Abstract

Terahertz (THz) waves laterally confined in a 1 mm-thick microstructured planar waveguide are demonstrated on a free-standing metal rod array (MRA), and one apparent rejection band of a transmission spectrum, resembling the bandgap of a photonic crystal, is found in 0.1–0.6 THz. The visibility of the photonic bandgap in the spectral width and power distinction can be manipulated by changing the MRA geometry parameters, including the rod diameter, the interspace between adjacent rods, and the propagation length based on the interactive MRA-layer number. THz transmission ratio enhanced by a large interactive length is verified in 30 MRA layers due to the longitudinally resonant guidance of transverse-magnetic-polarized waveguide modes along the MRA length, which is critical to the interspace width of adjacent rods and the metal coating of the rod surface. For an MRA with respective rod diameter and interspace dimensions of about 0.16 and 0.26 mm, the highest transmission of the guided resonant THz waves are performed at 0.505–0.512 THz frequency with strong confinement on the metal rod tips and a low scattering loss of 0.003 cm−1.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Geometry-dependent modal field properties of metal-rod-array-based terahertz waveguides

Dejun Liu, Ja-Yu Lu, Borwen You, and Toshiaki Hattori
OSA Continuum 2(3) 655-666 (2019)

Terahertz artificial material based on integrated metal-rod-array for phase sensitive fluid detection

Borwen You, Ching-Yu Chen, Chin-Ping Yu, Tze-An Liu, Toshiaki Hattori, and Ja-Yu Lu
Opt. Express 25(8) 8571-8583 (2017)

