Abstract

This study proposes two new fiber optic interferometric accelerometers with the utilization of the push-pull structure, one is based on the principle of triple low-reflectivity fiber Bragg gratings, and the other is based on the 1x3 unbalanced Michelson interferometer. The proposed accelerometers are capable of suppressing the common-mode noises (CMNs) by themselves without additional reference accelerometers, and therefore reducing the volume and the cost of the sensing system. Besides, the accelerometers can also suppress the sensor noises caused by the environment, and therefore show better CMNs suppression effect than the traditional method of using the reference accelerometer. The two accelerometers are experimentally verified and show respectively an improvement of 33 dB and 28 dB in CMNs suppression at 100 Hz. Both presented fiber optic accelerometers show huge advantages for the large-scale quasi-distributed oil and gas reservoir monitoring applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband Michelson fiber-optic accelerometer

Caihe Chen, Delong Zhang, Guilan Ding, and Yuming Cui
Appl. Opt. 38(4) 628-630 (1999)

Highly sensitive fiber-optic accelerometer using a micro suspended-core fiber

Wen Wang, Yedi Shen, Teng Guo, Xueguang Qiao, and Qiangzhou Rong
Appl. Opt. 58(21) 5852-5858 (2019)

Noise suppression of a micro-grating accelerometer based on the dual modulation method

Tianhang Zhang, Huilan Liu, Lishuang Feng, Xiao Wang, and Yu Zhang
Appl. Opt. 56(36) 10003-10008 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. Zeng, C. Z. Shi, M. Zhang, L. W. Wang, Y. B. Liao, and S. R. Lai, “A 3-component fiber-optic accelerometer for well logging,” Opt. Commun. 234(1–6), 153–162 (2004).
    [Crossref]
  2. J. M. D. Freitas, “Recent developments in seismic seabed oil reservoir monitoring applications using fibre-optic sensing networks,” Meas. Sci. Technol. 22(5), 052001 (2011).
    [Crossref]
  3. G. Gagliardi, M. Salza, P. Ferraro, P. D. Natale, A. D. Maio, S. Carlino, G. D. Natale, and E. Boschi, “Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications,” Meas. Sci. Technol. 19(8), 085306 (2008).
    [Crossref]
  4. A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarisation-insensitive fibre optic michelson interferometer,” Electron. Lett. 27(6), 518–520 (1991).
    [Crossref]
  5. M. Pang, H. P. Zhou, M. Zhang, F. Lin, N. Zeng, and Y. B. Liao, “Analysis and amelioration about the cross-axis sensitivity of a fiber-optic accelerometer based on compliant cylinder,” J. Lightwave Technol. 26(3), 365–372 (2008).
    [Crossref]
  6. J. M. D. Freitas, J. P. F. Wooler, and P. J. Nash, “Measurement of sensor axis misalignment in fibre-optic accelerometers,” Meas. Sci. Technol. 17(7), 1819–1825 (2006).
    [Crossref]
  7. P. Nash, A. Strudley, R. Crickmore, and J. DeFreitas, “High efficiency TDM/WDM architectures for seismic reservoir monitoring,” in 20th International Conference on Optical Fibre Sensor (2009), paper 75037T.
    [Crossref]
  8. S. Niu, Y. Hu, Z. Hu, and H. Luo, “Fiber fabry-perot hydrophone based on push-pull structure and differential detection,” IEEE Photonics Technol. Lett. 23(20), 1499–1501 (2011).
    [Crossref]
  9. Q. Jiang and M. Yang, “Simulation and experimental study of a three-axis fiber Bragg grating accelerometer based on the pull–push mechanism,” Meas. Sci. Technol. 24(11), 115105 (2013).
    [Crossref]
  10. Z.-G. Guan, D. Chen, and S. He, “Coherence multiplexing of distributed sensors based on pairs of fiber Bragg gratings of low reflectivity,” J. Lightwave Technol. 25(8), 2143–2148 (2007).
    [Crossref]
  11. J. Sancho, S. Chin, D. Barrera, S. Sales, and L. Thévenaz, “Time-frequency analysis of long fiber Bragg gratings with low reflectivity,” Opt. Express 21(6), 7171–7179 (2013).
    [Crossref] [PubMed]
  12. S. Dyer, K. Rochford, and A. Rose, “Fast and accurate low-coherence interferometric measurements of fiber Bragg grating dispersion and reflectance,” Opt. Express 5(11), 262–266 (1999).
    [Crossref] [PubMed]
  13. O. H. Waagaard, E. Rønnekleiv, S. Forbord, and D. Thingbø, “Suppression of cable induced noise in an interferometric sensor system,” Proc. SPIE 7503, 75034Q (2009).
  14. O. H. Waagaard and E. Rønnekleiv, “Reduction of crosstalk in inline sensor arrays using inverse scattering,” Proc. SPIE 7004, 70044Z (2008).
  15. S. Knudsen, G. B. Havsgard, A. Berg, D. Thingbø, F. Bostick, and M. Eriksrud, “High resolution fiber-optic 3-C seismic sensor system for in-well imaging and monitoring applications,” in 18th International Conference on Optical Fibre Sensor (2006), paper FB2.
    [Crossref]
  16. Z. Zhi, W. Zhenzhen, and S. Lian, “Fiber-reinforced polymer-packaged optical fiber Bragg grating strain sensors for infrastructures under harsh environment,” J. Sens. 16(1), 1–18 (2016).
  17. C. Zhang, D. Jiang, and L. Liang, “Application of fiber Bragg grating for safety monitoring of cantilever crane of huge crane barge,” in International Conference on Optical Communications and Networks (2010), pp. 60–64.
    [Crossref]
  18. T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S. Y. Liu, W. H. Chung, and L. K. Cheng, “Fiber Bragg grating sensors for structural health monitoring of tsing-ma bridge: Background and experimental observation,” Eng. Struct. 28(5), 648–659 (2006).
    [Crossref]
  19. L. P. Canal, R. Sarfaraz, G. Violakis, J. Botsis, V. Michaud, and H. G. Limberger, “Monitoring strain gradients in adhesive composite joints by embedded fiber Bragg grating sensors,” Compos. Struct. 112, 241–247 (2014).
    [Crossref]
  20. F. Liu, S. Xie, X. Qiu, X. Wang, S. Cao, M. Qin, X. He, B. Xie, X. Zheng, and M. Zhang, “Efficient common-mode noise suppression for fiber-optic interferometric sensor using heterodyne demodulation,” J. Lightwave Technol. 34(23), 5453–5461 (2016).
    [Crossref]

