Abstract

A novel time-multiplexed multi-view three-dimensional (3D) display has been implemented using a projector array to provide the image source and an angular steering-screen module to generate multiple high density horizontal views. The liquid crystal (LC)-based steering screen was specially developed to deflect light beams over a small range and operate in synchronism with the projector array with the use of a customized FPGA driver. The prototype produces vivid color 3D scenes with smooth parallax to multiple viewers. The experimental results verify the proposed multi-projection time-multiplexed multi-view 3D display method that uses a steering screen to produce dense views. Displaying both static and dynamic 3D contents is achieved in our implemented 36-view 3D display prototype. The results of crosstalk measurements are given and analyzed to evaluate the display performance.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Omnidirectional-view three-dimensional display based on rotating selective-diffusing screen and multiple mini-projectors

Weitao Song, Qiudong Zhu, Yue Liu, and Yongtian Wang
Appl. Opt. 54(13) 4154-4160 (2015)

Dynamic three-dimensional light-field display with large viewing angle based on compound lenticular lens array and multi-projectors

Xunbo Yu, Xinzhu Sang, Xin Gao, Duo Chen, Boyang Liu, Li Liu, Chao Gao, and Peiren Wang
Opt. Express 27(11) 16024-16031 (2019)

Large-screen multi-view 3D display

Nikolai I. Petrov, Maxim N. Khromov, and Yuri M. Sokolov
OSA Continuum 2(9) 2601-2613 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
    [Crossref] [PubMed]
  2. N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis,” IEEE Trans. Broadcast 57(2), 362–371 (2011).
    [Crossref]
  3. G. E. Favalora, “Volumetric 3D displays and application infrastructure,” Computer 38(8), 37–44 (2005).
    [Crossref]
  4. N. A. Dodgson, “Autostereoscopic 3D displays,” Computer 38(8), 31–36 (2005).
    [Crossref]
  5. C. Slinger, C. Cameron, and M. Stanley, “Computer-Generated Holography as a Generic Display Technology,” Computer 38(8), 46–53 (2005).
    [Crossref]
  6. A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007).
    [Crossref]
  7. X. Xia, X. Liu, H. Li, Z. Zheng, H. Wang, Y. Peng, and W. Shen, “A 360-degree floating 3D display based on light field regeneration,” Opt. Express 21(9), 11237–11247 (2013).
    [Crossref] [PubMed]
  8. T. Balogh and P. T. Kovács, “Real-time 3D light field transmission,” Proc. SPIE 7724, 772406 (2010).
    [Crossref]
  9. D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization Fields: Dynamic Light Field Display using Multi-Layer LCDs,” ACM Trans. Graph. 30(6), 186 (2011).
    [Crossref]
  10. O. S. Cossairt, J. Napoli, S. L. Hill, R. K. Dorval, and G. E. Favalora, “Occlusion-capable multiview volumetric three-dimensional display,” Appl. Opt. 46(8), 1244–1250 (2007).
    [Crossref] [PubMed]
  11. T. Yendo, T. Fujii, M. Tanimoto, and M. P. Tehrani, “The Seelinder: Cylindrical 3D display viewable from 360 degrees,” J. Vis. Commun. Image. 21(5–6), 586–594 (2010).
    [Crossref]
  12. X. Xia, Z. Zheng, X. Liu, H. Li, and C. Yan, “Omnidirectional-view three-dimensional display system based on cylindrical selective-diffusing screen,” Appl. Opt. 49(26), 4915–4920 (2010).
    [Crossref] [PubMed]
  13. Y. Takaki, “High-Density Directional Display for Generating Natural Three-Dimensional Images,” Proc. IEEE 94(3), 654–663 (2006).
    [Crossref]
  14. H. Nakanuma, H. Kamei, and Y. Takaki, “Natural 3D display with 128 directional images used for human-engineering evaluation,” Proc. SPIE 5664, 28–35 (2005).