Terahertz plasmonic waveguide based on metal rod arrays for nanofilm sensing

Borwen You, Chien-Chun Peng, Jia-Shing Jhang, Hungh-Hsuan Chen, Chin-Ping Yu, Wei-Chih Lai, Tze-An Liu, Jin-Long Peng, and Ja-Yu Lu
Opt. Express 22(9) 11340-11350 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. Kuramochi, “Manipulating and trapping light with photonic crystals from fundamental studies to practical applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(47), 11032–11049 (2016).
    [Crossref]
  2. R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
    [Crossref]
  3. E. Özbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, “Terahertz spectroscopy of three-dimensional photonic band-gap crystals,” Opt. Lett. 19(15), 1155–1157 (1994).
    [Crossref] [PubMed]
  4. J.-M. Lourtioz, H. Benisty, A. Chelnokov, S. David, and S. Olivier, “Photonic crystals and the real world of optical telecommunications,” Ann. Telecommun. 58, 1197–1237 (2003).
  5. F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).
    [Crossref]
  6. M. Walther, B. M. Fischer, and P. U. Jepsen, “Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared,” Chem. Phys. 288(2-3), 261–268 (2003).
    [Crossref]
  7. T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88(6), 061113 (2006).
    [Crossref]
  8. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
    [Crossref] [PubMed]
  9. M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17(19), 17088–17101 (2009).
    [Crossref] [PubMed]
  10. H. Zhan, R. Mendis, and D. M. Mittleman, “Characterization of the terahertz near-field output of parallel-plate waveguides,” J. Opt. Soc. Am. B 28(3), 558–566 (2011).
    [Crossref]
  11. B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
    [Crossref]
  12. B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
    [Crossref]
  13. B. You, C.-C. Peng, J.-S. Jhang, H.-H. Chen, C.-P. Yu, W.-C. Lai, T.-A. Liu, J.-L. Peng, and J.-Y. Lu, “Terahertz plasmonic waveguide based on metal rod arrays for nanofilm sensing,” Opt. Express 22(9), 11340–11350 (2014).
    [Crossref] [PubMed]
  14. B. You, C.-Y. Chen, C.-P. Yu, T.-A. Liu, T. Hattori, and J.-Y. Lu, “Terahertz artificial material based on integrated metal-rod-array for phase sensitive fluid detection,” Opt. Express 25(8), 8571–8583 (2017).
    [Crossref] [PubMed]
  15. D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity,” Appl. Phys. Lett. 65(5), 645–647 (1994).
    [Crossref]
  16. N. A. Nicorovici, R. C. McPhedran, and L. C. Botten, “Photonic band gaps for arrays of perfectly conducting cylinders,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 52(1), 1135–1145 (1995).
    [Crossref] [PubMed]
  17. S.-W. Wang, W. Lu, X.-S. Chen, Z.-F. Li, X.-C. Shen, and W. Wen, “Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders,” J. Appl. Phys. 93(11), 9401–9403 (2003).
    [Crossref]
  18. B. Reinhard, G. Torosyan, and R. Beigang, “Band structure of terahertz metallic photonic crystals with high metal filling factor,” Appl. Phys. Lett. 92(20), 201107 (2008).
    [Crossref]
  19. E. I. Smirnova, C. Chen, M. A. Shapiro, J. R. Sirigiri, and R. J. Temkin, “Simulation of photonic band gaps in metal rod lattices for microwave applications,” J. Appl. Phys. 91(3), 960–968 (2002).
    [Crossref]
  20. Y. Zhao and D. R. Grischkowsky, “2-D Terahertz Metallic Photonic Crystals in Parallel-Plate Waveguides,” IEEE Trans Microw. Theory 55(4), 656–663 (2007).
    [Crossref]
  21. A. L. Bingham and D. R. Grischkowsky, “Terahertz 2-D Photonic Crystal Waveguides,” IEEE Microw. Wirel. Co. 18(7), 428–430 (2008).
    [Crossref]
  22. J. Kitagawa, M. Kodama, S. Koya, Y. Nishifuji, D. Armand, and Y. Kadoya, “THz wave propagation in two-dimensional metallic photonic crystal with mechanically tunable photonic-bands,” Opt. Express 20(16), 17271–17280 (2012).
    [Crossref] [PubMed]
  23. Y. Zhang, Y. Xu, C. Tian, Q. Xu, X. Zhang, Y. Li, X. Zhang, J. Han, and W. Zhang, “Terahertz spoof surface-plasmon-polariton subwavelength waveguide,” Photon. Res. 6(1), 18–23 (2018).
    [Crossref]
  24. M. S. Islam, J. Sultana, S. Rana, M. R. Islam, M. Faisal, S. F. Kaijage, and D. Abbott, “Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission,” Opt. Fiber Technol. 34, 6–11 (2017).
    [Crossref]
  25. B. You, T.-A. Liu, J.-L. Peng, C.-L. Pan, and J.-Y. Lu, “A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection,” Opt. Express 17(23), 20675–20683 (2009).
    [Crossref] [PubMed]
  26. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001).
    [Crossref] [PubMed]
  27. J. W. Lee, T. H. Park, P. Nordlander, and D. M. Mittleman, “Terahertz transmission properties of an individual slit in a thin metallic plate,” Opt. Express 17(15), 12660–12667 (2009).
    [Crossref] [PubMed]
  28. Z. Huang, E. P. J. Parrott, H. Park, H. P. Chan, and E. Pickwell-MacPherson, “High extinction ratio and low transmission loss thin-film terahertz polarizer with a tunable bilayer metal wire-grid structure,” Opt. Lett. 39(4), 793–796 (2014).
    [Crossref] [PubMed]
  29. A. Yariv and P. Yeh, Photonics (Oxford University, 2007).
  30. B. You, J.-Y. Lu, T.-A. Liu, and J.-L. Peng, “Hybrid terahertz plasmonic waveguide for sensing applications,” Opt. Express 21(18), 21087–21096 (2013).
    [Crossref] [PubMed]
  31. E. Hecht, Optics (Addison Wesley, 1998).
  32. L. Gingras, M. Georgin, and D. G. Cooke, “Optically induced mode coupling and interference in a terahertz parallel plate waveguide,” Opt. Lett. 39(7), 1807–1810 (2014).
    [Crossref] [PubMed]
  33. C.-J. Wang and L.-Y. Lin, “Nanoscale waveguiding methods,” Nanoscale Res. Lett. 2(5), 219–229 (2007).
    [Crossref] [PubMed]
  34. A. Yariv and P. Yeh, Photonics (Oxford University, 2007).