2016 (2)

Z. Zhi, W. Zhenzhen, and S. Lian, “Fiber-reinforced polymer-packaged optical fiber Bragg grating strain sensors for infrastructures under harsh environment,” J. Sens. 16(1), 1–18 (2016).

F. Liu, S. Xie, X. Qiu, X. Wang, S. Cao, M. Qin, X. He, B. Xie, X. Zheng, and M. Zhang, “Efficient common-mode noise suppression for fiber-optic interferometric sensor using heterodyne demodulation,” J. Lightwave Technol. 34(23), 5453–5461 (2016).
[Crossref]

2014 (1)

L. P. Canal, R. Sarfaraz, G. Violakis, J. Botsis, V. Michaud, and H. G. Limberger, “Monitoring strain gradients in adhesive composite joints by embedded fiber Bragg grating sensors,” Compos. Struct. 112, 241–247 (2014).
[Crossref]

2013 (2)

J. Sancho, S. Chin, D. Barrera, S. Sales, and L. Thévenaz, “Time-frequency analysis of long fiber Bragg gratings with low reflectivity,” Opt. Express 21(6), 7171–7179 (2013).
[Crossref] [PubMed]

Q. Jiang and M. Yang, “Simulation and experimental study of a three-axis fiber Bragg grating accelerometer based on the pull–push mechanism,” Meas. Sci. Technol. 24(11), 115105 (2013).
[Crossref]

2011 (2)

S. Niu, Y. Hu, Z. Hu, and H. Luo, “Fiber fabry-perot hydrophone based on push-pull structure and differential detection,” IEEE Photonics Technol. Lett. 23(20), 1499–1501 (2011).
[Crossref]

J. M. D. Freitas, “Recent developments in seismic seabed oil reservoir monitoring applications using fibre-optic sensing networks,” Meas. Sci. Technol. 22(5), 052001 (2011).
[Crossref]

2009 (1)

O. H. Waagaard, E. Rønnekleiv, S. Forbord, and D. Thingbø, “Suppression of cable induced noise in an interferometric sensor system,” Proc. SPIE 7503, 75034Q (2009).