    [Crossref]
  15. Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18(9), 8824–8835 (2010).
    [Crossref] [PubMed]
  16. B.-R. Lee, J.-Y. Son, H. Lee, S. Yano, H. K. Son, and I. Jeong, “A simulator for a light field display,” Proc. SPIE 10219, 102190D (2017).
  17. K. Nagano, A. Jones, J. Liu, J. Busch, X. Yu, M. Bolas, and P. Debevec, “An autostereoscopic projector array optimized for 3D facial display,” ACM SIGGRAPH 2013 Emerging Technologies, July 21–25, 2013, Anaheim, California.
    [Crossref]
  18. Y. Peng, H. Li, Q. Zhong, X. Xia, and X. Liu, “Large-sized light field three-dimensional display using multi-projectors and directional diffuser,” Opt. Eng. 52(1), 017402 (2013).
    [Crossref]
  19. J.-H. Lee, J. Park, D. Nam, S. Y. Choi, D.-S. Park, and C. Y. Kim, “Optimal projector configuration design for 300-Mpixel multi-projection 3D display,” Opt. Express 21(22), 26820–26835 (2013).
    [Crossref] [PubMed]
  20. W. Song, Q. Zhu, Y. Liu, and Y. Wang, “Omnidirectional-view three-dimensional display based on rotating selective-diffusing screen and multiple mini-projectors,” Appl. Opt. 54(13), 4154–4160 (2015).
    [Crossref]
  21. D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
    [Crossref] [PubMed]
  22. J. Geng, “Design of a single projector multiview 3D display system,” Proc. SPIE 8979, 89790K (2014).
    [Crossref]
  23. H. Chen, Y. Weng, D. Xu, N. V. Tabiryan, and S. T. Wu, “Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate,” Opt. Express 24(7), 7287–7298 (2016).
    [Crossref] [PubMed]
  24. L. Li, C. Liu, H. Ren, and Q.-H. Wang, “Adaptive liquid iris based on electrowetting,” Opt. Lett. 38(13), 2336–2338 (2013).
    [Crossref] [PubMed]
  25. W. Song, X. Liu, P. Lu, Y. Huang, D. Weng, Y. Zheng, Y. Liu, and Y. Wang, “Design and assessment of a 360° panoramic and high-performance capture system with two tiled catadioptric imaging channels,” Appl. Opt. 57(13), 3429–3437 (2018).
  26. H. Wang, O. Yaroshchuk, X. Zhang, Z. Zhuang, P. Surman, X. W. Sun, and Y. Zheng, “Large-aperture transparent beam steering screen based on LCMPA,” Appl. Opt. 55(28), 7824–7829 (2016).
    [Crossref]
  27. X. Zhang, W. Song, H. Wang, Z. Zhuang, P. Surman, X. W. Sun, and Y. Zheng, “A spatio-temporal multiplexing multi-view display using a lenticular lens and a beam steering screen,” Opt. Commun. 420, 168–173 (2018).
  28. P. J. Bos and K. R. Koehler-Beran, “The Pi-Cell: A fast new liquid crystal switching device,” Mol. Cryst. Liq. Cryst. 113, 329–339 (1984).
  29. G. Falcao, N. Hurtos, J. Massich, and D. Fofi, “Projector-camera calibration toolbox,” Technical Report, 2009. Available at http://code.google.com/p/procamcalib .
  30. X. F. Li, Q. H. Wang, D. H. Li, and A. H. Wang, “Image processing to eliminate crosstalk between neighboring view images in three-dimensional lenticular display,” IEEE J. Display Technol. 7(8), 443–447 (2011).

2018 (2)

W. Song, X. Liu, P. Lu, Y. Huang, D. Weng, Y. Zheng, Y. Liu, and Y. Wang, “Design and assessment of a 360° panoramic and high-performance capture system with two tiled catadioptric imaging channels,” Appl. Opt. 57(13), 3429–3437 (2018).

X. Zhang, W. Song, H. Wang, Z. Zhuang, P. Surman, X. W. Sun, and Y. Zheng, “A spatio-temporal multiplexing multi-view display using a lenticular lens and a beam steering screen,” Opt. Commun. 420, 168–173 (2018).

2017 (1)

B.-R. Lee, J.-Y. Son, H. Lee, S. Yano, H. K. Son, and I. Jeong, “A simulator for a light field display,” Proc. SPIE 10219, 102190D (2017).

