaglia, K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Measuring gravito-magnetic effects by multi ring-laser gyroscope,” Phys. Rev. D Part. Fields Gravit. Cosmol. 84(12), 12 (2011).
[Crossref]

Cerdonio, M.

F. Bosi, G. Cella, A. D. Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio, J. P. Zendri, M. Allegrini, J. Belfi, N. Beverini, B. Bouhadef, G. Carelli, I. Ferrante, E. Maccioni, R. Passaquieti, F. Stefani, M. L. Ruggiero, A. Tartaglia, K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Measuring gravito-magnetic effects by multi ring-laser gyroscope,” Phys. Rev. D Part. Fields Gravit. Cosmol. 84(12), 12 (2011).
[Crossref]

Chang, S. W.

Chang-Hasnain, C. J.

Che, K.

Chen, T.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Chen, W.

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

Choudhury, T.

N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell, “A survey of mobile phone sensing,” IEEE Commun. Mag. 48(9), 140–150 (2010).
[Crossref]

Chu, C.

Chuang, S. L.

Ciufolini, I.

I. Ciufolini and E. C. Pavlis, “A confirmation of the general relativistic prediction of the Lense-Thirring effect,” Nature 431(7011), 958–960 (2004).
[Crossref] [PubMed]

Culshaw, B.

B. Culshaw, “The optical fibre Sagnac interferometer:an overview of its principles and applications,” Meas. Sci. Technol. 17(1), R1–R16 (2006).
[Crossref]

Dahan, D.

Dawes, A. M. C.

Dong, R.

G. Zhang, F. Bo, R. Dong, and J. Xu, “Phase-coupling-induced ultraslow light propagation in solids at room temperature,” Phys. Rev. Lett. 93(13), 133903 (2004).
[Crossref] [PubMed]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photonics 5(4), 536–587 (2013).
[Crossref]

Eisenstein, G.

Emery, Y.

Engelen, R. J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref] [PubMed]

Ferrante, I.

F. Bosi, G. Cella, A. D. Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio, J. P. Zendri, M. Allegrini, J. Belfi, N. Beverini, B. Bouhadef, G. Carelli, I. Ferrante, E. Maccioni, R. Passaquieti, F. Stefani, M. L. Ruggiero, A. Tartaglia, K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Measuring gravito-magnetic effects by multi ring-laser gyroscope,” Phys. Rev. D Part. Fields Gravit. Cosmol. 84(12), 12 (2011).
[Crossref]

Fry, E.

E. Fry, J. Katz, D. Liu, and T. Walther, “Temperature dependence of the Brillouin linewidth in water,” J. Mod. Opt. 49(3-4), 411–418 (2002).
[Crossref]

Fry, E. S.

Fu, H.

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Gao, F.

F. Gao, J. Xu, G. Q. Zhang, F. Bo, and H. Liu, “Paraxial energy transport of a focused Gaussian beam in ruby with nondegenerate two-wave coupling like mechanism,” Appl. Phys. Lett. 92(2), 021121 (2008).
[Crossref]

Gao, Y. P.

Y. P. Gao, C. Cao, T. J. Wang, Y. Zhang, and C. Wang, “Cavity-mediated coupling of phonons and magnons,” Phys. Rev. A 96(2), 023826 (2017).
[Crossref]

Gauthier, D. J.

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS Slow Light in an Optical Fiber,” J. Lightwave Technol. 25(1), 201–206 (2007).
[Crossref]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Gebauer, A.

F. Bosi, G. Cella, A. D. Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio, J. P. Zendri, M. Allegrini, J. Belfi, N. Beverini, B. Bouhadef, G. Carelli, I. Ferrante, E. Maccioni, R. Passaquieti, F. Stefani, M. L. Ruggiero, A. Tartaglia, K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Measuring gravito-magnetic effects by multi ring-laser gyroscope,” Phys. Rev. D Part. Fields Gravit. Cosmol. 84(12), 12 (2011).
[Crossref]

Gersen, H.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref] [PubMed]

González-Herráez, M.

M. González-Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87(8), 081113 (2005).
[Crossref]

Gopal, V.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

Gu, G.

Guo, C.

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Karle, T. J.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref] [PubMed]

Katz, J.

