Abstract

Optically pumped molecular gas amplifiers having a gain medium contained in a hollow-core optical fiber are investigated with numerical modeling to understand the primary physical processes that affect amplifier output and efficiency. A comparison of computational results with experimental measurements of incident pump, absorbed pump, and emitted mid-IR from a pulsed, acetylene-filled, hollow-core fiber amplifier [ Opt. Exp. 25, 13351 (2017)] is used to explore the effects of various physical processes on pulsed amplifier operation. Single frequency, one-dimensional, time-dependent models are shown to align with experimentally measured lasing thresholds and ratios of absorbed pump to emitted laser energy but significantly over predict the amount of incident pump energy that is absorbed. A two-dimensional, time-dependent model that assumes Gaussian spectral and radial intensity profiles for the pump is developed and shows an improved ability to capture pump absorption. Results indicate that 1D, time-dependent models have utility in guiding experiments but the significant influence of the pump and laser propagation modes and the pump spectral characteristics on efficiency, threshold, and signal output must be explicitly included in high-fidelity high-power modeling.

Full Article  |  PDF Article
OSA Recommended Articles
Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review [Invited]

A. V. Vasudevan Nampoothiri, Andrew M. Jones, C. Fourcade-Dutin, Chenchen Mao, Neda Dadashzadeh, Bastian Baumgart, Y.Y. Wang, M. Alharbi, T. Bradley, Neil Campbell, F. Benabid, Brian R. Washburn, Kristan L. Corwin, and Wolfgang Rudolph
Opt. Mater. Express 2(7) 948-961 (2012)

High-power tunable mid-infrared fiber gas laser source by acetylene-filled hollow-core fibers

Zhiyue Zhou, Ni Tang, Zhixian Li, Wei Huang, Zefeng Wang, Wuming Wu, and Weihong Hua
Opt. Express 26(15) 19144-19153 (2018)

Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber

Zefeng Wang, Walter Belardi, Fei Yu, William J. Wadsworth, and Jonathan C. Knight
Opt. Express 22(18) 21872-21878 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. Canat, W. Renard, E. Lucas, L. Lombard, J. L. Gouët, A. Durécu, P. Bourdon, S. Bordais, and Y. Jaouën, “Eyesafe high peak power pulsed fiber lasers limited by fiber nonlinearity,” Opt. Fiber Technol. 20, 678–687 (2014).
    [Crossref]
  2. A. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19, 2309 (2011).
    [Crossref] [PubMed]
  3. A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [invited],” Opt. Express 2, 948–961 (2012).
    [Crossref]
  4. J. C. Knight, “Photonic crystal fibers and fiber lasers (invited),” J. Opt. Soc. Am. B 24, 1661–1668 (2007).
    [Crossref]
  5. J. C. Traver, W. Chang, J. Nold, N. Y. Joly, and P. S. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [invited],” J. Opt. Soc. Am. B 28, A11–A26 (2011).
    [Crossref]
  6. F. Benabid and P. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87–124 (2011).
    [Crossref]
  7. P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
    [Crossref]
  8. D. C. Jones, C. R. Bennett, M. A. Smith, and A. M. Scott, “High-power beam transport through a hollow-core photonic bandgap fiber,” Opt. Lett. 39, 3122–3125 (2014).
    [Crossref] [PubMed]
  9. F. Yu, M. Xu, and J. Knight, “Experimental study of low-loss single-mode performance in anti-resonant hollow-core fibers,” Opt. Express 24, 12969–12975 (2016).
    [Crossref] [PubMed]
  10. A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, N. Campbell, R. Kadel, N. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Optically pumped C2H2 and HCN lasers with conventional cavities and based on hollow core photonic crystal fibers,” in “International Symposium on High Power Laser Ablation,” (American Institute of Physics, 2010), p. 749.
  11. F. Yu, M. R. A. Hassan, W. Wadsworth, and J. Knight, “Pulsed and CW mid-infrared acetylene gas hollow-core fiber laser,” in “Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF),” (Optical Society of America, 2016), p. SoTu2G.1.
  12. A. V. V. Nampoothiri, B. Debord, M. Alharbi, F. Gérôme, F. Benabid, and W. Rudolph, “CW hollow-core optically pumped I2 fiber gas laser,” Opt. Lett. 40, 605–608 (2015).
    [Crossref] [PubMed]
  13. M. R. A. Hassan, F. Yu, Z. Wang, W. Belardi, W. J. Wadsworth, and J. C. Knight, “Synchronously pumped mid-IR hollow core fiber gas laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2015), p. SF1F.7.
  14. M. R. A. Hassan, F. Yu, W. J. Wadsworth, and J. C. Knight, “Cavity-based mid-IR fiber gas laser pumped by a diode laser,” Optica 3, 218 (2016).
    [Crossref]
  15. Z. Wang, Z. Zhou, Z. Li, N. Zhang, and Y. Chen, “Tunable mid-infrared emission from acetylene-filled hollow-core fiber,” Infrared, millimeter-wave, and terahertz Technologies IV p. 1003013 (2016).
  16. F. Yu, M. R. A. Hassan, W. J. Wadsworth, and J. C. Knight, “Line-tunable CW lasing of mid-infrared acetylene gas hollow core fiber laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. STh1O.2.
  17. N. Dadashzadeh, M. Thirugnanasambandam, K. Weerasinghe, B. Debord, M. Chafer, F. Férôme, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near-gaussian spatial mode from a mid-IR acetylene-filled hollow-core fiber laser,” in “Frontiers in Optics/Laser Science,” (Optical Society of America, 2016), p. FTu1I.5.
  18. N. Dadashzadeh, M. Thirugnanasambandam, K. Weerasinghe, B. Debord, M. Chafer, F. Férôme, F. Benabid, B. R. Washburn, and K. L. Corwin, “Power-scaling a mid-IR OPA-pumped acetylene-filled hollow-core photonic crystal fiber laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. STh4O.1.
  19. N. Dadashzadeh, M. Thirugnasambandam, H. W. K. Weerasinghe, B. Debord, M. Chafer, F. Gerome, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near diffraction-limited performance of an opa pumped acetylene-filled hollow-core fiber laser in the mid-IR,” Opt. Exp. 25, 13351–13358 (2017).
    [Crossref]
  20. J. Grosek, S. Naderi, B. Oliker, R. Lane, I. Dajani, and T. Madden, “Laser simulation at the Air Force Research Laboratory,” in “International Symposium on High Power Laser Systems and Applications,” (SPIE, 2017), p. 102540N.
  21. M. Triches, M. Michieletto, J. Hald, J. K. Lyngsø, J. Laegsgaard, and O. Bang, “Optical frequency standard using acetylene-filled hollow-core photonic crsytal fibers,” Opt. Express 23, 11227–11241 (2015).
    [Crossref] [PubMed]
  22. K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16025 (2009).
    [Crossref] [PubMed]
  23. A. M. Jones, “Realizing a mid-infrared optically pumped molecular gas laser inside a hollow-core photonic crystal fiber,” Ph.D. thesis, Kansas State University, Manhattan, KS (2012).
  24. B. Amyay, A. Fayt, M. Herman, and J. V. Auwera, “Vibration-rotation spectroscopic database on acetylene, X˜1Σg+(C212H2),” J. Phys. Chem. Ref. Data 45, 023103 (2016).
    [Crossref]
  25. “HITRAN spectroscopic database,” http://www.harvard.edu/HITRAN/ .
  26. “GEISA spectroscopic database,” http://ether.ipsl.jussieu.fr/ .
  27. M. Herman, A. Campargue, M. I. E. Idrissi, and J. V. Auwera, “Vibrational spectroscopic database on acetylene,” J. Phys. Chem. Ref. Data 32, 921 (2003).
    [Crossref]
  28. B. Amyay, A. Fayt, and M. Herman, “Accurate partition function for acetylene 12C2H2, and related thermodynamical quantities,” J. Chem. Phys. 135, 23305 (2011).
    [Crossref]
  29. M. Danos and S. Geschwind, “Broadening of microwave absorption lines due to wall collisions,” Phys. Rev. 91, 1159–1162 (1953).
    [Crossref]
  30. O. M. Lyulin and V. I. Perevalov, “Global modeling of vibration-rotation spectra of the acetylene molecule,” J. Quant. Spect. Rad. Tran. 177, 59–74 (2016).
    [Crossref]
  31. J. Han, K. Freel, and C. M. Heaven, “Rotational and vibrational energy transfer in vibrationally excited acetylene at energies near 6560 cm−1,” J. Chem. Phys. 135, 244304 (2011).
    [Crossref]
  32. M. A. Payne, A. P. Milce, M. J. Frost, and B. J. Orr, “Rovibrational energy transfer in the 4vCH manifold of acetylene, viewed by IR-UV double resonance spectroscopy. 1. foundation studies at low J†,” J. Phys. Chem. A 107, 10759–10770 (2003).
    [Crossref]
  33. R. Dophenide, W. Cronrath, and H. Zacharias, “Rotational energy transfer in vibrationally excited acetylene X̃1Σg(v″2 = 1, J″) :ΔJ propensities,” J. Chem. Phys. 101, 5804 (1994).
    [Crossref]
  34. A. C. Wight and R. E. Miller, “Vibrational quenching of acetylene scattered from LIF(001): trapping desorption versus direct scattering,” J. Chem. Phys. 109, 8626–8634 (1998).
    [Crossref]
  35. A. C. Wight, M. Penno, and R. E. Miller, “Sequential vibrational relaxation of polyatomic moleucles at surfaces: C2HD and C2H2 scattered from LIF(001),” J. Chem. Phys. 111, 8622–8627 (1999).
    [Crossref]
  36. R. Lane and T. Madden, “Energy loss in gas lasers operating in hollow-core optical fibers,” in “Fiber Lasers XIV: Technology and Systems,” (SPIE, 2017), p. 100831B.
  37. T. Bradley, E. Ilinova, J. McFerran, J. Jouin, B. Debord, M. Alharbi, P. Thomas, F. Gérôme, and F. Benabid, “Ground-state atomic polarization relaxation-time measurement of rb filled hypocycloidal core-shaped kagome hc-pcf,” J. Phys. B: At. Mol. Opt. Phys. 49, 185401 (2016).
    [Crossref]