2016 (2)

2015 (1)

2014 (1)

J. Geng, “Design of a single projector multiview 3D display system,” Proc. SPIE 8979, 89790K (2014).
[Crossref]

2013 (6)

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

L. Li, C. Liu, H. Ren, and Q.-H. Wang, “Adaptive liquid iris based on electrowetting,” Opt. Lett. 38(13), 2336–2338 (2013).
[Crossref] [PubMed]

Y. Peng, H. Li, Q. Zhong, X. Xia, and X. Liu, “Large-sized light field three-dimensional display using multi-projectors and directional diffuser,” Opt. Eng. 52(1), 017402 (2013).
[Crossref]

J.-H. Lee, J. Park, D. Nam, S. Y. Choi, D.-S. Park, and C. Y. Kim, “Optimal projector configuration design for 300-Mpixel multi-projection 3D display,” Opt. Express 21(22), 26820–26835 (2013).
[Crossref] [PubMed]

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

X. Xia, X. Liu, H. Li, Z. Zheng, H. Wang, Y. Peng, and W. Shen, “A 360-degree floating 3D display based on light field regeneration,” Opt. Express 21(9), 11237–11247 (2013).
[Crossref] [PubMed]

2011 (3)

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization Fields: Dynamic Light Field Display using Multi-Layer LCDs,” ACM Trans. Graph. 30(6), 186 (2011).
[Crossref]

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis,” IEEE Trans. Broadcast 57(2), 362–371 (2011).
[Crossref]

X. F. Li, Q. H. Wang, D. H. Li, and A. H. Wang, “Image processing to eliminate crosstalk between neighboring view images in three-dimensional lenticular display,” IEEE J. Display Technol. 7(8), 443–447 (2011).

2010 (4)

T. Balogh and P. T. Kovács, “Real-time 3D light field transmission,” Proc. SPIE 7724, 772406 (2010).
[Crossref]

Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18(9), 8824–8835 (2010).
[Crossref] [PubMed]

T. Yendo, T. Fujii, M. Tanimoto, and M. P. Tehrani, “The Seelinder: Cylindrical 3D display viewable from 360 degrees,” J. Vis. Commun. Image. 21(5–6), 586–594 (2010).
[Crossref]

X. Xia, Z. Zheng, X. Liu, H. Li, and C. Yan, “Omnidirectional-view three-dimensional display system based on cylindrical selective-diffusing screen,” Appl. Opt. 49(26), 4915–4920 (2010).
[Crossref] [PubMed]

2007 (2)

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[Crossref]

O. S. Cossairt, J. Napoli, S. L. Hill, R. K. Dorval, and G. E. Favalora, “Occlusion-capable multiview volumetric three-dimensional display,” Appl. Opt. 46(8), 1244–1250 (2007).
[Crossref] [PubMed]

2006 (1)

Y. Takaki, “High-Density Directional Display for Generating Natural Three-Dimensional Images,” Proc. IEEE 94(3), 654–663 (2006).
[Crossref]

2005 (4)

H. Nakanuma, H. Kamei, and Y. Takaki, “Natural 3D display with 128 directional images used for human-engineering evaluation,” Proc. SPIE 5664, 28–35 (2005).
[Crossref]

G. E. Favalora, “Volumetric 3D displays and application infrastructure,” Computer 38(8), 37–44 (2005).
[Crossref]

N. A. Dodgson, “Autostereoscopic 3D displays,” Computer 38(8), 31–36 (2005).
[Crossref]

C. Slinger, C. Cameron, and M. Stanley, “Computer-Generated Holography as a Generic Display Technology,” Computer 38(8), 46–53 (2005).
[Crossref]

1984 (1)

P. J. Bos and K. R. Koehler-Beran, “The Pi-Cell: A fast new liquid crystal switching device,” Mol. Cryst. Liq. Cryst. 113, 329–339 (1984).

Balogh, T.

T. Balogh and P. T. Kovács, “Real-time 3D light field transmission,” Proc. SPIE 7724, 772406 (2010).
[Crossref]

Beausoleil, R. G.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Bolas, M.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[Crossref]

Bos, P. J.

P. J. Bos and K. R. Koehler-Beran, “The Pi-Cell: A fast new liquid crystal switching device,” Mol. Cryst. Liq. Cryst. 113, 329–339 (1984).

Brug, J.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Cameron, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-Generated Holography as a Generic Display Technology,” Computer 38(8), 46–53 (2005).
[Crossref]

Chen, H.