2018 (1)

2017 (3)

M. S. Islam, J. Sultana, S. Rana, M. R. Islam, M. Faisal, S. F. Kaijage, and D. Abbott, “Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission,” Opt. Fiber Technol. 34, 6–11 (2017).
[Crossref]

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).
[Crossref]

B. You, C.-Y. Chen, C.-P. Yu, T.-A. Liu, T. Hattori, and J.-Y. Lu, “Terahertz artificial material based on integrated metal-rod-array for phase sensitive fluid detection,” Opt. Express 25(8), 8571–8583 (2017).
[Crossref] [PubMed]

2016 (1)

E. Kuramochi, “Manipulating and trapping light with photonic crystals from fundamental studies to practical applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(47), 11032–11049 (2016).
[Crossref]

2015 (1)

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

2014 (4)

2013 (2)

B. You, J.-Y. Lu, T.-A. Liu, and J.-L. Peng, “Hybrid terahertz plasmonic waveguide for sensing applications,” Opt. Express 21(18), 21087–21096 (2013).
[Crossref] [PubMed]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

2012 (1)

2011 (1)

2009 (3)

2008 (2)

B. Reinhard, G. Torosyan, and R. Beigang, “Band structure of terahertz metallic photonic crystals with high metal filling factor,” Appl. Phys. Lett. 92(20), 201107 (2008).
[Crossref]

A. L. Bingham and D. R. Grischkowsky, “Terahertz 2-D Photonic Crystal Waveguides,” IEEE Microw. Wirel. Co. 18(7), 428–430 (2008).
[Crossref]

2007 (2)

Y. Zhao and D. R. Grischkowsky, “2-D Terahertz Metallic Photonic Crystals in Parallel-Plate Waveguides,” IEEE Trans Microw. Theory 55(4), 656–663 (2007).
[Crossref]

C.-J. Wang and L.-Y. Lin, “Nanoscale waveguiding methods,” Nanoscale Res. Lett. 2(5), 219–229 (2007).
[Crossref] [PubMed]

2006 (2)

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88(6), 061113 (2006).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

2003 (3)

J.-M. Lourtioz, H. Benisty, A. Chelnokov, S. David, and S. Olivier, “Photonic crystals and the real world of optical telecommunications,” Ann. Telecommun. 58, 1197–1237 (2003).

M. Walther, B. M. Fischer, and P. U. Jepsen, “Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared,” Chem. Phys. 288(2-3), 261–268 (2003).
[Crossref]

S.-W. Wang, W. Lu, X.-S. Chen, Z.-F. Li, X.-C. Shen, and W. Wen, “Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders,” J. Appl. Phys. 93(11), 9401–9403 (2003).
[Crossref]

2002 (1)

E. I. Smirnova, C. Chen, M. A. Shapiro, J. R. Sirigiri, and R. J. Temkin, “Simulation of photonic band gaps in metal rod lattices for microwave applications,” J. Appl. Phys. 91(3), 960–968 (2002).
[Crossref]

2001 (1)

1995 (1)

N. A. Nicorovici, R. C. McPhedran, and L. C. Botten, “Photonic band gaps for arrays of perfectly conducting cylinders,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 52(1), 1135–1145 (1995).
[Crossref] [PubMed]

1994 (2)

D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity,” Appl. Phys. Lett. 65(5), 645–647 (1994).
[Crossref]

E. Özbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, “Terahertz spectroscopy of three-dimensional photonic band-gap crystals,” Opt. Lett. 19(15), 1155–1157 (1994).
[Crossref] [PubMed]

Abbott, D.