2008 (3)

O. H. Waagaard and E. Rønnekleiv, “Reduction of crosstalk in inline sensor arrays using inverse scattering,” Proc. SPIE 7004, 70044Z (2008).

G. Gagliardi, M. Salza, P. Ferraro, P. D. Natale, A. D. Maio, S. Carlino, G. D. Natale, and E. Boschi, “Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications,” Meas. Sci. Technol. 19(8), 085306 (2008).
[Crossref]

M. Pang, H. P. Zhou, M. Zhang, F. Lin, N. Zeng, and Y. B. Liao, “Analysis and amelioration about the cross-axis sensitivity of a fiber-optic accelerometer based on compliant cylinder,” J. Lightwave Technol. 26(3), 365–372 (2008).
[Crossref]

2007 (1)

2006 (2)

J. M. D. Freitas, J. P. F. Wooler, and P. J. Nash, “Measurement of sensor axis misalignment in fibre-optic accelerometers,” Meas. Sci. Technol. 17(7), 1819–1825 (2006).
[Crossref]

T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S. Y. Liu, W. H. Chung, and L. K. Cheng, “Fiber Bragg grating sensors for structural health monitoring of tsing-ma bridge: Background and experimental observation,” Eng. Struct. 28(5), 648–659 (2006).
[Crossref]

2004 (1)

N. Zeng, C. Z. Shi, M. Zhang, L. W. Wang, Y. B. Liao, and S. R. Lai, “A 3-component fiber-optic accelerometer for well logging,” Opt. Commun. 234(1–6), 153–162 (2004).
[Crossref]

1999 (1)

1991 (1)

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarisation-insensitive fibre optic michelson interferometer,” Electron. Lett. 27(6), 518–520 (1991).
[Crossref]

Barrera, D.

Boschi, E.

G. Gagliardi, M. Salza, P. Ferraro, P. D. Natale, A. D. Maio, S. Carlino, G. D. Natale, and E. Boschi, “Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications,” Meas. Sci. Technol. 19(8), 085306 (2008).
[Crossref]

Botsis, J.

L. P. Canal, R. Sarfaraz, G. Violakis, J. Botsis, V. Michaud, and H. G. Limberger, “Monitoring strain gradients in adhesive composite joints by embedded fiber Bragg grating sensors,” Compos. Struct. 112, 241–247 (2014).
[Crossref]

Canal, L. P.

L. P. Canal, R. Sarfaraz, G. Violakis, J. Botsis, V. Michaud, and H. G. Limberger, “Monitoring strain gradients in adhesive composite joints by embedded fiber Bragg grating sensors,” Compos. Struct. 112, 241–247 (2014).
[Crossref]

Cao, S.

Carlino, S.

G. Gagliardi, M. Salza, P. Ferraro, P. D. Natale, A. D. Maio, S. Carlino, G. D. Natale, and E. Boschi, “Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications,” Meas. Sci. Technol. 19(8), 085306 (2008).
[Crossref]

Chan, T. H. T.

T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S. Y. Liu, W. H. Chung, and L. K. Cheng, “Fiber Bragg grating sensors for structural health monitoring of tsing-ma bridge: Background and experimental observation,” Eng. Struct. 28(5), 648–659 (2006).
[Crossref]

Chen, D.

Cheng, L. K.

T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S. Y. Liu, W. H. Chung, and L. K. Cheng, “Fiber Bragg grating sensors for structural health monitoring of tsing-ma bridge: Background and experimental observation,” Eng. Struct. 28(5), 648–659 (2006).
[Crossref]

Chin, S.

Chung, W. H.