Choi, S. Y.

Cossairt, O. S.

Debevec, P.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[Crossref]

Dodgson, N. A.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis,” IEEE Trans. Broadcast 57(2), 362–371 (2011).
[Crossref]

N. A. Dodgson, “Autostereoscopic 3D displays,” Computer 38(8), 31–36 (2005).
[Crossref]

Dorval, R. K.

Fattal, D.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Favalora, G. E.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis,” IEEE Trans. Broadcast 57(2), 362–371 (2011).
[Crossref]

O. S. Cossairt, J. Napoli, S. L. Hill, R. K. Dorval, and G. E. Favalora, “Occlusion-capable multiview volumetric three-dimensional display,” Appl. Opt. 46(8), 1244–1250 (2007).
[Crossref] [PubMed]

G. E. Favalora, “Volumetric 3D displays and application infrastructure,” Computer 38(8), 37–44 (2005).
[Crossref]

Fiorentino, M.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Fujii, T.

T. Yendo, T. Fujii, M. Tanimoto, and M. P. Tehrani, “The Seelinder: Cylindrical 3D display viewable from 360 degrees,” J. Vis. Commun. Image. 21(5–6), 586–594 (2010).
[Crossref]

Geng, J.

J. Geng, “Design of a single projector multiview 3D display system,” Proc. SPIE 8979, 89790K (2014).
[Crossref]

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

Heidrich, W.

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization Fields: Dynamic Light Field Display using Multi-Layer LCDs,” ACM Trans. Graph. 30(6), 186 (2011).
[Crossref]

Hill, S. L.

Hirsch, M.

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization Fields: Dynamic Light Field Display using Multi-Layer LCDs,” ACM Trans. Graph. 30(6), 186 (2011).
[Crossref]

Holliman, N. S.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis,” IEEE Trans. Broadcast 57(2), 362–371 (2011).
[Crossref]

Huang, Y.

Jeong, I.

B.-R. Lee, J.-Y. Son, H. Lee, S. Yano, H. K. Son, and I. Jeong, “A simulator for a light field display,” Proc. SPIE 10219, 102190D (2017).

Jones, A.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[Crossref]

Kamei, H.

H. Nakanuma, H. Kamei, and Y. Takaki, “Natural 3D display with 128 directional images used for human-engineering evaluation,” Proc. SPIE 5664, 28–35 (2005).
[Crossref]

Kim, C. Y.

Koehler-Beran, K. R.

P. J. Bos and K. R. Koehler-Beran, “The Pi-Cell: A fast new liquid crystal switching device,” Mol. Cryst. Liq. Cryst. 113, 329–339 (1984).

Kovács, P. T.

T. Balogh and P. T. Kovács, “Real-time 3D light field transmission,” Proc. SPIE 7724, 772406 (2010).
[Crossref]

Lanman, D.

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization Fields: Dynamic Light Field Display using Multi-Layer LCDs,” ACM Trans. Graph. 30(6), 186 (2011).
[Crossref]

Lee, B.-R.

B.-R. Lee, J.-Y. Son, H. Lee, S. Yano, H. K. Son, and I. Jeong, “A simulator for a light field display,” Proc. SPIE 10219, 102190D (2017).

Lee, H.

B.-R. Lee, J.-Y. Son, H. Lee, S. Yano, H. K. Son, and I. Jeong, “A simulator for a light field display,” Proc. SPIE 10219, 102190D (2017).

Lee, J.-H.

Li, D. H.

X. F. Li, Q. H. Wang, D. H. Li, and A. H. Wang, “Image processing to eliminate crosstalk between neighboring view images in three-dimensional lenticular display,” IEEE J. Display Technol. 7(8), 443–447 (2011).

Li, H.

Li, L.

Li, X. F.

X. F. Li, Q. H. Wang, D. H. Li, and A. H. Wang, “Image processing to eliminate crosstalk between neighboring view images in three-dimensional lenticular display,” IEEE J. Display Technol. 7(8), 443–447 (2011).

Liu, C.

Liu, X.

Liu, Y.

Lu, P.

McDowall, I.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[Crossref]

Nago, N.

Nakanuma, H.

H. Nakanuma, H. Kamei, and Y. Takaki, “Natural 3D display with 128 directional images used for human-engineering evaluation,” Proc. SPIE 5664, 28–35 (2005).
[Crossref]

Nam, D.