M. S. Islam, J. Sultana, S. Rana, M. R. Islam, M. Faisal, S. F. Kaijage, and D. Abbott, “Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission,” Opt. Fiber Technol. 34, 6–11 (2017).
[Crossref]

Alonso-Ramos, C.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Andrews, S. R.

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Armand, D.

Baldini, F.

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).
[Crossref]

Beigang, R.

B. Reinhard, G. Torosyan, and R. Beigang, “Band structure of terahertz metallic photonic crystals with high metal filling factor,” Appl. Phys. Lett. 92(20), 201107 (2008).
[Crossref]

Benisty, H.

J.-M. Lourtioz, H. Benisty, A. Chelnokov, S. David, and S. Olivier, “Photonic crystals and the real world of optical telecommunications,” Ann. Telecommun. 58, 1197–1237 (2003).

Bingham, A. L.

A. L. Bingham and D. R. Grischkowsky, “Terahertz 2-D Photonic Crystal Waveguides,” IEEE Microw. Wirel. Co. 18(7), 428–430 (2008).
[Crossref]

Biswas, R.

Bloom, D. M.

Bock, P. J.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Bostak, J.

Botten, L. C.

N. A. Nicorovici, R. C. McPhedran, and L. C. Botten, “Photonic band gaps for arrays of perfectly conducting cylinders,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 52(1), 1135–1145 (1995).
[Crossref] [PubMed]

Breese, M. B. H.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Chan, H. P.

Cheben, P.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Chelnokov, A.

J.-M. Lourtioz, H. Benisty, A. Chelnokov, S. David, and S. Olivier, “Photonic crystals and the real world of optical telecommunications,” Ann. Telecommun. 58, 1197–1237 (2003).

Chen, C.

E. I. Smirnova, C. Chen, M. A. Shapiro, J. R. Sirigiri, and R. J. Temkin, “Simulation of photonic band gaps in metal rod lattices for microwave applications,” J. Appl. Phys. 91(3), 960–968 (2002).
[Crossref]

Chen, C.-Y.

Chen, H.-H.

Chen, X.-S.

S.-W. Wang, W. Lu, X.-S. Chen, Z.-F. Li, X.-C. Shen, and W. Wen, “Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders,” J. Appl. Phys. 93(11), 9401–9403 (2003).
[Crossref]

Chiavaioli, F.

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).
[Crossref]

Cooke, D. G.

David, S.

J.-M. Lourtioz, H. Benisty, A. Chelnokov, S. David, and S. Olivier, “Photonic crystals and the real world of optical telecommunications,” Ann. Telecommun. 58, 1197–1237 (2003).

Faisal, M.

M. S. Islam, J. Sultana, S. Rana, M. R. Islam, M. Faisal, S. F. Kaijage, and D. Abbott, “Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission,” Opt. Fiber Technol. 34, 6–11 (2017).
[Crossref]

Fernández-Domínguez, A. I.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Fischer, B. M.

M. Walther, B. M. Fischer, and P. U. Jepsen, “Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared,” Chem. Phys. 288(2-3), 261–268 (2003).
[Crossref]

García-Vidal, F. J.

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Georgin, M.

Giannetti, A.

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).
[Crossref]

Gingras, L.

Gong, M.

Grischkowsky, D.

Grischkowsky, D. R.

A. L. Bingham and D. R. Grischkowsky, “Terahertz 2-D Photonic Crystal Waveguides,” IEEE Microw. Wirel. Co. 18(7), 428–430 (2008).
[Crossref]

Y. Zhao and D. R. Grischkowsky, “2-D Terahertz Metallic Photonic Crystals in Parallel-Plate Waveguides,” IEEE Trans Microw. Theory 55(4), 656–663 (2007).
[Crossref]

Halir, R.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Han, J.

Hanham, S. M.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Hattori, T.

Ho, K. M.

D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity,” Appl. Phys. Lett. 65(5), 645–647 (1994).
[Crossref]

E. Özbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, “Terahertz spectroscopy of three-dimensional photonic band-gap crystals,” Opt. Lett. 19(15), 1155–1157 (1994).
[Crossref] [PubMed]

Hong, M.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Huang, Z.