2017 (1)

N. Dadashzadeh, M. Thirugnasambandam, H. W. K. Weerasinghe, B. Debord, M. Chafer, F. Gerome, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near diffraction-limited performance of an opa pumped acetylene-filled hollow-core fiber laser in the mid-IR,” Opt. Exp. 25, 13351–13358 (2017).
[Crossref]

2016 (5)

F. Yu, M. Xu, and J. Knight, “Experimental study of low-loss single-mode performance in anti-resonant hollow-core fibers,” Opt. Express 24, 12969–12975 (2016).
[Crossref] [PubMed]

B. Amyay, A. Fayt, M. Herman, and J. V. Auwera, “Vibration-rotation spectroscopic database on acetylene, X˜1Σg+(C212H2),” J. Phys. Chem. Ref. Data 45, 023103 (2016).
[Crossref]

O. M. Lyulin and V. I. Perevalov, “Global modeling of vibration-rotation spectra of the acetylene molecule,” J. Quant. Spect. Rad. Tran. 177, 59–74 (2016).
[Crossref]

M. R. A. Hassan, F. Yu, W. J. Wadsworth, and J. C. Knight, “Cavity-based mid-IR fiber gas laser pumped by a diode laser,” Optica 3, 218 (2016).
[Crossref]

T. Bradley, E. Ilinova, J. McFerran, J. Jouin, B. Debord, M. Alharbi, P. Thomas, F. Gérôme, and F. Benabid, “Ground-state atomic polarization relaxation-time measurement of rb filled hypocycloidal core-shaped kagome hc-pcf,” J. Phys. B: At. Mol. Opt. Phys. 49, 185401 (2016).
[Crossref]

2015 (2)

2014 (3)

G. Canat, W. Renard, E. Lucas, L. Lombard, J. L. Gouët, A. Durécu, P. Bourdon, S. Bordais, and Y. Jaouën, “Eyesafe high peak power pulsed fiber lasers limited by fiber nonlinearity,” Opt. Fiber Technol. 20, 678–687 (2014).
[Crossref]

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

D. C. Jones, C. R. Bennett, M. A. Smith, and A. M. Scott, “High-power beam transport through a hollow-core photonic bandgap fiber,” Opt. Lett. 39, 3122–3125 (2014).
[Crossref] [PubMed]

2012 (1)

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [invited],” Opt. Express 2, 948–961 (2012).
[Crossref]

2011 (5)

A. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19, 2309 (2011).
[Crossref] [PubMed]

J. C. Traver, W. Chang, J. Nold, N. Y. Joly, and P. S. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [invited],” J. Opt. Soc. Am. B 28, A11–A26 (2011).
[Crossref]

F. Benabid and P. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87–124 (2011).
[Crossref]

B. Amyay, A. Fayt, and M. Herman, “Accurate partition function for acetylene 12C2H2, and related thermodynamical quantities,” J. Chem. Phys. 135, 23305 (2011).
[Crossref]

J. Han, K. Freel, and C. M. Heaven, “Rotational and vibrational energy transfer in vibrationally excited acetylene at energies near 6560 cm−1,” J. Chem. Phys. 135, 244304 (2011).
[Crossref]

2009 (1)

2007 (1)

2003 (2)

M. Herman, A. Campargue, M. I. E. Idrissi, and J. V. Auwera, “Vibrational spectroscopic database on acetylene,” J. Phys. Chem. Ref. Data 32, 921 (2003).
[Crossref]

M. A. Payne, A. P. Milce, M. J. Frost, and B. J. Orr, “Rovibrational energy transfer in the 4vCH manifold of acetylene, viewed by IR-UV double resonance spectroscopy. 1. foundation studies at low J†,” J. Phys. Chem. A 107, 10759–10770 (2003).
[Crossref]

1999 (1)

A. C. Wight, M. Penno, and R. E. Miller, “Sequential vibrational relaxation of polyatomic moleucles at surfaces: C2HD and C2H2 scattered from LIF(001),” J. Chem. Phys. 111, 8622–8627 (1999).
[Crossref]

1998 (1)

A. C. Wight and R. E. Miller, “Vibrational quenching of acetylene scattered from LIF(001): trapping desorption versus direct scattering,” J. Chem. Phys. 109, 8626–8634 (1998).
[Crossref]

1994 (1)

R. Dophenide, W. Cronrath, and H. Zacharias, “Rotational energy transfer in vibrationally excited acetylene X̃1Σg(v″2 = 1, J″) :ΔJ propensities,” J. Chem. Phys. 101, 5804 (1994).
[Crossref]

1953 (1)

M. Danos and S. Geschwind, “Broadening of microwave absorption lines due to wall collisions,” Phys. Rev. 91, 1159–1162 (1953).
[Crossref]

Abdolvand, A.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

Alharbi, M.

T. Bradley, E. Ilinova, J. McFerran, J. Jouin, B. Debord, M. Alharbi, P. Thomas, F. Gérôme, and F. Benabid, “Ground-state atomic polarization relaxation-time measurement of rb filled hypocycloidal core-shaped kagome hc-pcf,” J. Phys. B: At. Mol. Opt. Phys. 49, 185401 (2016).
[Crossref]

A. V. V. Nampoothiri, B. Debord, M. Alharbi, F. Gérôme, F. Benabid, and W. Rudolph, “CW hollow-core optically pumped I2 fiber gas laser,” Opt. Lett. 40, 605–608 (2015).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [invited],” Opt. Express 2, 948–961 (2012).
[Crossref]

Amyay, B.

B. Amyay, A. Fayt, M. Herman, and J. V. Auwera, “Vibration-rotation spectroscopic database on acetylene, X˜1Σg+(C212H2),” J. Phys. Chem. Ref. Data 45, 023103 (2016).
[Crossref]

B. Amyay, A. Fayt, and M. Herman, “Accurate partition function for acetylene 12C2H2, and related thermodynamical quantities,” J. Chem. Phys. 135, 23305 (2011).
[Crossref]

Auwera, J. V.