Napoli, J.

Park, D.-S.

Park, J.

Peng, Y.

X. Xia, X. Liu, H. Li, Z. Zheng, H. Wang, Y. Peng, and W. Shen, “A 360-degree floating 3D display based on light field regeneration,” Opt. Express 21(9), 11237–11247 (2013).
[Crossref] [PubMed]

Y. Peng, H. Li, Q. Zhong, X. Xia, and X. Liu, “Large-sized light field three-dimensional display using multi-projectors and directional diffuser,” Opt. Eng. 52(1), 017402 (2013).
[Crossref]

Peng, Z.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Pockett, L.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis,” IEEE Trans. Broadcast 57(2), 362–371 (2011).
[Crossref]

Raskar, R.

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization Fields: Dynamic Light Field Display using Multi-Layer LCDs,” ACM Trans. Graph. 30(6), 186 (2011).
[Crossref]

Ren, H.

Shen, W.

Slinger, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-Generated Holography as a Generic Display Technology,” Computer 38(8), 46–53 (2005).
[Crossref]

Son, H. K.

B.-R. Lee, J.-Y. Son, H. Lee, S. Yano, H. K. Son, and I. Jeong, “A simulator for a light field display,” Proc. SPIE 10219, 102190D (2017).

Son, J.-Y.

B.-R. Lee, J.-Y. Son, H. Lee, S. Yano, H. K. Son, and I. Jeong, “A simulator for a light field display,” Proc. SPIE 10219, 102190D (2017).

Song, W.

Stanley, M.

C. Slinger, C. Cameron, and M. Stanley, “Computer-Generated Holography as a Generic Display Technology,” Computer 38(8), 46–53 (2005).
[Crossref]

Sun, X. W.

X. Zhang, W. Song, H. Wang, Z. Zhuang, P. Surman, X. W. Sun, and Y. Zheng, “A spatio-temporal multiplexing multi-view display using a lenticular lens and a beam steering screen,” Opt. Commun. 420, 168–173 (2018).

H. Wang, O. Yaroshchuk, X. Zhang, Z. Zhuang, P. Surman, X. W. Sun, and Y. Zheng, “Large-aperture transparent beam steering screen based on LCMPA,” Appl. Opt. 55(28), 7824–7829 (2016).
[Crossref]

Surman, P.

X. Zhang, W. Song, H. Wang, Z. Zhuang, P. Surman, X. W. Sun, and Y. Zheng, “A spatio-temporal multiplexing multi-view display using a lenticular lens and a beam steering screen,” Opt. Commun. 420, 168–173 (2018).

H. Wang, O. Yaroshchuk, X. Zhang, Z. Zhuang, P. Surman, X. W. Sun, and Y. Zheng, “Large-aperture transparent beam steering screen based on LCMPA,” Appl. Opt. 55(28), 7824–7829 (2016).
[Crossref]

Tabiryan, N. V.

Takaki, Y.

Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18(9), 8824–8835 (2010).
[Crossref] [PubMed]

Y. Takaki, “High-Density Directional Display for Generating Natural Three-Dimensional Images,” Proc. IEEE 94(3), 654–663 (2006).
[Crossref]

H. Nakanuma, H. Kamei, and Y. Takaki, “Natural 3D display with 128 directional images used for human-engineering evaluation,” Proc. SPIE 5664, 28–35 (2005).
[Crossref]

Tanimoto, M.

T. Yendo, T. Fujii, M. Tanimoto, and M. P. Tehrani, “The Seelinder: Cylindrical 3D display viewable from 360 degrees,” J. Vis. Commun. Image. 21(5–6), 586–594 (2010).
[Crossref]

Tehrani, M. P.

T. Yendo, T. Fujii, M. Tanimoto, and M. P. Tehrani, “The Seelinder: Cylindrical 3D display viewable from 360 degrees,” J. Vis. Commun. Image. 21(5–6), 586–594 (2010).
[Crossref]

Tran, T.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Vo, S.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Wang, A. H.

X. F. Li, Q. H. Wang, D. H. Li, and A. H. Wang, “Image processing to eliminate crosstalk between neighboring view images in three-dimensional lenticular display,” IEEE J. Display Technol. 7(8), 443–447 (2011).