Islam, M. R.

M. S. Islam, J. Sultana, S. Rana, M. R. Islam, M. Faisal, S. F. Kaijage, and D. Abbott, “Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission,” Opt. Fiber Technol. 34, 6–11 (2017).
[Crossref]

Islam, M. S.

M. S. Islam, J. Sultana, S. Rana, M. R. Islam, M. Faisal, S. F. Kaijage, and D. Abbott, “Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission,” Opt. Fiber Technol. 34, 6–11 (2017).
[Crossref]

Janz, S.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Jeon, T.-I.

M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17(19), 17088–17101 (2009).
[Crossref] [PubMed]

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88(6), 061113 (2006).
[Crossref]

Jepsen, P. U.

M. Walther, B. M. Fischer, and P. U. Jepsen, “Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared,” Chem. Phys. 288(2-3), 261–268 (2003).
[Crossref]

Jhang, J.-S.

Kadoya, Y.

Kaijage, S. F.

M. S. Islam, J. Sultana, S. Rana, M. R. Islam, M. Faisal, S. F. Kaijage, and D. Abbott, “Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission,” Opt. Fiber Technol. 34, 6–11 (2017).
[Crossref]

Kitagawa, J.

Klein, N.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Kodama, M.

Koya, S.

Kroll, N.

D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity,” Appl. Phys. Lett. 65(5), 645–647 (1994).
[Crossref]

Kuramochi, E.

E. Kuramochi, “Manipulating and trapping light with photonic crystals from fundamental studies to practical applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(47), 11032–11049 (2016).
[Crossref]

Lai, W.-C.

Lapointe, J.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Lee, J. W.

Li, Y.

Li, Z.-F.

S.-W. Wang, W. Lu, X.-S. Chen, Z.-F. Li, X.-C. Shen, and W. Wen, “Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders,” J. Appl. Phys. 93(11), 9401–9403 (2003).
[Crossref]

Liew, Y. F.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Lin, L.-Y.

C.-J. Wang and L.-Y. Lin, “Nanoscale waveguiding methods,” Nanoscale Res. Lett. 2(5), 219–229 (2007).
[Crossref] [PubMed]

Liu, T.-A.

Lourtioz, J.-M.

J.-M. Lourtioz, H. Benisty, A. Chelnokov, S. David, and S. Olivier, “Photonic crystals and the real world of optical telecommunications,” Ann. Telecommun. 58, 1197–1237 (2003).

Lu, J.-Y.

Lu, W.

S.-W. Wang, W. Lu, X.-S. Chen, Z.-F. Li, X.-C. Shen, and W. Wen, “Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders,” J. Appl. Phys. 93(11), 9401–9403 (2003).
[Crossref]

Maier, S. A.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Martín-Moreno, L.

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

McPhedran, R. C.

N. A. Nicorovici, R. C. McPhedran, and L. C. Botten, “Photonic band gaps for arrays of perfectly conducting cylinders,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 52(1), 1135–1145 (1995).
[Crossref] [PubMed]

Mendis, R.

Michel, E.

Mittleman, D. M.

Molina-Fernández, Í.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Ng, B.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Nicorovici, N. A.

N. A. Nicorovici, R. C. McPhedran, and L. C. Botten, “Photonic band gaps for arrays of perfectly conducting cylinders,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 52(1), 1135–1145 (1995).
[Crossref] [PubMed]

Nishifuji, Y.

Nordlander, P.

Olivier, S.

J.-M. Lourtioz, H. Benisty, A. Chelnokov, S. David, and S. Olivier, “Photonic crystals and the real world of optical telecommunications,” Ann. Telecommun. 58, 1197–1237 (2003).

Ortega-Moñux, A.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Özbay, E.

Pan, C.-L.

Park, H.

Park, T. H.

Parrott, E. P. J.