T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S. Y. Liu, W. H. Chung, and L. K. Cheng, “Fiber Bragg grating sensors for structural health monitoring of tsing-ma bridge: Background and experimental observation,” Eng. Struct. 28(5), 648–659 (2006).
[Crossref]

Crickmore, R.

P. Nash, A. Strudley, R. Crickmore, and J. DeFreitas, “High efficiency TDM/WDM architectures for seismic reservoir monitoring,” in 20th International Conference on Optical Fibre Sensor (2009), paper 75037T.
[Crossref]

Davis, M. A.

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarisation-insensitive fibre optic michelson interferometer,” Electron. Lett. 27(6), 518–520 (1991).
[Crossref]

DeFreitas, J.

P. Nash, A. Strudley, R. Crickmore, and J. DeFreitas, “High efficiency TDM/WDM architectures for seismic reservoir monitoring,” in 20th International Conference on Optical Fibre Sensor (2009), paper 75037T.
[Crossref]

Dyer, S.

Ferraro, P.

G. Gagliardi, M. Salza, P. Ferraro, P. D. Natale, A. D. Maio, S. Carlino, G. D. Natale, and E. Boschi, “Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications,” Meas. Sci. Technol. 19(8), 085306 (2008).
[Crossref]

Forbord, S.

O. H. Waagaard, E. Rønnekleiv, S. Forbord, and D. Thingbø, “Suppression of cable induced noise in an interferometric sensor system,” Proc. SPIE 7503, 75034Q (2009).

Freitas, J. M. D.

J. M. D. Freitas, “Recent developments in seismic seabed oil reservoir monitoring applications using fibre-optic sensing networks,” Meas. Sci. Technol. 22(5), 052001 (2011).
[Crossref]

J. M. D. Freitas, J. P. F. Wooler, and P. J. Nash, “Measurement of sensor axis misalignment in fibre-optic accelerometers,” Meas. Sci. Technol. 17(7), 1819–1825 (2006).
[Crossref]

Gagliardi, G.

G. Gagliardi, M. Salza, P. Ferraro, P. D. Natale, A. D. Maio, S. Carlino, G. D. Natale, and E. Boschi, “Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications,” Meas. Sci. Technol. 19(8), 085306 (2008).
[Crossref]

Guan, Z.-G.

He, S.

He, X.

Hu, Y.

S. Niu, Y. Hu, Z. Hu, and H. Luo, “Fiber fabry-perot hydrophone based on push-pull structure and differential detection,” IEEE Photonics Technol. Lett. 23(20), 1499–1501 (2011).
[Crossref]

Hu, Z.

S. Niu, Y. Hu, Z. Hu, and H. Luo, “Fiber fabry-perot hydrophone based on push-pull structure and differential detection,” IEEE Photonics Technol. Lett. 23(20), 1499–1501 (2011).
[Crossref]

Jiang, D.

C. Zhang, D. Jiang, and L. Liang, “Application of fiber Bragg grating for safety monitoring of cantilever crane of huge crane barge,” in International Conference on Optical Communications and Networks (2010), pp. 60–64.
[Crossref]

Jiang, Q.

Q. Jiang and M. Yang, “Simulation and experimental study of a three-axis fiber Bragg grating accelerometer based on the pull–push mechanism,” Meas. Sci. Technol. 24(11), 115105 (2013).
[Crossref]

Kersey, A. D.

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarisation-insensitive fibre optic michelson interferometer,” Electron. Lett. 27(6), 518–520 (1991).
[Crossref]

Lai, S. R.

N. Zeng, C. Z. Shi, M. Zhang, L. W. Wang, Y. B. Liao, and S. R. Lai, “A 3-component fiber-optic accelerometer for well logging,” Opt. Commun. 234(1–6), 153–162 (2004).
[Crossref]

Lian, S.

Z. Zhi, W. Zhenzhen, and S. Lian, “Fiber-reinforced polymer-packaged optical fiber Bragg grating strain sensors for infrastructures under harsh environment,” J. Sens. 16(1), 1–18 (2016).

Liang, L.