Wang, H.

Wang, Q. H.

X. F. Li, Q. H. Wang, D. H. Li, and A. H. Wang, “Image processing to eliminate crosstalk between neighboring view images in three-dimensional lenticular display,” IEEE J. Display Technol. 7(8), 443–447 (2011).

Wang, Q.-H.

Wang, Y.

Weng, D.

Weng, Y.

Wetzstein, G.

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization Fields: Dynamic Light Field Display using Multi-Layer LCDs,” ACM Trans. Graph. 30(6), 186 (2011).
[Crossref]

Wu, S. T.

Xia, X.

Xu, D.

Yamada, H.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[Crossref]

Yan, C.

Yano, S.

B.-R. Lee, J.-Y. Son, H. Lee, S. Yano, H. K. Son, and I. Jeong, “A simulator for a light field display,” Proc. SPIE 10219, 102190D (2017).

Yaroshchuk, O.

Yendo, T.

T. Yendo, T. Fujii, M. Tanimoto, and M. P. Tehrani, “The Seelinder: Cylindrical 3D display viewable from 360 degrees,” J. Vis. Commun. Image. 21(5–6), 586–594 (2010).
[Crossref]

Zhang, X.

X. Zhang, W. Song, H. Wang, Z. Zhuang, P. Surman, X. W. Sun, and Y. Zheng, “A spatio-temporal multiplexing multi-view display using a lenticular lens and a beam steering screen,” Opt. Commun. 420, 168–173 (2018).

H. Wang, O. Yaroshchuk, X. Zhang, Z. Zhuang, P. Surman, X. W. Sun, and Y. Zheng, “Large-aperture transparent beam steering screen based on LCMPA,” Appl. Opt. 55(28), 7824–7829 (2016).
[Crossref]

Zheng, Y.

Zheng, Z.

Zhong, Q.

Y. Peng, H. Li, Q. Zhong, X. Xia, and X. Liu, “Large-sized light field three-dimensional display using multi-projectors and directional diffuser,” Opt. Eng. 52(1), 017402 (2013).
[Crossref]

Zhu, Q.

Zhuang, Z.

X. Zhang, W. Song, H. Wang, Z. Zhuang, P. Surman, X. W. Sun, and Y. Zheng, “A spatio-temporal multiplexing multi-view display using a lenticular lens and a beam steering screen,” Opt. Commun. 420, 168–173 (2018).

H. Wang, O. Yaroshchuk, X. Zhang, Z. Zhuang, P. Surman, X. W. Sun, and Y. Zheng, “Large-aperture transparent beam steering screen based on LCMPA,” Appl. Opt. 55(28), 7824–7829 (2016).
[Crossref]

ACM Trans. Graph. (2)

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[Crossref]

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization Fields: Dynamic Light Field Display using Multi-Layer LCDs,” ACM Trans. Graph. 30(6), 186 (2011).
[Crossref]

Adv. Opt. Photonics (1)

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

Appl. Opt. (5)

Computer (3)

G. E. Favalora, “Volumetric 3D displays and application infrastructure,” Computer 38(8), 37–44 (2005).
[Crossref]

N. A. Dodgson, “Autostereoscopic 3D displays,” Computer 38(8), 31–36 (2005).
[Crossref]

C. Slinger, C. Cameron, and M. Stanley, “Computer-Generated Holography as a Generic Display Technology,” Computer 38(8), 46–53 (2005).
[Crossref]

IEEE J. Display Technol. (1)

X. F. Li, Q. H. Wang, D. H. Li, and A. H. Wang, “Image processing to eliminate crosstalk between neighboring view images in three-dimensional lenticular display,” IEEE J. Display Technol. 7(8), 443–447 (2011).

IEEE Trans. Broadcast (1)

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis,” IEEE Trans. Broadcast 57(2), 362–371 (2011).
[Crossref]

J. Vis. Commun. Image. (1)

T. Yendo, T. Fujii, M. Tanimoto, and M. P. Tehrani, “The Seelinder: Cylindrical 3D display viewable from 360 degrees,” J. Vis. Commun. Image. 21(5–6), 586–594 (2010).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

P. J. Bos and K. R. Koehler-Beran, “The Pi-Cell: A fast new liquid crystal switching device,” Mol. Cryst. Liq. Cryst. 113, 329–339 (1984).