Peng, C.-C.

Peng, J.-L.

Pickwell-MacPherson, E.

Rana, S.

M. S. Islam, J. Sultana, S. Rana, M. R. Islam, M. Faisal, S. F. Kaijage, and D. Abbott, “Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission,” Opt. Fiber Technol. 34, 6–11 (2017).
[Crossref]

Reinhard, B.

B. Reinhard, G. Torosyan, and R. Beigang, “Band structure of terahertz metallic photonic crystals with high metal filling factor,” Appl. Phys. Lett. 92(20), 201107 (2008).
[Crossref]

Schmid, J. H.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Schultz, S.

D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity,” Appl. Phys. Lett. 65(5), 645–647 (1994).
[Crossref]

Shapiro, M. A.

E. I. Smirnova, C. Chen, M. A. Shapiro, J. R. Sirigiri, and R. J. Temkin, “Simulation of photonic band gaps in metal rod lattices for microwave applications,” J. Appl. Phys. 91(3), 960–968 (2002).
[Crossref]

Shen, X.-C.

S.-W. Wang, W. Lu, X.-S. Chen, Z.-F. Li, X.-C. Shen, and W. Wen, “Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders,” J. Appl. Phys. 93(11), 9401–9403 (2003).
[Crossref]

Sigalas, M.

D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity,” Appl. Phys. Lett. 65(5), 645–647 (1994).
[Crossref]

Sirigiri, J. R.

E. I. Smirnova, C. Chen, M. A. Shapiro, J. R. Sirigiri, and R. J. Temkin, “Simulation of photonic band gaps in metal rod lattices for microwave applications,” J. Appl. Phys. 91(3), 960–968 (2002).
[Crossref]

Smirnova, E. I.

E. I. Smirnova, C. Chen, M. A. Shapiro, J. R. Sirigiri, and R. J. Temkin, “Simulation of photonic band gaps in metal rod lattices for microwave applications,” J. Appl. Phys. 91(3), 960–968 (2002).
[Crossref]

Smith, D. R.

D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity,” Appl. Phys. Lett. 65(5), 645–647 (1994).
[Crossref]

Soukoulis, C. M.

D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity,” Appl. Phys. Lett. 65(5), 645–647 (1994).
[Crossref]

Sultana, J.

M. S. Islam, J. Sultana, S. Rana, M. R. Islam, M. Faisal, S. F. Kaijage, and D. Abbott, “Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission,” Opt. Fiber Technol. 34, 6–11 (2017).
[Crossref]

Temkin, R. J.

E. I. Smirnova, C. Chen, M. A. Shapiro, J. R. Sirigiri, and R. J. Temkin, “Simulation of photonic band gaps in metal rod lattices for microwave applications,” J. Appl. Phys. 91(3), 960–968 (2002).
[Crossref]

Tian, C.

Tombelli, S.

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).
[Crossref]

Torosyan, G.

B. Reinhard, G. Torosyan, and R. Beigang, “Band structure of terahertz metallic photonic crystals with high metal filling factor,” Appl. Phys. Lett. 92(20), 201107 (2008).
[Crossref]

Trono, C.

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).
[Crossref]

Tuttle, G.

Walther, M.

M. Walther, B. M. Fischer, and P. U. Jepsen, “Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared,” Chem. Phys. 288(2-3), 261–268 (2003).
[Crossref]

Wang, C.-J.

C.-J. Wang and L.-Y. Lin, “Nanoscale waveguiding methods,” Nanoscale Res. Lett. 2(5), 219–229 (2007).
[Crossref] [PubMed]

Wang, S.-W.

S.-W. Wang, W. Lu, X.-S. Chen, Z.-F. Li, X.-C. Shen, and W. Wen, “Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders,” J. Appl. Phys. 93(11), 9401–9403 (2003).
[Crossref]

Wangüemert-Pérez, J. G.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Wen, W.