B. Amyay, A. Fayt, M. Herman, and J. V. Auwera, “Vibration-rotation spectroscopic database on acetylene, X˜1Σg+(C212H2),” J. Phys. Chem. Ref. Data 45, 023103 (2016).
[Crossref]

M. Herman, A. Campargue, M. I. E. Idrissi, and J. V. Auwera, “Vibrational spectroscopic database on acetylene,” J. Phys. Chem. Ref. Data 32, 921 (2003).
[Crossref]

Bang, O.

Baumgart, B.

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [invited],” Opt. Express 2, 948–961 (2012).
[Crossref]

Belardi, W.

M. R. A. Hassan, F. Yu, Z. Wang, W. Belardi, W. J. Wadsworth, and J. C. Knight, “Synchronously pumped mid-IR hollow core fiber gas laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2015), p. SF1F.7.

Benabid, F.

N. Dadashzadeh, M. Thirugnasambandam, H. W. K. Weerasinghe, B. Debord, M. Chafer, F. Gerome, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near diffraction-limited performance of an opa pumped acetylene-filled hollow-core fiber laser in the mid-IR,” Opt. Exp. 25, 13351–13358 (2017).
[Crossref]

T. Bradley, E. Ilinova, J. McFerran, J. Jouin, B. Debord, M. Alharbi, P. Thomas, F. Gérôme, and F. Benabid, “Ground-state atomic polarization relaxation-time measurement of rb filled hypocycloidal core-shaped kagome hc-pcf,” J. Phys. B: At. Mol. Opt. Phys. 49, 185401 (2016).
[Crossref]

A. V. V. Nampoothiri, B. Debord, M. Alharbi, F. Gérôme, F. Benabid, and W. Rudolph, “CW hollow-core optically pumped I2 fiber gas laser,” Opt. Lett. 40, 605–608 (2015).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [invited],” Opt. Express 2, 948–961 (2012).
[Crossref]

A. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19, 2309 (2011).
[Crossref] [PubMed]

F. Benabid and P. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87–124 (2011).
[Crossref]

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16025 (2009).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, N. Campbell, R. Kadel, N. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Optically pumped C2H2 and HCN lasers with conventional cavities and based on hollow core photonic crystal fibers,” in “International Symposium on High Power Laser Ablation,” (American Institute of Physics, 2010), p. 749.

N. Dadashzadeh, M. Thirugnanasambandam, K. Weerasinghe, B. Debord, M. Chafer, F. Férôme, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near-gaussian spatial mode from a mid-IR acetylene-filled hollow-core fiber laser,” in “Frontiers in Optics/Laser Science,” (Optical Society of America, 2016), p. FTu1I.5.

N. Dadashzadeh, M. Thirugnanasambandam, K. Weerasinghe, B. Debord, M. Chafer, F. Férôme, F. Benabid, B. R. Washburn, and K. L. Corwin, “Power-scaling a mid-IR OPA-pumped acetylene-filled hollow-core photonic crystal fiber laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. STh4O.1.

Bennett, C. R.

Bordais, S.

G. Canat, W. Renard, E. Lucas, L. Lombard, J. L. Gouët, A. Durécu, P. Bourdon, S. Bordais, and Y. Jaouën, “Eyesafe high peak power pulsed fiber lasers limited by fiber nonlinearity,” Opt. Fiber Technol. 20, 678–687 (2014).
[Crossref]

Bourdon, P.

G. Canat, W. Renard, E. Lucas, L. Lombard, J. L. Gouët, A. Durécu, P. Bourdon, S. Bordais, and Y. Jaouën, “Eyesafe high peak power pulsed fiber lasers limited by fiber nonlinearity,” Opt. Fiber Technol. 20, 678–687 (2014).
[Crossref]

Bradley, T.

T. Bradley, E. Ilinova, J. McFerran, J. Jouin, B. Debord, M. Alharbi, P. Thomas, F. Gérôme, and F. Benabid, “Ground-state atomic polarization relaxation-time measurement of rb filled hypocycloidal core-shaped kagome hc-pcf,” J. Phys. B: At. Mol. Opt. Phys. 49, 185401 (2016).
[Crossref]

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [invited],” Opt. Express 2, 948–961 (2012).
[Crossref]

Campargue, A.

M. Herman, A. Campargue, M. I. E. Idrissi, and J. V. Auwera, “Vibrational spectroscopic database on acetylene,” J. Phys. Chem. Ref. Data 32, 921 (2003).
[Crossref]

Campbell, N.

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [invited],” Opt. Express 2, 948–961 (2012).
[Crossref]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, N. Campbell, R. Kadel, N. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Optically pumped C2H2 and HCN lasers with conventional cavities and based on hollow core photonic crystal fibers,” in “International Symposium on High Power Laser Ablation,” (American Institute of Physics, 2010), p. 749.

Canat, G.

G. Canat, W. Renard, E. Lucas, L. Lombard, J. L. Gouët, A. Durécu, P. Bourdon, S. Bordais, and Y. Jaouën, “Eyesafe high peak power pulsed fiber lasers limited by fiber nonlinearity,” Opt. Fiber Technol. 20, 678–687 (2014).
[Crossref]

Chafer, M.

N. Dadashzadeh, M. Thirugnasambandam, H. W. K. Weerasinghe, B. Debord, M. Chafer, F. Gerome, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near diffraction-limited performance of an opa pumped acetylene-filled hollow-core fiber laser in the mid-IR,” Opt. Exp. 25, 13351–13358 (2017).
[Crossref]

N. Dadashzadeh, M. Thirugnanasambandam, K. Weerasinghe, B. Debord, M. Chafer, F. Férôme, F. Benabid, B. R. Washburn, and K. L. Corwin, “Power-scaling a mid-IR OPA-pumped acetylene-filled hollow-core photonic crystal fiber laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. STh4O.1.

N. Dadashzadeh, M. Thirugnanasambandam, K. Weerasinghe, B. Debord, M. Chafer, F. Férôme, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near-gaussian spatial mode from a mid-IR acetylene-filled hollow-core fiber laser,” in “Frontiers in Optics/Laser Science,” (Optical Society of America, 2016), p. FTu1I.5.

Chang, W.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

J. C. Traver, W. Chang, J. Nold, N. Y. Joly, and P. S. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [invited],” J. Opt. Soc. Am. B 28, A11–A26 (2011).
[Crossref]

Chen, Y.

Z. Wang, Z. Zhou, Z. Li, N. Zhang, and Y. Chen, “Tunable mid-infrared emission from acetylene-filled hollow-core fiber,” Infrared, millimeter-wave, and terahertz Technologies IV p. 1003013 (2016).

Corwin, K. L.

N. Dadashzadeh, M. Thirugnasambandam, H. W. K. Weerasinghe, B. Debord, M. Chafer, F. Gerome, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near diffraction-limited performance of an opa pumped acetylene-filled hollow-core fiber laser in the mid-IR,” Opt. Exp. 25, 13351–13358 (2017).
[Crossref]

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [invited],” Opt. Express 2, 948–961 (2012).
[Crossref]

A. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19, 2309 (2011).
[Crossref] [PubMed]

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16025 (2009).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, N. Campbell, R. Kadel, N. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Optically pumped C2H2 and HCN lasers with conventional cavities and based on hollow core photonic crystal fibers,” in “International Symposium on High Power Laser Ablation,” (American Institute of Physics, 2010), p. 749.

N. Dadashzadeh, M. Thirugnanasambandam, K. Weerasinghe, B. Debord, M. Chafer, F. Férôme, F. Benabid, B. R. Washburn, and K. L. Corwin, “Power-scaling a mid-IR OPA-pumped acetylene-filled hollow-core photonic crystal fiber laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. STh4O.1.

N. Dadashzadeh, M. Thirugnanasambandam, K. Weerasinghe, B. Debord, M. Chafer, F. Férôme, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near-gaussian spatial mode from a mid-IR acetylene-filled hollow-core fiber laser,” in “Frontiers in Optics/Laser Science,” (Optical Society of America, 2016), p. FTu1I.5.

Couny, F.

Cronrath, W.

R. Dophenide, W. Cronrath, and H. Zacharias, “Rotational energy transfer in vibrationally excited acetylene X̃1Σg(v″2 = 1, J″) :ΔJ propensities,” J. Chem. Phys. 101, 5804 (1994).
[Crossref]

Dadashzadeh, N.