E. Fry, J. Katz, D. Liu, and T. Walther, “Temperature dependence of the Brillouin linewidth in water,” J. Mod. Opt. 49(3-4), 411–418 (2002).
[Crossref]

Katz, J. W.

Korterik, J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref] [PubMed]

Krauss, T. F.

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
[Crossref]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref] [PubMed]

Ku, P. C.

Kuipers, L.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref] [PubMed]

Lane, N. D.

N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell, “A survey of mobile phone sensing,” IEEE Commun. Mag. 48(9), 140–150 (2010).
[Crossref]

Lee, H.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Li, J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Li, T.

Liu, D.

E. Fry, J. Katz, D. Liu, and T. Walther, “Temperature dependence of the Brillouin linewidth in water,” J. Mod. Opt. 49(3-4), 411–418 (2002).
[Crossref]

Liu, H.

F. Gao, J. Xu, G. Q. Zhang, F. Bo, and H. Liu, “Paraxial energy transport of a focused Gaussian beam in ruby with nondegenerate two-wave coupling like mechanism,” Appl. Phys. Lett. 92(2), 021121 (2008).
[Crossref]

Liu, S.

Liu, X. F.

Lu, H.

N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell, “A survey of mobile phone sensing,” IEEE Commun. Mag. 48(9), 140–150 (2010).
[Crossref]

Luo, Z.

Maccioni, E.

F. Bosi, G. Cella, A. D. Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio, J. P. Zendri, M. Allegrini, J. Belfi, N. Beverini, B. Bouhadef, G. Carelli, I. Ferrante, E. Maccioni, R. Passaquieti, F. Stefani, M. L. Ruggiero, A. Tartaglia, K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Measuring gravito-magnetic effects by multi ring-laser gyroscope,” Phys. Rev. D Part. Fields Gravit. Cosmol. 84(12), 12 (2011).
[Crossref]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Messall, M.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

Miluzzo, E.

N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell, “A survey of mobile phone sensing,” IEEE Commun. Mag. 48(9), 140–150 (2010).
[Crossref]

Nori, F.

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Ortolan, A.

F. Bosi, G. Cella, A. D. Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio, J. P. Zendri, M. Allegrini, J. Belfi, N. Beverini, B. Bouhadef, G. Carelli, I. Ferrante, E. Maccioni, R. Passaquieti, F. Stefani, M. L. Ruggiero, A. Tartaglia, K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Measuring gravito-magnetic effects by multi ring-laser gyroscope,” Phys. Rev. D Part. Fields Gravit. Cosmol. 84(12), 12 (2011).
[Crossref]

Özdemir, S. K.

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

Painter, O.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Palinginis, P.

Pant, R.

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photonics 5(4), 536–587 (2013).
[Crossref]

Passaquieti, R.

F. Bosi, G. Cella, A. D. Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio, J. P. Zendri, M. Allegrini, J. Belfi, N. Beverini, B. Bouhadef, G. Carelli, I. Ferrante, E. Maccioni, R. Passaquieti, F. Stefani, M. L. Ruggiero, A. Tartaglia, K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Measuring gravito-magnetic effects by multi ring-laser gyroscope,” Phys. Rev. D Part. Fields Gravit. Cosmol. 84(12), 12 (2011).
[Crossref]

Pati, G. S.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

Pavlis, E. C.

I. Ciufolini and E. C. Pavlis, “A confirmation of the general relativistic prediction of the Lense-Thirring effect,” Nature 431(7011), 958–960 (2004).
[Crossref] [PubMed]

Peebles, D.

N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell, “A survey of mobile phone sensing,” IEEE Commun. Mag. 48(9), 140–150 (2010).
[Crossref]

Peng, B.

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

Porzio, A.

F. Bosi, G. Cella, A. D. Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio, J. P. Zendri, M. Allegrini, J. Belfi, N. Beverini, B. Bouhadef, G. Carelli, I. Ferrante, E. Maccioni, R. Passaquieti, F. Stefani, M. L. Ruggiero, A. Tartaglia, K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Measuring gravito-magnetic effects by multi ring-laser gyroscope,” Phys. Rev. D Part. Fields Gravit. Cosmol. 84(12), 12 (2011).
[Crossref]

Poulton, C. G.