S.-W. Wang, W. Lu, X.-S. Chen, Z.-F. Li, X.-C. Shen, and W. Wen, “Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders,” J. Appl. Phys. 93(11), 9401–9403 (2003).
[Crossref]

Wu, J.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Xu, D.-X.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Xu, Q.

Xu, Y.

You, B.

Yu, C.-P.

Zhan, H.

Zhang, W.

Zhang, X.

Zhang, Y.

Zhao, Y.

Y. Zhao and D. R. Grischkowsky, “2-D Terahertz Metallic Photonic Crystals in Parallel-Plate Waveguides,” IEEE Trans Microw. Theory 55(4), 656–663 (2007).
[Crossref]

ACS Photonics (1)

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Adv. Opt. Mater. (1)

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Ann. Telecommun. (1)

J.-M. Lourtioz, H. Benisty, A. Chelnokov, S. David, and S. Olivier, “Photonic crystals and the real world of optical telecommunications,” Ann. Telecommun. 58, 1197–1237 (2003).

Appl. Phys. Lett. (3)

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88(6), 061113 (2006).
[Crossref]

D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity,” Appl. Phys. Lett. 65(5), 645–647 (1994).
[Crossref]

B. Reinhard, G. Torosyan, and R. Beigang, “Band structure of terahertz metallic photonic crystals with high metal filling factor,” Appl. Phys. Lett. 92(20), 201107 (2008).
[Crossref]

Chem. Phys. (1)

M. Walther, B. M. Fischer, and P. U. Jepsen, “Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared,” Chem. Phys. 288(2-3), 261–268 (2003).
[Crossref]

IEEE Microw. Wirel. Co. (1)

A. L. Bingham and D. R. Grischkowsky, “Terahertz 2-D Photonic Crystal Waveguides,” IEEE Microw. Wirel. Co. 18(7), 428–430 (2008).
[Crossref]

IEEE Trans Microw. Theory (1)

Y. Zhao and D. R. Grischkowsky, “2-D Terahertz Metallic Photonic Crystals in Parallel-Plate Waveguides,” IEEE Trans Microw. Theory 55(4), 656–663 (2007).
[Crossref]

J. Appl. Phys. (2)

S.-W. Wang, W. Lu, X.-S. Chen, Z.-F. Li, X.-C. Shen, and W. Wen, “Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders,” J. Appl. Phys. 93(11), 9401–9403 (2003).
[Crossref]

E. I. Smirnova, C. Chen, M. A. Shapiro, J. R. Sirigiri, and R. J. Temkin, “Simulation of photonic band gaps in metal rod lattices for microwave applications,” J. Appl. Phys. 91(3), 960–968 (2002).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

E. Kuramochi, “Manipulating and trapping light with photonic crystals from fundamental studies to practical applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(47), 11032–11049 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Nanophotonics (1)

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).
[Crossref]

Nanoscale Res. Lett. (1)

C.-J. Wang and L.-Y. Lin, “Nanoscale waveguiding methods,” Nanoscale Res. Lett. 2(5), 219–229 (2007).
[Crossref] [PubMed]

Opt. Express (7)

B. You, C.-C. Peng, J.-S. Jhang, H.-H. Chen, C.-P. Yu, W.-C. Lai, T.-A. Liu, J.-L. Peng, and J.-Y. Lu, “Terahertz plasmonic waveguide based on metal rod arrays for nanofilm sensing,” Opt. Express 22(9), 11340–11350 (2014).
[Crossref] [PubMed]

M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17(19), 17088–17101 (2009).
[Crossref] [PubMed]

J. W. Lee, T. H. Park, P. Nordlander, and D. M. Mittleman, “Terahertz transmission properties of an individual slit in a thin metallic plate,” Opt. Express 17(15), 12660–12667 (2009).
[Crossref] [PubMed]

B. You, T.-A. Liu, J.-L. Peng, C.-L. Pan, and J.-Y. Lu, “A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection,” Opt. Express 17(23), 20675–20683 (2009).
[Crossref] [PubMed]