C. Zhang, D. Jiang, and L. Liang, “Application of fiber Bragg grating for safety monitoring of cantilever crane of huge crane barge,” in International Conference on Optical Communications and Networks (2010), pp. 60–64.
[Crossref]

Liao, Y. B.

M. Pang, H. P. Zhou, M. Zhang, F. Lin, N. Zeng, and Y. B. Liao, “Analysis and amelioration about the cross-axis sensitivity of a fiber-optic accelerometer based on compliant cylinder,” J. Lightwave Technol. 26(3), 365–372 (2008).
[Crossref]

N. Zeng, C. Z. Shi, M. Zhang, L. W. Wang, Y. B. Liao, and S. R. Lai, “A 3-component fiber-optic accelerometer for well logging,” Opt. Commun. 234(1–6), 153–162 (2004).
[Crossref]

Limberger, H. G.

L. P. Canal, R. Sarfaraz, G. Violakis, J. Botsis, V. Michaud, and H. G. Limberger, “Monitoring strain gradients in adhesive composite joints by embedded fiber Bragg grating sensors,” Compos. Struct. 112, 241–247 (2014).
[Crossref]

Lin, F.

Liu, F.

Liu, S. Y.

T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S. Y. Liu, W. H. Chung, and L. K. Cheng, “Fiber Bragg grating sensors for structural health monitoring of tsing-ma bridge: Background and experimental observation,” Eng. Struct. 28(5), 648–659 (2006).
[Crossref]

Luo, H.

S. Niu, Y. Hu, Z. Hu, and H. Luo, “Fiber fabry-perot hydrophone based on push-pull structure and differential detection,” IEEE Photonics Technol. Lett. 23(20), 1499–1501 (2011).
[Crossref]

Maio, A. D.

G. Gagliardi, M. Salza, P. Ferraro, P. D. Natale, A. D. Maio, S. Carlino, G. D. Natale, and E. Boschi, “Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications,” Meas. Sci. Technol. 19(8), 085306 (2008).
[Crossref]

Marrone, M. J.

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarisation-insensitive fibre optic michelson interferometer,” Electron. Lett. 27(6), 518–520 (1991).
[Crossref]

Michaud, V.

L. P. Canal, R. Sarfaraz, G. Violakis, J. Botsis, V. Michaud, and H. G. Limberger, “Monitoring strain gradients in adhesive composite joints by embedded fiber Bragg grating sensors,” Compos. Struct. 112, 241–247 (2014).
[Crossref]

Nash, P.

P. Nash, A. Strudley, R. Crickmore, and J. DeFreitas, “High efficiency TDM/WDM architectures for seismic reservoir monitoring,” in 20th International Conference on Optical Fibre Sensor (2009), paper 75037T.
[Crossref]

Nash, P. J.

J. M. D. Freitas, J. P. F. Wooler, and P. J. Nash, “Measurement of sensor axis misalignment in fibre-optic accelerometers,” Meas. Sci. Technol. 17(7), 1819–1825 (2006).
[Crossref]

Natale, G. D.

G. Gagliardi, M. Salza, P. Ferraro, P. D. Natale, A. D. Maio, S. Carlino, G. D. Natale, and E. Boschi, “Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications,” Meas. Sci. Technol. 19(8), 085306 (2008).
[Crossref]

Natale, P. D.

G. Gagliardi, M. Salza, P. Ferraro, P. D. Natale, A. D. Maio, S. Carlino, G. D. Natale, and E. Boschi, “Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications,” Meas. Sci. Technol. 19(8), 085306 (2008).
[Crossref]

Ni, Y. Q.

T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S. Y. Liu, W. H. Chung, and L. K. Cheng, “Fiber Bragg grating sensors for structural health monitoring of tsing-ma bridge: Background and experimental observation,” Eng. Struct. 28(5), 648–659 (2006).
[Crossref]

Niu, S.

S. Niu, Y. Hu, Z. Hu, and H. Luo, “Fiber fabry-perot hydrophone based on push-pull structure and differential detection,” IEEE Photonics Technol. Lett. 23(20), 1499–1501 (2011).
[Crossref]

Pang, M.

Qin, M.