N. Dadashzadeh, M. Thirugnasambandam, H. W. K. Weerasinghe, B. Debord, M. Chafer, F. Gerome, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near diffraction-limited performance of an opa pumped acetylene-filled hollow-core fiber laser in the mid-IR,” Opt. Exp. 25, 13351–13358 (2017).
[Crossref]

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [invited],” Opt. Express 2, 948–961 (2012).
[Crossref]

N. Dadashzadeh, M. Thirugnanasambandam, K. Weerasinghe, B. Debord, M. Chafer, F. Férôme, F. Benabid, B. R. Washburn, and K. L. Corwin, “Power-scaling a mid-IR OPA-pumped acetylene-filled hollow-core photonic crystal fiber laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. STh4O.1.

N. Dadashzadeh, M. Thirugnanasambandam, K. Weerasinghe, B. Debord, M. Chafer, F. Férôme, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near-gaussian spatial mode from a mid-IR acetylene-filled hollow-core fiber laser,” in “Frontiers in Optics/Laser Science,” (Optical Society of America, 2016), p. FTu1I.5.

Dajani, I.

J. Grosek, S. Naderi, B. Oliker, R. Lane, I. Dajani, and T. Madden, “Laser simulation at the Air Force Research Laboratory,” in “International Symposium on High Power Laser Systems and Applications,” (SPIE, 2017), p. 102540N.

Danos, M.

M. Danos and S. Geschwind, “Broadening of microwave absorption lines due to wall collisions,” Phys. Rev. 91, 1159–1162 (1953).
[Crossref]

Debord, B.

N. Dadashzadeh, M. Thirugnasambandam, H. W. K. Weerasinghe, B. Debord, M. Chafer, F. Gerome, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near diffraction-limited performance of an opa pumped acetylene-filled hollow-core fiber laser in the mid-IR,” Opt. Exp. 25, 13351–13358 (2017).
[Crossref]

T. Bradley, E. Ilinova, J. McFerran, J. Jouin, B. Debord, M. Alharbi, P. Thomas, F. Gérôme, and F. Benabid, “Ground-state atomic polarization relaxation-time measurement of rb filled hypocycloidal core-shaped kagome hc-pcf,” J. Phys. B: At. Mol. Opt. Phys. 49, 185401 (2016).
[Crossref]

A. V. V. Nampoothiri, B. Debord, M. Alharbi, F. Gérôme, F. Benabid, and W. Rudolph, “CW hollow-core optically pumped I2 fiber gas laser,” Opt. Lett. 40, 605–608 (2015).
[Crossref] [PubMed]

N. Dadashzadeh, M. Thirugnanasambandam, K. Weerasinghe, B. Debord, M. Chafer, F. Férôme, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near-gaussian spatial mode from a mid-IR acetylene-filled hollow-core fiber laser,” in “Frontiers in Optics/Laser Science,” (Optical Society of America, 2016), p. FTu1I.5.

N. Dadashzadeh, M. Thirugnanasambandam, K. Weerasinghe, B. Debord, M. Chafer, F. Férôme, F. Benabid, B. R. Washburn, and K. L. Corwin, “Power-scaling a mid-IR OPA-pumped acetylene-filled hollow-core photonic crystal fiber laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. STh4O.1.

Dophenide, R.

R. Dophenide, W. Cronrath, and H. Zacharias, “Rotational energy transfer in vibrationally excited acetylene X̃1Σg(v″2 = 1, J″) :ΔJ propensities,” J. Chem. Phys. 101, 5804 (1994).
[Crossref]

Durécu, A.

G. Canat, W. Renard, E. Lucas, L. Lombard, J. L. Gouët, A. Durécu, P. Bourdon, S. Bordais, and Y. Jaouën, “Eyesafe high peak power pulsed fiber lasers limited by fiber nonlinearity,” Opt. Fiber Technol. 20, 678–687 (2014).
[Crossref]

Fayt, A.

B. Amyay, A. Fayt, M. Herman, and J. V. Auwera, “Vibration-rotation spectroscopic database on acetylene, X˜1Σg+(C212H2),” J. Phys. Chem. Ref. Data 45, 023103 (2016).
[Crossref]

B. Amyay, A. Fayt, and M. Herman, “Accurate partition function for acetylene 12C2H2, and related thermodynamical quantities,” J. Chem. Phys. 135, 23305 (2011).
[Crossref]

Férôme, F.

N. Dadashzadeh, M. Thirugnanasambandam, K. Weerasinghe, B. Debord, M. Chafer, F. Férôme, F. Benabid, B. R. Washburn, and K. L. Corwin, “Power-scaling a mid-IR OPA-pumped acetylene-filled hollow-core photonic crystal fiber laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. STh4O.1.

N. Dadashzadeh, M. Thirugnanasambandam, K. Weerasinghe, B. Debord, M. Chafer, F. Férôme, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near-gaussian spatial mode from a mid-IR acetylene-filled hollow-core fiber laser,” in “Frontiers in Optics/Laser Science,” (Optical Society of America, 2016), p. FTu1I.5.

Fiedler, T.

Fourcade-Dutin, C.

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [invited],” Opt. Express 2, 948–961 (2012).
[Crossref]

Freel, K.

J. Han, K. Freel, and C. M. Heaven, “Rotational and vibrational energy transfer in vibrationally excited acetylene at energies near 6560 cm−1,” J. Chem. Phys. 135, 244304 (2011).
[Crossref]

Frost, M. J.

M. A. Payne, A. P. Milce, M. J. Frost, and B. J. Orr, “Rovibrational energy transfer in the 4vCH manifold of acetylene, viewed by IR-UV double resonance spectroscopy. 1. foundation studies at low J†,” J. Phys. Chem. A 107, 10759–10770 (2003).
[Crossref]

Gerome, F.

N. Dadashzadeh, M. Thirugnasambandam, H. W. K. Weerasinghe, B. Debord, M. Chafer, F. Gerome, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near diffraction-limited performance of an opa pumped acetylene-filled hollow-core fiber laser in the mid-IR,” Opt. Exp. 25, 13351–13358 (2017).
[Crossref]

Gérôme, F.

T. Bradley, E. Ilinova, J. McFerran, J. Jouin, B. Debord, M. Alharbi, P. Thomas, F. Gérôme, and F. Benabid, “Ground-state atomic polarization relaxation-time measurement of rb filled hypocycloidal core-shaped kagome hc-pcf,” J. Phys. B: At. Mol. Opt. Phys. 49, 185401 (2016).
[Crossref]

A. V. V. Nampoothiri, B. Debord, M. Alharbi, F. Gérôme, F. Benabid, and W. Rudolph, “CW hollow-core optically pumped I2 fiber gas laser,” Opt. Lett. 40, 605–608 (2015).
[Crossref] [PubMed]

Geschwind, S.

M. Danos and S. Geschwind, “Broadening of microwave absorption lines due to wall collisions,” Phys. Rev. 91, 1159–1162 (1953).
[Crossref]

Gouët, J. L.

G. Canat, W. Renard, E. Lucas, L. Lombard, J. L. Gouët, A. Durécu, P. Bourdon, S. Bordais, and Y. Jaouën, “Eyesafe high peak power pulsed fiber lasers limited by fiber nonlinearity,” Opt. Fiber Technol. 20, 678–687 (2014).
[Crossref]

Grosek, J.

J. Grosek, S. Naderi, B. Oliker, R. Lane, I. Dajani, and T. Madden, “Laser simulation at the Air Force Research Laboratory,” in “International Symposium on High Power Laser Systems and Applications,” (SPIE, 2017), p. 102540N.

Hald, J.

Han, J.

J. Han, K. Freel, and C. M. Heaven, “Rotational and vibrational energy transfer in vibrationally excited acetylene at energies near 6560 cm−1,” J. Chem. Phys. 135, 244304 (2011).
[Crossref]

Hassan, M. R. A.

M. R. A. Hassan, F. Yu, W. J. Wadsworth, and J. C. Knight, “Cavity-based mid-IR fiber gas laser pumped by a diode laser,” Optica 3, 218 (2016).
[Crossref]

M. R. A. Hassan, F. Yu, Z. Wang, W. Belardi, W. J. Wadsworth, and J. C. Knight, “Synchronously pumped mid-IR hollow core fiber gas laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2015), p. SF1F.7.