B. You, J.-Y. Lu, T.-A. Liu, and J.-L. Peng, “Hybrid terahertz plasmonic waveguide for sensing applications,” Opt. Express 21(18), 21087–21096 (2013).
[Crossref] [PubMed]

B. You, C.-Y. Chen, C.-P. Yu, T.-A. Liu, T. Hattori, and J.-Y. Lu, “Terahertz artificial material based on integrated metal-rod-array for phase sensitive fluid detection,” Opt. Express 25(8), 8571–8583 (2017).
[Crossref] [PubMed]

J. Kitagawa, M. Kodama, S. Koya, Y. Nishifuji, D. Armand, and Y. Kadoya, “THz wave propagation in two-dimensional metallic photonic crystal with mechanically tunable photonic-bands,” Opt. Express 20(16), 17271–17280 (2012).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

M. S. Islam, J. Sultana, S. Rana, M. R. Islam, M. Faisal, S. F. Kaijage, and D. Abbott, “Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission,” Opt. Fiber Technol. 34, 6–11 (2017).
[Crossref]

Opt. Lett. (4)

Photon. Res. (1)

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

N. A. Nicorovici, R. C. McPhedran, and L. C. Botten, “Photonic band gaps for arrays of perfectly conducting cylinders,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 52(1), 1135–1145 (1995).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Other (3)

A. Yariv and P. Yeh, Photonics (Oxford University, 2007).

E. Hecht, Optics (Addison Wesley, 1998).

A. Yariv and P. Yeh, Photonics (Oxford University, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) 3D and (b) top-view schematically drawings for a THz photonic crystal based on an MRA. (Inset) Microscopic photograph of an MRA. (c) Phase-matching diagram of THz wave reflection among metal rods.
Fig. 2
Fig. 2 Theoretical and experimental transmission spectra for the MRAs with different interspaces, (a) 0.46 mm (b) 0.36 mm and (c) 0.26 mm. (d) Theoretical and measured results for the relation between the MRA period and the central frequencies of the photonic bandgaps.
Fig. 3
Fig. 3 (a) Transmission spectra of the two MRAs with the same period, 0.42 mm, but different rod diameters. (b) Calculated results for the relation between the metal rod diameter and the bandgap bandwidth based on the same MRA period.
Fig. 4
Fig. 4 Normalized power transmission spectra for 4- and 30-MRA layers at different interspaces, (a) G = 0.26 mm and (b) G = 0.46 mm. (Inset) The power levels contrast to the normalized power peak in the rejection bands for G = 0.26 mm.
Fig. 5
Fig. 5 Transmission spectra of 30-layered MRAs and polymer-rod arrays with the same rod diameter of 0.16 mm and different interspaces of (a) 0.26 mm and (b) 0.36 mm.
Fig. 6
Fig. 6 Measured results for the lateral field distribution along Z-axis at different THz frequency ranges, (a) 0.424–0.439 THz, (b) 0.453–0.461 THz, (c) 0.468–0.483 THz, (d) 0.490–0.497 THz, (e) 0.505–0.512 THz, and (f) 0.519–0.541 THz.
Fig. 7
Fig. 7 (a) Measured power fractions inside the MRA for the single and high-order modes along the metal rod axis. Simulated electric field distributions in the X–Y plane at Z = 1.0 mm for different THz frequencies: (b) 0.453 THz, (c) 0.505 THz, and (d) 0.519 THz.
Fig. 8
Fig. 8 (a) Calculated transmittance spectra for THz waves propagating after different lengths of MRA. Calculated THz transmittances of (b) 0.453 THz, (c) 0.505 THz, and (d) 0.519 THz waves for different waveguide lengths, where the insets show the electric field distributions in the X–Z plane at the 30th layers of MRA.
Fig. 9
Fig. 9 Calculated THz scattering loss of MRA at different waveguide intervals.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

v PC = m c 0 2 n eff Λcosθ ,

Metrics