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photonics 5(4), 536–587 (2013).
[Crossref]

Powell, D.

E. Abbott and D. Powell, “Land-vehicle navigation using GPS,” Proc. IEEE 87(1), 145–162 (1999).
[Crossref]

Quan, X.

Ruggiero, M. L.

F. Bosi, G. Cella, A. D. Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio, J. P. Zendri, M. Allegrini, J. Belfi, N. Beverini, B. Bouhadef, G. Carelli, I. Ferrante, E. Maccioni, R. Passaquieti, F. Stefani, M. L. Ruggiero, A. Tartaglia, K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Measuring gravito-magnetic effects by multi ring-laser gyroscope,” Phys. Rev. D Part. Fields Gravit. Cosmol. 84(12), 12 (2011).
[Crossref]

Salit, K.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

Schreiber, K. U.

F. Bosi, G. Cella, A. D. Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio, J. P. Zendri, M. Allegrini, J. Belfi, N. Beverini, B. Bouhadef, G. Carelli, I. Ferrante, E. Maccioni, R. Passaquieti, F. Stefani, M. L. Ruggiero, A. Tartaglia, K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Measuring gravito-magnetic effects by multi ring-laser gyroscope,” Phys. Rev. D Part. Fields Gravit. Cosmol. 84(12), 12 (2011).
[Crossref]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Sedgwick, F.

Shahriar, M. S.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Solimeno, S.

F. Bosi, G. Cella, A. D. Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio, J. P. Zendri, M. Allegrini, J. Belfi, N. Beverini, B. Bouhadef, G. Carelli, I. Ferrante, E. Maccioni, R. Passaquieti, F. Stefani, M. L. Ruggiero, A. Tartaglia, K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Measuring gravito-magnetic effects by multi ring-laser gyroscope,” Phys. Rev. D Part. Fields Gravit. Cosmol. 84(12), 12 (2011).
[Crossref]

Song, K. Y.

M. González-Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87(8), 081113 (2005).
[Crossref]

Stefani, F.

F. Bosi, G. Cella, A. D. Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio, J. P. Zendri, M. Allegrini, J. Belfi, N. Beverini, B. Bouhadef, G. Carelli, I. Ferrante, E. Maccioni, R. Passaquieti, F. Stefani, M. L. Ruggiero, A. Tartaglia, K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Measuring gravito-magnetic effects by multi ring-laser gyroscope,” Phys. Rev. D Part. Fields Gravit. Cosmol. 84(12), 12 (2011).
[Crossref]

Tartaglia, A.

F. Bosi, G. Cella, A. D. Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio, J. P. Zendri, M. Allegrini, J. Belfi, N. Beverini, B. Bouhadef, G. Carelli, I. Ferrante, E. Maccioni, R. Passaquieti, F. Stefani, M. L. Ruggiero, A. Tartaglia, K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Measuring gravito-magnetic effects by multi ring-laser gyroscope,” Phys. Rev. D Part. Fields Gravit. Cosmol. 84(12), 12 (2011).
[Crossref]

Thévenaz, L.

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[Crossref]

M. González-Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87(8), 081113 (2005).
[Crossref]

Tomes, M.

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102(11), 113601 (2009).
[Crossref] [PubMed]

Tripathi, R.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

Tsiotras, P.

H. Yoon and P. Tsiotras, “Spacecraft adaptive attitude and power tracking with variable speed control moment gyroscopes,” J. Guid. Control Dyn. 25(6), 1081–1090 (2002).
[Crossref]

Vahala, K.

Vahala, K. J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

van Hulst, N. F.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref] [PubMed]

Virgilio, A. D.

F. Bosi, G. Cella, A. D. Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio, J. P. Zendri, M. Allegrini, J. Belfi, N. Beverini, B. Bouhadef, G. Carelli, I. Ferrante, E. Maccioni, R. Passaquieti, F. Stefani, M. L. Ruggiero, A. Tartaglia, K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Measuring gravito-magnetic effects by multi ring-laser gyroscope,” Phys. Rev. D Part. Fields Gravit. Cosmol. 84(12), 12 (2011).
[Crossref]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Walther, T.