F. Yu, M. R. A. Hassan, W. J. Wadsworth, and J. C. Knight, “Line-tunable CW lasing of mid-infrared acetylene gas hollow core fiber laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. STh1O.2.

F. Yu, M. R. A. Hassan, W. Wadsworth, and J. Knight, “Pulsed and CW mid-infrared acetylene gas hollow-core fiber laser,” in “Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF),” (Optical Society of America, 2016), p. SoTu2G.1.

Heaven, C. M.

J. Han, K. Freel, and C. M. Heaven, “Rotational and vibrational energy transfer in vibrationally excited acetylene at energies near 6560 cm−1,” J. Chem. Phys. 135, 244304 (2011).
[Crossref]

Herman, M.

B. Amyay, A. Fayt, M. Herman, and J. V. Auwera, “Vibration-rotation spectroscopic database on acetylene, X˜1Σg+(C212H2),” J. Phys. Chem. Ref. Data 45, 023103 (2016).
[Crossref]

B. Amyay, A. Fayt, and M. Herman, “Accurate partition function for acetylene 12C2H2, and related thermodynamical quantities,” J. Chem. Phys. 135, 23305 (2011).
[Crossref]

M. Herman, A. Campargue, M. I. E. Idrissi, and J. V. Auwera, “Vibrational spectroscopic database on acetylene,” J. Phys. Chem. Ref. Data 32, 921 (2003).
[Crossref]

Hölzer, P.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

Idrissi, M. I. E.

M. Herman, A. Campargue, M. I. E. Idrissi, and J. V. Auwera, “Vibrational spectroscopic database on acetylene,” J. Phys. Chem. Ref. Data 32, 921 (2003).
[Crossref]

Ilinova, E.

T. Bradley, E. Ilinova, J. McFerran, J. Jouin, B. Debord, M. Alharbi, P. Thomas, F. Gérôme, and F. Benabid, “Ground-state atomic polarization relaxation-time measurement of rb filled hypocycloidal core-shaped kagome hc-pcf,” J. Phys. B: At. Mol. Opt. Phys. 49, 185401 (2016).
[Crossref]

Jaouën, Y.

G. Canat, W. Renard, E. Lucas, L. Lombard, J. L. Gouët, A. Durécu, P. Bourdon, S. Bordais, and Y. Jaouën, “Eyesafe high peak power pulsed fiber lasers limited by fiber nonlinearity,” Opt. Fiber Technol. 20, 678–687 (2014).
[Crossref]

Joly, N. Y.

Jones, A.

Jones, A. M.

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [invited],” Opt. Express 2, 948–961 (2012).
[Crossref]

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16025 (2009).
[Crossref] [PubMed]

A. M. Jones, “Realizing a mid-infrared optically pumped molecular gas laser inside a hollow-core photonic crystal fiber,” Ph.D. thesis, Kansas State University, Manhattan, KS (2012).

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, N. Campbell, R. Kadel, N. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Optically pumped C2H2 and HCN lasers with conventional cavities and based on hollow core photonic crystal fibers,” in “International Symposium on High Power Laser Ablation,” (American Institute of Physics, 2010), p. 749.

Jones, D. C.

Jouin, J.

T. Bradley, E. Ilinova, J. McFerran, J. Jouin, B. Debord, M. Alharbi, P. Thomas, F. Gérôme, and F. Benabid, “Ground-state atomic polarization relaxation-time measurement of rb filled hypocycloidal core-shaped kagome hc-pcf,” J. Phys. B: At. Mol. Opt. Phys. 49, 185401 (2016).
[Crossref]

Kadel, R.

A. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19, 2309 (2011).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, N. Campbell, R. Kadel, N. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Optically pumped C2H2 and HCN lasers with conventional cavities and based on hollow core photonic crystal fibers,” in “International Symposium on High Power Laser Ablation,” (American Institute of Physics, 2010), p. 749.

Knabe, K.

Knight, J.

F. Yu, M. Xu, and J. Knight, “Experimental study of low-loss single-mode performance in anti-resonant hollow-core fibers,” Opt. Express 24, 12969–12975 (2016).
[Crossref] [PubMed]

F. Yu, M. R. A. Hassan, W. Wadsworth, and J. Knight, “Pulsed and CW mid-infrared acetylene gas hollow-core fiber laser,” in “Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF),” (Optical Society of America, 2016), p. SoTu2G.1.

Knight, J. C.

M. R. A. Hassan, F. Yu, W. J. Wadsworth, and J. C. Knight, “Cavity-based mid-IR fiber gas laser pumped by a diode laser,” Optica 3, 218 (2016).
[Crossref]

J. C. Knight, “Photonic crystal fibers and fiber lasers (invited),” J. Opt. Soc. Am. B 24, 1661–1668 (2007).
[Crossref]

M. R. A. Hassan, F. Yu, Z. Wang, W. Belardi, W. J. Wadsworth, and J. C. Knight, “Synchronously pumped mid-IR hollow core fiber gas laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2015), p. SF1F.7.

F. Yu, M. R. A. Hassan, W. J. Wadsworth, and J. C. Knight, “Line-tunable CW lasing of mid-infrared acetylene gas hollow core fiber laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. STh1O.2.

Laegsgaard, J.

Lane, R.

J. Grosek, S. Naderi, B. Oliker, R. Lane, I. Dajani, and T. Madden, “Laser simulation at the Air Force Research Laboratory,” in “International Symposium on High Power Laser Systems and Applications,” (SPIE, 2017), p. 102540N.

R. Lane and T. Madden, “Energy loss in gas lasers operating in hollow-core optical fibers,” in “Fiber Lasers XIV: Technology and Systems,” (SPIE, 2017), p. 100831B.

Li, Z.

Z. Wang, Z. Zhou, Z. Li, N. Zhang, and Y. Chen, “Tunable mid-infrared emission from acetylene-filled hollow-core fiber,” Infrared, millimeter-wave, and terahertz Technologies IV p. 1003013 (2016).

Light, P. S.

Lim, J.

Lombard, L.

G. Canat, W. Renard, E. Lucas, L. Lombard, J. L. Gouët, A. Durécu, P. Bourdon, S. Bordais, and Y. Jaouën, “Eyesafe high peak power pulsed fiber lasers limited by fiber nonlinearity,” Opt. Fiber Technol. 20, 678–687 (2014).
[Crossref]

Lucas, E.

G. Canat, W. Renard, E. Lucas, L. Lombard, J. L. Gouët, A. Durécu, P. Bourdon, S. Bordais, and Y. Jaouën, “Eyesafe high peak power pulsed fiber lasers limited by fiber nonlinearity,” Opt. Fiber Technol. 20, 678–687 (2014).
[Crossref]

Lyngsø, J. K.

Lyulin, O. M.

O. M. Lyulin and V. I. Perevalov, “Global modeling of vibration-rotation spectra of the acetylene molecule,” J. Quant. Spect. Rad. Tran. 177, 59–74 (2016).
[Crossref]

Madden, T.

R. Lane and T. Madden, “Energy loss in gas lasers operating in hollow-core optical fibers,” in “Fiber Lasers XIV: Technology and Systems,” (SPIE, 2017), p. 100831B.

J. Grosek, S. Naderi, B. Oliker, R. Lane, I. Dajani, and T. Madden, “Laser simulation at the Air Force Research Laboratory,” in “International Symposium on High Power Laser Systems and Applications,” (SPIE, 2017), p. 102540N.

Mao, C.

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [invited],” Opt. Express 2, 948–961 (2012).
[Crossref]

McFerran, J.

T. Bradley, E. Ilinova, J. McFerran, J. Jouin, B. Debord, M. Alharbi, P. Thomas, F. Gérôme, and F. Benabid, “Ground-state atomic polarization relaxation-time measurement of rb filled hypocycloidal core-shaped kagome hc-pcf,” J. Phys. B: At. Mol. Opt. Phys. 49, 185401 (2016).
[Crossref]

Michieletto, M.

Milce, A. P.