Qiu, X.

Rochford, K.

Rønnekleiv, E.

O. H. Waagaard, E. Rønnekleiv, S. Forbord, and D. Thingbø, “Suppression of cable induced noise in an interferometric sensor system,” Proc. SPIE 7503, 75034Q (2009).

O. H. Waagaard and E. Rønnekleiv, “Reduction of crosstalk in inline sensor arrays using inverse scattering,” Proc. SPIE 7004, 70044Z (2008).

Rose, A.

Sales, S.

Salza, M.

G. Gagliardi, M. Salza, P. Ferraro, P. D. Natale, A. D. Maio, S. Carlino, G. D. Natale, and E. Boschi, “Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications,” Meas. Sci. Technol. 19(8), 085306 (2008).
[Crossref]

Sancho, J.

Sarfaraz, R.

L. P. Canal, R. Sarfaraz, G. Violakis, J. Botsis, V. Michaud, and H. G. Limberger, “Monitoring strain gradients in adhesive composite joints by embedded fiber Bragg grating sensors,” Compos. Struct. 112, 241–247 (2014).
[Crossref]

Shi, C. Z.

N. Zeng, C. Z. Shi, M. Zhang, L. W. Wang, Y. B. Liao, and S. R. Lai, “A 3-component fiber-optic accelerometer for well logging,” Opt. Commun. 234(1–6), 153–162 (2004).
[Crossref]

Strudley, A.

P. Nash, A. Strudley, R. Crickmore, and J. DeFreitas, “High efficiency TDM/WDM architectures for seismic reservoir monitoring,” in 20th International Conference on Optical Fibre Sensor (2009), paper 75037T.
[Crossref]

Tam, H. Y.

T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S. Y. Liu, W. H. Chung, and L. K. Cheng, “Fiber Bragg grating sensors for structural health monitoring of tsing-ma bridge: Background and experimental observation,” Eng. Struct. 28(5), 648–659 (2006).
[Crossref]

Thévenaz, L.

Thingbø, D.

O. H. Waagaard, E. Rønnekleiv, S. Forbord, and D. Thingbø, “Suppression of cable induced noise in an interferometric sensor system,” Proc. SPIE 7503, 75034Q (2009).

Violakis, G.

L. P. Canal, R. Sarfaraz, G. Violakis, J. Botsis, V. Michaud, and H. G. Limberger, “Monitoring strain gradients in adhesive composite joints by embedded fiber Bragg grating sensors,” Compos. Struct. 112, 241–247 (2014).
[Crossref]

Waagaard, O. H.

O. H. Waagaard, E. Rønnekleiv, S. Forbord, and D. Thingbø, “Suppression of cable induced noise in an interferometric sensor system,” Proc. SPIE 7503, 75034Q (2009).

O. H. Waagaard and E. Rønnekleiv, “Reduction of crosstalk in inline sensor arrays using inverse scattering,” Proc. SPIE 7004, 70044Z (2008).

Wang, L. W.

N. Zeng, C. Z. Shi, M. Zhang, L. W. Wang, Y. B. Liao, and S. R. Lai, “A 3-component fiber-optic accelerometer for well logging,” Opt. Commun. 234(1–6), 153–162 (2004).
[Crossref]

Wang, X.

Wooler, J. P. F.

J. M. D. Freitas, J. P. F. Wooler, and P. J. Nash, “Measurement of sensor axis misalignment in fibre-optic accelerometers,” Meas. Sci. Technol. 17(7), 1819–1825 (2006).
[Crossref]

Xie, B.

Xie, S.

Yang, M.

Q. Jiang and M. Yang, “Simulation and experimental study of a three-axis fiber Bragg grating accelerometer based on the pull–push mechanism,” Meas. Sci. Technol. 24(11), 115105 (2013).
[Crossref]

Yu, L.

T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S. Y. Liu, W. H. Chung, and L. K. Cheng, “Fiber Bragg grating sensors for structural health monitoring of tsing-ma bridge: Background and experimental observation,” Eng. Struct. 28(5), 648–659 (2006).
[Crossref]

Zeng, N.