E. Fry, J. Katz, D. Liu, and T. Walther, “Temperature dependence of the Brillouin linewidth in water,” J. Mod. Opt. 49(3-4), 411–418 (2002).
[Crossref]

Wang, C.

X. F. Liu, T. J. Wang, and C. Wang, “Optothermal control of gains in erbium-doped whispering-gallery microresonators,” Opt. Lett. 43(2), 326–329 (2018).
[Crossref] [PubMed]

Y. P. Gao, C. Cao, T. J. Wang, Y. Zhang, and C. Wang, “Cavity-mediated coupling of phonons and magnons,” Phys. Rev. A 96(2), 023826 (2017).
[Crossref]

Wang, H.

Wang, T. J.

X. F. Liu, T. J. Wang, and C. Wang, “Optothermal control of gains in erbium-doped whispering-gallery microresonators,” Opt. Lett. 43(2), 326–329 (2018).
[Crossref] [PubMed]

Y. P. Gao, C. Cao, T. J. Wang, Y. Zhang, and C. Wang, “Cavity-mediated coupling of phonons and magnons,” Phys. Rev. A 96(2), 023826 (2017).
[Crossref]

Wells, J.-P. R.

F. Bosi, G. Cella, A. D. Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio, J. P. Zendri, M. Allegrini, J. Belfi, N. Beverini, B. Bouhadef, G. Carelli, I. Ferrante, E. Maccioni, R. Passaquieti, F. Stefani, M. L. Ruggiero, A. Tartaglia, K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Measuring gravito-magnetic effects by multi ring-laser gyroscope,” Phys. Rev. D Part. Fields Gravit. Cosmol. 84(12), 12 (2011).
[Crossref]

Willner, A. E.

Xu, H.

Xu, J.

F. Gao, J. Xu, G. Q. Zhang, F. Bo, and H. Liu, “Paraxial energy transport of a focused Gaussian beam in ruby with nondegenerate two-wave coupling like mechanism,” Appl. Phys. Lett. 92(2), 021121 (2008).
[Crossref]

G. Zhang, F. Bo, R. Dong, and J. Xu, “Phase-coupling-induced ultraslow light propagation in solids at room temperature,” Phys. Rev. Lett. 93(13), 133903 (2004).
[Crossref] [PubMed]

Yang, K. Y.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Yang, L.

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref] [PubMed]

Yoon, H.

H. Yoon and P. Tsiotras, “Spacecraft adaptive attitude and power tracking with variable speed control moment gyroscopes,” J. Guid. Control Dyn. 25(6), 1081–1090 (2002).
[Crossref]

Zendri, J. P.

F. Bosi, G. Cella, A. D. Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio, J. P. Zendri, M. Allegrini, J. Belfi, N. Beverini, B. Bouhadef, G. Carelli, I. Ferrante, E. Maccioni, R. Passaquieti, F. Stefani, M. L. Ruggiero, A. Tartaglia, K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Measuring gravito-magnetic effects by multi ring-laser gyroscope,” Phys. Rev. D Part. Fields Gravit. Cosmol. 84(12), 12 (2011).
[Crossref]

Zhang, G.

G. Zhang, F. Bo, R. Dong, and J. Xu, “Phase-coupling-induced ultraslow light propagation in solids at room temperature,” Phys. Rev. Lett. 93(13), 133903 (2004).
[Crossref] [PubMed]

Zhang, G. Q.

F. Gao, J. Xu, G. Q. Zhang, F. Bo, and H. Liu, “Paraxial energy transport of a focused Gaussian beam in ruby with nondegenerate two-wave coupling like mechanism,” Appl. Phys. Lett. 92(2), 021121 (2008).
[Crossref]

Zhang, L.

Zhang, P.

Zhang, Y.

Y. P. Gao, C. Cao, T. J. Wang, Y. Zhang, and C. Wang, “Cavity-mediated coupling of phonons and magnons,” Phys. Rev. A 96(2), 023826 (2017).
[Crossref]

Zhu, Z.