Nature (1)

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Opt. Commun. (1)

X. Zhang, W. Song, H. Wang, Z. Zhuang, P. Surman, X. W. Sun, and Y. Zheng, “A spatio-temporal multiplexing multi-view display using a lenticular lens and a beam steering screen,” Opt. Commun. 420, 168–173 (2018).

Opt. Eng. (1)

Y. Peng, H. Li, Q. Zhong, X. Xia, and X. Liu, “Large-sized light field three-dimensional display using multi-projectors and directional diffuser,” Opt. Eng. 52(1), 017402 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Proc. IEEE (1)

Y. Takaki, “High-Density Directional Display for Generating Natural Three-Dimensional Images,” Proc. IEEE 94(3), 654–663 (2006).
[Crossref]

Proc. SPIE (4)

H. Nakanuma, H. Kamei, and Y. Takaki, “Natural 3D display with 128 directional images used for human-engineering evaluation,” Proc. SPIE 5664, 28–35 (2005).
[Crossref]

B.-R. Lee, J.-Y. Son, H. Lee, S. Yano, H. K. Son, and I. Jeong, “A simulator for a light field display,” Proc. SPIE 10219, 102190D (2017).

J. Geng, “Design of a single projector multiview 3D display system,” Proc. SPIE 8979, 89790K (2014).
[Crossref]

T. Balogh and P. T. Kovács, “Real-time 3D light field transmission,” Proc. SPIE 7724, 772406 (2010).
[Crossref]

Other (2)

K. Nagano, A. Jones, J. Liu, J. Busch, X. Yu, M. Bolas, and P. Debevec, “An autostereoscopic projector array optimized for 3D facial display,” ACM SIGGRAPH 2013 Emerging Technologies, July 21–25, 2013, Anaheim, California.
[Crossref]

G. Falcao, N. Hurtos, J. Massich, and D. Fofi, “Projector-camera calibration toolbox,” Technical Report, 2009. Available at http://code.google.com/p/procamcalib .

Supplementary Material (2)

NameDescription
» Visualization 1       Designed dynamic 3D model and the captured video of the displayed 3D scenes from different views
» Visualization 1       Designed dynamic 3D model and the captured video of the displayed 3D scenes from different views

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 System configuration of the projection-based multi-view 3D display.
Fig. 2
Fig. 2 Principle of the projection-based multi-view 3D display.
Fig. 3
Fig. 3 Geometric mapping relationship of the projection-based multi-view 3D display.
Fig. 4
Fig. 4 Operation of the angular steering screen for NS = 3.
Fig. 5
Fig. 5 Experimental setup of the proposed 3D display.
Fig. 6
Fig. 6 Captured photos of the displayed 3D scenes from different views.
Fig. 7
Fig. 7 Designed dynamic 3D model and the captured video of the displayed 3D scenes from different views (see Visualization 1).
Fig. 8
Fig. 8 Measured crosstalk of the prototype.

Tables (1)

Tables Icon

Table 1 Specifications of the 3D Display System

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

1 D P + 1 D V = 1 f s
θ S = θ P / N S = arctan( p/ D P )/ N S .
{ x V = z V x P / z P = x P f S / ( f S D P ) z V = z P f S / ( z P + f S ) = D P f S / ( f S D P ) .
{ x S =x z V / ( z V z) x V z/ ( z V z) y S =y z V / ( z V z) y V z/ ( z V z) z S =0 .
{ x 0 = ( z P ,0, x P )/ x P 2 + z P 2 y 0 = ( x P y P , x P 2 + z P 2 , y P z P )/ ( x P 2 + z P 2 )( x P 2 + y P 2 + z P 2 ) z 0 = ( x P , y P , z P )/ x P 2 + y P 2 + z P 2 .
( x P y P z P )=( x 0 y 0 z 0 )( x S x P y S y P z S z P )=T( x S x P y S y P z S z P )
{ u=round( x P z P M proj 2tan θ x + M proj 2 ) v=round( y P z P N proj 2tan θ y + N proj 2 ) ,when | x P z P |tan θ x and | y P z P |tan θ y .
C i = j=1 N B j / B i 1

Metrics