M. Pang, H. P. Zhou, M. Zhang, F. Lin, N. Zeng, and Y. B. Liao, “Analysis and amelioration about the cross-axis sensitivity of a fiber-optic accelerometer based on compliant cylinder,” J. Lightwave Technol. 26(3), 365–372 (2008).
[Crossref]

N. Zeng, C. Z. Shi, M. Zhang, L. W. Wang, Y. B. Liao, and S. R. Lai, “A 3-component fiber-optic accelerometer for well logging,” Opt. Commun. 234(1–6), 153–162 (2004).
[Crossref]

Zhang, C.

C. Zhang, D. Jiang, and L. Liang, “Application of fiber Bragg grating for safety monitoring of cantilever crane of huge crane barge,” in International Conference on Optical Communications and Networks (2010), pp. 60–64.
[Crossref]

Zhang, M.

Zheng, X.

Zhenzhen, W.

Z. Zhi, W. Zhenzhen, and S. Lian, “Fiber-reinforced polymer-packaged optical fiber Bragg grating strain sensors for infrastructures under harsh environment,” J. Sens. 16(1), 1–18 (2016).

Zhi, Z.

Z. Zhi, W. Zhenzhen, and S. Lian, “Fiber-reinforced polymer-packaged optical fiber Bragg grating strain sensors for infrastructures under harsh environment,” J. Sens. 16(1), 1–18 (2016).

Zhou, H. P.

Compos. Struct. (1)

L. P. Canal, R. Sarfaraz, G. Violakis, J. Botsis, V. Michaud, and H. G. Limberger, “Monitoring strain gradients in adhesive composite joints by embedded fiber Bragg grating sensors,” Compos. Struct. 112, 241–247 (2014).
[Crossref]

Electron. Lett. (1)

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarisation-insensitive fibre optic michelson interferometer,” Electron. Lett. 27(6), 518–520 (1991).
[Crossref]

Eng. Struct. (1)

T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S. Y. Liu, W. H. Chung, and L. K. Cheng, “Fiber Bragg grating sensors for structural health monitoring of tsing-ma bridge: Background and experimental observation,” Eng. Struct. 28(5), 648–659 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Niu, Y. Hu, Z. Hu, and H. Luo, “Fiber fabry-perot hydrophone based on push-pull structure and differential detection,” IEEE Photonics Technol. Lett. 23(20), 1499–1501 (2011).
[Crossref]

J. Lightwave Technol. (3)

J. Sens. (1)

Z. Zhi, W. Zhenzhen, and S. Lian, “Fiber-reinforced polymer-packaged optical fiber Bragg grating strain sensors for infrastructures under harsh environment,” J. Sens. 16(1), 1–18 (2016).

Meas. Sci. Technol. (4)

Q. Jiang and M. Yang, “Simulation and experimental study of a three-axis fiber Bragg grating accelerometer based on the pull–push mechanism,” Meas. Sci. Technol. 24(11), 115105 (2013).
[Crossref]

J. M. D. Freitas, J. P. F. Wooler, and P. J. Nash, “Measurement of sensor axis misalignment in fibre-optic accelerometers,” Meas. Sci. Technol. 17(7), 1819–1825 (2006).
[Crossref]

J. M. D. Freitas, “Recent developments in seismic seabed oil reservoir monitoring applications using fibre-optic sensing networks,” Meas. Sci. Technol. 22(5), 052001 (2011).
[Crossref]

G. Gagliardi, M. Salza, P. Ferraro, P. D. Natale, A. D. Maio, S. Carlino, G. D. Natale, and E. Boschi, “Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications,” Meas. Sci. Technol. 19(8), 085306 (2008).
[Crossref]

Opt. Commun. (1)

N. Zeng, C. Z. Shi, M. Zhang, L. W. Wang, Y. B. Liao, and S. R. Lai, “A 3-component fiber-optic accelerometer for well logging,” Opt. Commun. 234(1–6), 153–162 (2004).
[Crossref]

Opt. Express (2)

Proc. SPIE (2)

O. H. Waagaard, E. Rønnekleiv, S. Forbord, and D. Thingbø, “Suppression of cable induced noise in an interferometric sensor system,” Proc. SPIE 7503, 75034Q (2009).