M. A. Payne, A. P. Milce, M. J. Frost, and B. J. Orr, “Rovibrational energy transfer in the 4vCH manifold of acetylene, viewed by IR-UV double resonance spectroscopy. 1. foundation studies at low J†,” J. Phys. Chem. A 107, 10759–10770 (2003).
[Crossref]

Miller, R. E.

A. C. Wight, M. Penno, and R. E. Miller, “Sequential vibrational relaxation of polyatomic moleucles at surfaces: C2HD and C2H2 scattered from LIF(001),” J. Chem. Phys. 111, 8622–8627 (1999).
[Crossref]

A. C. Wight and R. E. Miller, “Vibrational quenching of acetylene scattered from LIF(001): trapping desorption versus direct scattering,” J. Chem. Phys. 109, 8626–8634 (1998).
[Crossref]

Naderi, S.

J. Grosek, S. Naderi, B. Oliker, R. Lane, I. Dajani, and T. Madden, “Laser simulation at the Air Force Research Laboratory,” in “International Symposium on High Power Laser Systems and Applications,” (SPIE, 2017), p. 102540N.

Nampoothiri, A. V. V.

A. V. V. Nampoothiri, B. Debord, M. Alharbi, F. Gérôme, F. Benabid, and W. Rudolph, “CW hollow-core optically pumped I2 fiber gas laser,” Opt. Lett. 40, 605–608 (2015).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [invited],” Opt. Express 2, 948–961 (2012).
[Crossref]

A. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19, 2309 (2011).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, N. Campbell, R. Kadel, N. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Optically pumped C2H2 and HCN lasers with conventional cavities and based on hollow core photonic crystal fibers,” in “International Symposium on High Power Laser Ablation,” (American Institute of Physics, 2010), p. 749.

Nicholson, J. W.

Nold, J.

Oliker, B.

J. Grosek, S. Naderi, B. Oliker, R. Lane, I. Dajani, and T. Madden, “Laser simulation at the Air Force Research Laboratory,” in “International Symposium on High Power Laser Systems and Applications,” (SPIE, 2017), p. 102540N.

Orr, B. J.

M. A. Payne, A. P. Milce, M. J. Frost, and B. J. Orr, “Rovibrational energy transfer in the 4vCH manifold of acetylene, viewed by IR-UV double resonance spectroscopy. 1. foundation studies at low J†,” J. Phys. Chem. A 107, 10759–10770 (2003).
[Crossref]

Payne, M. A.

M. A. Payne, A. P. Milce, M. J. Frost, and B. J. Orr, “Rovibrational energy transfer in the 4vCH manifold of acetylene, viewed by IR-UV double resonance spectroscopy. 1. foundation studies at low J†,” J. Phys. Chem. A 107, 10759–10770 (2003).
[Crossref]

Penno, M.

A. C. Wight, M. Penno, and R. E. Miller, “Sequential vibrational relaxation of polyatomic moleucles at surfaces: C2HD and C2H2 scattered from LIF(001),” J. Chem. Phys. 111, 8622–8627 (1999).
[Crossref]

Perevalov, V. I.

O. M. Lyulin and V. I. Perevalov, “Global modeling of vibration-rotation spectra of the acetylene molecule,” J. Quant. Spect. Rad. Tran. 177, 59–74 (2016).
[Crossref]

Ratanavis, A.

A. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19, 2309 (2011).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, N. Campbell, R. Kadel, N. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Optically pumped C2H2 and HCN lasers with conventional cavities and based on hollow core photonic crystal fibers,” in “International Symposium on High Power Laser Ablation,” (American Institute of Physics, 2010), p. 749.

Renard, W.

G. Canat, W. Renard, E. Lucas, L. Lombard, J. L. Gouët, A. Durécu, P. Bourdon, S. Bordais, and Y. Jaouën, “Eyesafe high peak power pulsed fiber lasers limited by fiber nonlinearity,” Opt. Fiber Technol. 20, 678–687 (2014).
[Crossref]

Roberts, P.

F. Benabid and P. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87–124 (2011).
[Crossref]

Rudolph, W.

A. V. V. Nampoothiri, B. Debord, M. Alharbi, F. Gérôme, F. Benabid, and W. Rudolph, “CW hollow-core optically pumped I2 fiber gas laser,” Opt. Lett. 40, 605–608 (2015).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [invited],” Opt. Express 2, 948–961 (2012).
[Crossref]

A. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19, 2309 (2011).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, N. Campbell, R. Kadel, N. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Optically pumped C2H2 and HCN lasers with conventional cavities and based on hollow core photonic crystal fibers,” in “International Symposium on High Power Laser Ablation,” (American Institute of Physics, 2010), p. 749.

Russell, P. S. J.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

J. C. Traver, W. Chang, J. Nold, N. Y. Joly, and P. S. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [invited],” J. Opt. Soc. Am. B 28, A11–A26 (2011).
[Crossref]

Scott, A. M.

Smith, M. A.

Thapa, R.

Thirugnanasambandam, M.

N. Dadashzadeh, M. Thirugnanasambandam, K. Weerasinghe, B. Debord, M. Chafer, F. Férôme, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near-gaussian spatial mode from a mid-IR acetylene-filled hollow-core fiber laser,” in “Frontiers in Optics/Laser Science,” (Optical Society of America, 2016), p. FTu1I.5.

N. Dadashzadeh, M. Thirugnanasambandam, K. Weerasinghe, B. Debord, M. Chafer, F. Férôme, F. Benabid, B. R. Washburn, and K. L. Corwin, “Power-scaling a mid-IR OPA-pumped acetylene-filled hollow-core photonic crystal fiber laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. STh4O.1.

Thirugnasambandam, M.

N. Dadashzadeh, M. Thirugnasambandam, H. W. K. Weerasinghe, B. Debord, M. Chafer, F. Gerome, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near diffraction-limited performance of an opa pumped acetylene-filled hollow-core fiber laser in the mid-IR,” Opt. Exp. 25, 13351–13358 (2017).
[Crossref]

Thomas, P.

T. Bradley, E. Ilinova, J. McFerran, J. Jouin, B. Debord, M. Alharbi, P. Thomas, F. Gérôme, and F. Benabid, “Ground-state atomic polarization relaxation-time measurement of rb filled hypocycloidal core-shaped kagome hc-pcf,” J. Phys. B: At. Mol. Opt. Phys. 49, 185401 (2016).
[Crossref]

Tillman, K. A.

Traver, J. C.

Travers, J. C.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

Triches, M.

Wadsworth, W.

F. Yu, M. R. A. Hassan, W. Wadsworth, and J. Knight, “Pulsed and CW mid-infrared acetylene gas hollow-core fiber laser,” in “Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF),” (Optical Society of America, 2016), p. SoTu2G.1.

Wadsworth, W. J.

M. R. A. Hassan, F. Yu, W. J. Wadsworth, and J. C. Knight, “Cavity-based mid-IR fiber gas laser pumped by a diode laser,” Optica 3, 218 (2016).
[Crossref]

F. Yu, M. R. A. Hassan, W. J. Wadsworth, and J. C. Knight, “Line-tunable CW lasing of mid-infrared acetylene gas hollow core fiber laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. STh1O.2.

M. R. A. Hassan, F. Yu, Z. Wang, W. Belardi, W. J. Wadsworth, and J. C. Knight, “Synchronously pumped mid-IR hollow core fiber gas laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2015), p. SF1F.7.

Wang, Y. Y.

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [invited],” Opt. Express 2, 948–961 (2012).
[Crossref]

Wang, Z.

M. R. A. Hassan, F. Yu, Z. Wang, W. Belardi, W. J. Wadsworth, and J. C. Knight, “Synchronously pumped mid-IR hollow core fiber gas laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2015), p. SF1F.7.

Z. Wang, Z. Zhou, Z. Li, N. Zhang, and Y. Chen, “Tunable mid-infrared emission from acetylene-filled hollow-core fiber,” Infrared, millimeter-wave, and terahertz Technologies IV p. 1003013 (2016).

Washburn, B. R.