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS Slow Light in an Optical Fiber,” J. Lightwave Technol. 25(1), 201–206 (2007).
[Crossref]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photonics 5(4), 536–587 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

F. Gao, J. Xu, G. Q. Zhang, F. Bo, and H. Liu, “Paraxial energy transport of a focused Gaussian beam in ruby with nondegenerate two-wave coupling like mechanism,” Appl. Phys. Lett. 92(2), 021121 (2008).
[Crossref]

M. González-Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87(8), 081113 (2005).
[Crossref]

IEEE Commun. Mag. (1)

N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell, “A survey of mobile phone sensing,” IEEE Commun. Mag. 48(9), 140–150 (2010).
[Crossref]

J. Guid. Control Dyn. (1)

H. Yoon and P. Tsiotras, “Spacecraft adaptive attitude and power tracking with variable speed control moment gyroscopes,” J. Guid. Control Dyn. 25(6), 1081–1090 (2002).
[Crossref]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

E. Fry, J. Katz, D. Liu, and T. Walther, “Temperature dependence of the Brillouin linewidth in water,” J. Mod. Opt. 49(3-4), 411–418 (2002).
[Crossref]

J. Phys. D Appl. Phys. (1)

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
[Crossref]

Meas. Sci. Technol. (1)

B. Culshaw, “The optical fibre Sagnac interferometer:an overview of its principles and applications,” Meas. Sci. Technol. 17(1), R1–R16 (2006).
[Crossref]

Nat. Commun. (1)

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Nature (4)

I. Ciufolini and E. C. Pavlis, “A confirmation of the general relativistic prediction of the Lense-Thirring effect,” Nature 431(7011), 958–960 (2004).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A (2)

Y. P. Gao, C. Cao, T. J. Wang, Y. Zhang, and C. Wang, “Cavity-mediated coupling of phonons and magnons,” Phys. Rev. A 96(2), 023826 (2017).
[Crossref]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

Phys. Rev. D Part. Fields Gravit. Cosmol. (1)

F. Bosi, G. Cella, A. D. Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio, J. P. Zendri, M. Allegrini, J. Belfi, N. Beverini, B. Bouhadef, G. Carelli, I. Ferrante, E. Maccioni, R. Passaquieti, F. Stefani, M. L. Ruggiero, A. Tartaglia, K. U. Schreiber, A. Gebauer, and J.-P. R. Wells, “Measuring gravito-magnetic effects by multi ring-laser gyroscope,” Phys. Rev. D Part. Fields Gravit. Cosmol. 84(12), 12 (2011).
[Crossref]

Phys. Rev. Lett. (4)

G. Zhang, F. Bo, R. Dong, and J. Xu, “Phase-coupling-induced ultraslow light propagation in solids at room temperature,” Phys. Rev. Lett. 93(13), 133903 (2004).
[Crossref] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102(11), 113601 (2009).
[Crossref] [PubMed]

Proc. IEEE (1)

E. Abbott and D. Powell, “Land-vehicle navigation using GPS,” Proc. IEEE 87(1), 145–162 (1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Principle of the group velocity control via SBS in non-cavity medium. (a) the gain spectrum of a typical SBS; (b) the dispersion spectrum of a typical SBS; (c) the group index of a typical SBS signal.
Fig. 2
Fig. 2 The configuration of the experiment. PC: polarization controller; EDFA: erbium doped laser amplifier; EOM: electrical optical modulator; FG: frequency generator; C1, C2: circulator; FBG: fiber Bragg grating; OSC: oscilloscope; Coupler: 99:1 coupler; PD: photo detector; OSA: optical Spectrum analyzer. Blue lines are fibers and the black lines are coaxial cables for the electric signal.
Fig. 3
Fig. 3 The group delay results of self-pumped SBS signal when the pump was modulated. (a)-(c) showed the modulated waveforms at frequencies 2 kHz, 27 kHz and 50 kHz, respectively. The black solid curves were the reference signals from the FG and the blue solid curves were the SBS signals measured. (d) was the group delay and phase delay results when the modulation frequency was changed from 2 kHz to 1 MHz.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ r ( Δ T ) λ 0 ( 1 + α Δ T ) ,
C p Δ T · ( t ) = I h ( t ) 1 [ λ λ 0 ( 1 + α Δ T ( t ) ) Δ λ / 2 ] 2 + 1 K Δ T ( t ) ,

Metrics