O. H. Waagaard and E. Rønnekleiv, “Reduction of crosstalk in inline sensor arrays using inverse scattering,” Proc. SPIE 7004, 70044Z (2008).

Other (3)

S. Knudsen, G. B. Havsgard, A. Berg, D. Thingbø, F. Bostick, and M. Eriksrud, “High resolution fiber-optic 3-C seismic sensor system for in-well imaging and monitoring applications,” in 18th International Conference on Optical Fibre Sensor (2006), paper FB2.
[Crossref]

P. Nash, A. Strudley, R. Crickmore, and J. DeFreitas, “High efficiency TDM/WDM architectures for seismic reservoir monitoring,” in 20th International Conference on Optical Fibre Sensor (2009), paper 75037T.
[Crossref]

C. Zhang, D. Jiang, and L. Liang, “Application of fiber Bragg grating for safety monitoring of cantilever crane of huge crane barge,” in International Conference on Optical Communications and Networks (2010), pp. 60–64.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 General fiber-optic Michelson interferometric system and its CMNs suppression method [20].
Fig. 2
Fig. 2 Structure diagram of the triple low-reflectivity fiber Bragg gratings accelerometer. (a) Fiber optic with the triple low-reflectivity FBGs. (b) Cross section of the fiber optic accelerometer. (Annotation: pulse-11, pulse-12 and pulse-13 represent the reflected pulses of the front incident pulse. Pulse-21, pulse-22 and pulse-23 represent the reflected pulses of the later incident pulse. Pulse 01 and pulse 02 represent the interference pulses occurred between the returning pulse train 1 and 2.)
Fig. 3
Fig. 3 On-axis and cross-axis sensitivity of the triple low-reflectivity fiber Bragg gratings accelerometer.
Fig. 4
Fig. 4 Structure diagram of the 1x3 unbalanced Michelson fiber optic accelerometer. (a) 1x3 fiber optic interferometer. (b) Cross section structure of the fiber optic accelerometer.
Fig. 5
Fig. 5 On-axis sensitivity and cross-axis sensitivity of the 1x3 Michelson accelerometer.
Fig. 6
Fig. 6 Experimental setup. (Annotation: The red lines represent the polarization-maintaining optical fibers, the yellow lines the normal fiber optics, and the blue lines the electric cables. The red pulses represent the input pulses, and the green pulses the output interference pulses. The blue cylinder represents the compliant cylinder with the elastic enhanced layer, and the purple one without elastic enhanced layers.)
Fig. 7
Fig. 7 Sensitivity test setup.
Fig. 8
Fig. 8 Direction pattern test setup.
Fig. 9
Fig. 9 Suppression effect of common-mode noise of the triple low-reflectivity fiber Bragg gratings accelerometer in the frequency domain. (dB rad2/Hz = 20log10rad2/Hz, same for Fig. 10, Fig. 11.)
Fig. 10
Fig. 10 Suppression effect of common-mode noise of the 1x3 unbalanced fiber optic Michelson accelerometer in the frequency domain.
Fig. 11
Fig. 11 Comparison of suppression effect of common-mode noise between the three different fiber optic accelerometers in the frequency domain.
Fig. 12
Fig. 12 On-axis sensitivity of the two fiber optic accelerometers. (dB rad/g = 20log10 rad/g, same for Fig. 14.)
Fig. 13
Fig. 13 Linearity of the two fiber optic accelerometers.
Fig. 14
Fig. 14 Direction pattern of the two fiber optic accelerometers. (a) 1x3 fiber optic Michelson accelerometer. (b) triple low-reflectivity fiber Bragg gratings accelerometer.

Tables (1)

Tables Icon

Table 1 Theoretical parameters of the accelerometer.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( dϕ a ) 0 = 8 π 2 nbvNM λHAK [1 n 2 2 (1 v f ) p 12 v f p 11 ]
A=1 N E fn S fn EHb( b 2 a 2 ) [ b 2 (2 v 2 +v1) a 2 (1+v)]

Metrics