N. Dadashzadeh, M. Thirugnasambandam, H. W. K. Weerasinghe, B. Debord, M. Chafer, F. Gerome, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near diffraction-limited performance of an opa pumped acetylene-filled hollow-core fiber laser in the mid-IR,” Opt. Exp. 25, 13351–13358 (2017).
[Crossref]

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [invited],” Opt. Express 2, 948–961 (2012).
[Crossref]

A. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19, 2309 (2011).
[Crossref] [PubMed]

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16025 (2009).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, N. Campbell, R. Kadel, N. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Optically pumped C2H2 and HCN lasers with conventional cavities and based on hollow core photonic crystal fibers,” in “International Symposium on High Power Laser Ablation,” (American Institute of Physics, 2010), p. 749.

N. Dadashzadeh, M. Thirugnanasambandam, K. Weerasinghe, B. Debord, M. Chafer, F. Férôme, F. Benabid, B. R. Washburn, and K. L. Corwin, “Power-scaling a mid-IR OPA-pumped acetylene-filled hollow-core photonic crystal fiber laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. STh4O.1.

N. Dadashzadeh, M. Thirugnanasambandam, K. Weerasinghe, B. Debord, M. Chafer, F. Férôme, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near-gaussian spatial mode from a mid-IR acetylene-filled hollow-core fiber laser,” in “Frontiers in Optics/Laser Science,” (Optical Society of America, 2016), p. FTu1I.5.

Weerasinghe, H. W. K.

N. Dadashzadeh, M. Thirugnasambandam, H. W. K. Weerasinghe, B. Debord, M. Chafer, F. Gerome, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near diffraction-limited performance of an opa pumped acetylene-filled hollow-core fiber laser in the mid-IR,” Opt. Exp. 25, 13351–13358 (2017).
[Crossref]

Weerasinghe, K.

N. Dadashzadeh, M. Thirugnanasambandam, K. Weerasinghe, B. Debord, M. Chafer, F. Férôme, F. Benabid, B. R. Washburn, and K. L. Corwin, “Power-scaling a mid-IR OPA-pumped acetylene-filled hollow-core photonic crystal fiber laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. STh4O.1.

N. Dadashzadeh, M. Thirugnanasambandam, K. Weerasinghe, B. Debord, M. Chafer, F. Férôme, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near-gaussian spatial mode from a mid-IR acetylene-filled hollow-core fiber laser,” in “Frontiers in Optics/Laser Science,” (Optical Society of America, 2016), p. FTu1I.5.

Wheeler, N.

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16025 (2009).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, N. Campbell, R. Kadel, N. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Optically pumped C2H2 and HCN lasers with conventional cavities and based on hollow core photonic crystal fibers,” in “International Symposium on High Power Laser Ablation,” (American Institute of Physics, 2010), p. 749.

Wheeler, N. V.

Wight, A. C.

A. C. Wight, M. Penno, and R. E. Miller, “Sequential vibrational relaxation of polyatomic moleucles at surfaces: C2HD and C2H2 scattered from LIF(001),” J. Chem. Phys. 111, 8622–8627 (1999).
[Crossref]

A. C. Wight and R. E. Miller, “Vibrational quenching of acetylene scattered from LIF(001): trapping desorption versus direct scattering,” J. Chem. Phys. 109, 8626–8634 (1998).
[Crossref]

Wu, S.

Xu, M.

Yu, F.

F. Yu, M. Xu, and J. Knight, “Experimental study of low-loss single-mode performance in anti-resonant hollow-core fibers,” Opt. Express 24, 12969–12975 (2016).
[Crossref] [PubMed]

M. R. A. Hassan, F. Yu, W. J. Wadsworth, and J. C. Knight, “Cavity-based mid-IR fiber gas laser pumped by a diode laser,” Optica 3, 218 (2016).
[Crossref]

M. R. A. Hassan, F. Yu, Z. Wang, W. Belardi, W. J. Wadsworth, and J. C. Knight, “Synchronously pumped mid-IR hollow core fiber gas laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2015), p. SF1F.7.

F. Yu, M. R. A. Hassan, W. J. Wadsworth, and J. C. Knight, “Line-tunable CW lasing of mid-infrared acetylene gas hollow core fiber laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. STh1O.2.

F. Yu, M. R. A. Hassan, W. Wadsworth, and J. Knight, “Pulsed and CW mid-infrared acetylene gas hollow-core fiber laser,” in “Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF),” (Optical Society of America, 2016), p. SoTu2G.1.

Zacharias, H.

R. Dophenide, W. Cronrath, and H. Zacharias, “Rotational energy transfer in vibrationally excited acetylene X̃1Σg(v″2 = 1, J″) :ΔJ propensities,” J. Chem. Phys. 101, 5804 (1994).
[Crossref]

Zhang, N.

Z. Wang, Z. Zhou, Z. Li, N. Zhang, and Y. Chen, “Tunable mid-infrared emission from acetylene-filled hollow-core fiber,” Infrared, millimeter-wave, and terahertz Technologies IV p. 1003013 (2016).

Zhou, Z.

Z. Wang, Z. Zhou, Z. Li, N. Zhang, and Y. Chen, “Tunable mid-infrared emission from acetylene-filled hollow-core fiber,” Infrared, millimeter-wave, and terahertz Technologies IV p. 1003013 (2016).

J. Chem. Phys. (5)

B. Amyay, A. Fayt, and M. Herman, “Accurate partition function for acetylene 12C2H2, and related thermodynamical quantities,” J. Chem. Phys. 135, 23305 (2011).
[Crossref]

R. Dophenide, W. Cronrath, and H. Zacharias, “Rotational energy transfer in vibrationally excited acetylene X̃1Σg(v″2 = 1, J″) :ΔJ propensities,” J. Chem. Phys. 101, 5804 (1994).
[Crossref]

A. C. Wight and R. E. Miller, “Vibrational quenching of acetylene scattered from LIF(001): trapping desorption versus direct scattering,” J. Chem. Phys. 109, 8626–8634 (1998).
[Crossref]

A. C. Wight, M. Penno, and R. E. Miller, “Sequential vibrational relaxation of polyatomic moleucles at surfaces: C2HD and C2H2 scattered from LIF(001),” J. Chem. Phys. 111, 8622–8627 (1999).
[Crossref]

J. Han, K. Freel, and C. M. Heaven, “Rotational and vibrational energy transfer in vibrationally excited acetylene at energies near 6560 cm−1,” J. Chem. Phys. 135, 244304 (2011).
[Crossref]

J. Mod. Opt. (1)

F. Benabid and P. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87–124 (2011).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. B: At. Mol. Opt. Phys. (1)

T. Bradley, E. Ilinova, J. McFerran, J. Jouin, B. Debord, M. Alharbi, P. Thomas, F. Gérôme, and F. Benabid, “Ground-state atomic polarization relaxation-time measurement of rb filled hypocycloidal core-shaped kagome hc-pcf,” J. Phys. B: At. Mol. Opt. Phys. 49, 185401 (2016).
[Crossref]

J. Phys. Chem. A (1)

M. A. Payne, A. P. Milce, M. J. Frost, and B. J. Orr, “Rovibrational energy transfer in the 4vCH manifold of acetylene, viewed by IR-UV double resonance spectroscopy. 1. foundation studies at low J†,” J. Phys. Chem. A 107, 10759–10770 (2003).
[Crossref]

J. Phys. Chem. Ref. Data (2)

M. Herman, A. Campargue, M. I. E. Idrissi, and J. V. Auwera, “Vibrational spectroscopic database on acetylene,” J. Phys. Chem. Ref. Data 32, 921 (2003).
[Crossref]

B. Amyay, A. Fayt, M. Herman, and J. V. Auwera, “Vibration-rotation spectroscopic database on acetylene, X˜1Σg+(C212H2),” J. Phys. Chem. Ref. Data 45, 023103 (2016).
[Crossref]

J. Quant. Spect. Rad. Tran. (1)

O. M. Lyulin and V. I. Perevalov, “Global modeling of vibration-rotation spectra of the acetylene molecule,” J. Quant. Spect. Rad. Tran. 177, 59–74 (2016).
[Crossref]

Nat. Photonics (1)

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

Opt. Exp. (1)

N. Dadashzadeh, M. Thirugnasambandam, H. W. K. Weerasinghe, B. Debord, M. Chafer, F. Gerome, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near diffraction-limited performance of an opa pumped acetylene-filled hollow-core fiber laser in the mid-IR,” Opt. Exp. 25, 13351–13358 (2017).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (1)

G. Canat, W. Renard, E. Lucas, L. Lombard, J. L. Gouët, A. Durécu, P. Bourdon, S. Bordais, and Y. Jaouën, “Eyesafe high peak power pulsed fiber lasers limited by fiber nonlinearity,” Opt. Fiber Technol. 20, 678–687 (2014).
[Crossref]

Opt. Lett. (2)

Optica (1)

Phys. Rev. (1)

M. Danos and S. Geschwind, “Broadening of microwave absorption lines due to wall collisions,” Phys. Rev. 91, 1159–1162 (1953).
[Crossref]

Other (12)

A. M. Jones, “Realizing a mid-infrared optically pumped molecular gas laser inside a hollow-core photonic crystal fiber,” Ph.D. thesis, Kansas State University, Manhattan, KS (2012).

“HITRAN spectroscopic database,” http://www.harvard.edu/HITRAN/ .

“GEISA spectroscopic database,” http://ether.ipsl.jussieu.fr/ .

R. Lane and T. Madden, “Energy loss in gas lasers operating in hollow-core optical fibers,” in “Fiber Lasers XIV: Technology and Systems,” (SPIE, 2017), p. 100831B.

Z. Wang, Z. Zhou, Z. Li, N. Zhang, and Y. Chen, “Tunable mid-infrared emission from acetylene-filled hollow-core fiber,” Infrared, millimeter-wave, and terahertz Technologies IV p. 1003013 (2016).

F. Yu, M. R. A. Hassan, W. J. Wadsworth, and J. C. Knight, “Line-tunable CW lasing of mid-infrared acetylene gas hollow core fiber laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. STh1O.2.

N. Dadashzadeh, M. Thirugnanasambandam, K. Weerasinghe, B. Debord, M. Chafer, F. Férôme, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near-gaussian spatial mode from a mid-IR acetylene-filled hollow-core fiber laser,” in “Frontiers in Optics/Laser Science,” (Optical Society of America, 2016), p. FTu1I.5.

N. Dadashzadeh, M. Thirugnanasambandam, K. Weerasinghe, B. Debord, M. Chafer, F. Férôme, F. Benabid, B. R. Washburn, and K. L. Corwin, “Power-scaling a mid-IR OPA-pumped acetylene-filled hollow-core photonic crystal fiber laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. STh4O.1.

M. R. A. Hassan, F. Yu, Z. Wang, W. Belardi, W. J. Wadsworth, and J. C. Knight, “Synchronously pumped mid-IR hollow core fiber gas laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2015), p. SF1F.7.

J. Grosek, S. Naderi, B. Oliker, R. Lane, I. Dajani, and T. Madden, “Laser simulation at the Air Force Research Laboratory,” in “International Symposium on High Power Laser Systems and Applications,” (SPIE, 2017), p. 102540N.

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, N. Campbell, R. Kadel, N. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Optically pumped C2H2 and HCN lasers with conventional cavities and based on hollow core photonic crystal fibers,” in “International Symposium on High Power Laser Ablation,” (American Institute of Physics, 2010), p. 749.

F. Yu, M. R. A. Hassan, W. Wadsworth, and J. Knight, “Pulsed and CW mid-infrared acetylene gas hollow-core fiber laser,” in “Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF),” (Optical Society of America, 2016), p. SoTu2G.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1:
Fig. 1: A simplified, pulsed gas-filled hollow-core optical fiber amplifier configuration is depicted in (a) and described in the text. Collimating optical elements, sufficient to couple incident light into the fiber core, and filtering elements are represented as dichroic mirrors. The numerical model covers the processes that occur in the fiber. A ro-vibrational energy level diagram for acetylene pumped with light tuned to |v1 + v3, 12〉 ← |0, 13〉 is shown in (b).
Fig. 2:
Fig. 2: The outputs at 3.2 μm computed from a lossless, single-frequency model (blue) are compared to experimental data (black) for three pressures. The solid line is a fit to a series of computational results with increasing incident energy. Results computed using a Monte Carlo sampling as described in the text fall within the width of the fit line.
Fig. 3:
Fig. 3: The outputs at 3.2 μm and the pump energy absorbed by the gas are computed from a single frequency model with fiber attenuation, quenching losses, and one spatial dimension (blue) are compared to experimental data (black) for three pressures. Monte Carlo sampling over some fiber properties is precluded by the simplifying assumptions. Asterisk mark the mean of the Monte Carlo sampled model results and the error bars represent the standard deviation. The error bars indicate the sensitivity of the model to the unknown properties and uncertainty in experimentally measured properties and are not confidence intervals.
Fig. 4:
Fig. 4: The pump energy absorbed by the gas for model results is compared to experimental measurements (black). Results from a single frequency, one-dimensional model that includes losses are fit with a polynomial and shown as a solid blue line. Results from Monte Carlo sampling over uncertainties in measured parameters and a possible range in properties that have not been measured have a standard deviation that falls within the width of the plotted line. The possible ranges for fiber properties are listed in the text except the range in spectral Gaussian FWHM which is chosens as 500 MHz to 2 GHz. Model results from Monte Carlo sampling using a model where the radial intensity and pump spectral profiles are approximated with Gaussians are shown in red. An asterisk marks the mean of the Monte Carlo results and the error bars show the standard deviation. The simplifying assumptions in the single frequency, one-dimensional model preclude sampling over the pump spectral and radial intensity profiles. The Gaussian profiles used are for demonstration purposes thus the error bars convey the model sensitivity to the pump spectral and radial intensity profiles and are not confidence intervals.
Fig. 5:
Fig. 5: Output at 3.2 μm and pump energy absorbed by the gas computed from Monte Carlo sampling using a model approximating the spectral and radial intensity profiles as Gaussians (blue) are compared to experimental data (black). An asterisk marks the mean of the Monte Carlo results and the error bars indicate the standard deviation. Error bars on computed results indicate the sensitivity of the model to the input parameters and are not confidence intervals.
Fig. 6:
Fig. 6: Computed results from the lossless (black line) and non-lossless (blue line) single-frequency, one-dimensional model and the model that approximates the radial intensity and spectral profiles with Gaussians (red line) are compared. Experimental measurements from [19] are shown in black. Results are from a single input parameter set selected from the possible ranges and model results are depicted as a polynomial fits to computed results for a series of incident pump energies.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d d z I p ( r , t , ν ) = [ σ p ( ν ) ( n p ( r , t ) g p g g n g ( r , t ) ) σ p fa ] I p ( r , t , ν ) + A p h ν Ω n p ( r , t ) .
d d z I l ( r , t , ν ) = [ σ l ( ν ) ( n p ( r , t ) g p g l n 1 ( r , t ) ) σ l fa ] I l ( r , t , ν ) + A l h ν Ω n p ( r , t ) .
d d t n p ( r , t ) = ( n p ( r , t ) g p g g n g ( r , t ) ) 0 d ν σ p ( ν ) h ν I p ( r , t , ν ) A p n p ( r , t ) ( n p ( r , t ) g p g l n l ( r , t ) ) 0 d ν σ l ( ν ) h ν I l ( r , t , ν ) A l n p ( r , t ) n C 2 H 2 ( k p wc + k p vet + j j k p , j j ret ) n p ( r , t ) + n C 2 H 2 j j k p , j j ret n p , j ( r , t ) ,
d d t n p , j ( r , t ) = n C 2 H 2 j j k p , j j ret n p , j ( r , t ) n C 2 H 2 ( k p wc + k p vet + j j k p , j j ret ) n p , j ( r , t )
d d t n l ( r , t ) = ( n p ( r , t ) g p g l n l ( r , t ) ) 0 d ν σ l ( ν ) h ν I l ( r , t , ν ) + A l n p ( r , t ) n C 2 H 2 ( k l wc + k l vet + j j k l , j j ret ) n l ( r , t ) + n C 2 H 2 j j k l , j j ret n l , j ( r , t ) ,
d d t n l , j ( r , t ) = n C 2 H 2 j j k l , j j ret n l , j ( r , t ) n C 2 H 2 ( k l wc + k l vet + j j k l , j j ret ) n l , j ( r , t )
d d t n g ( r , t ) = A p n p ( r , t ) + ( n p ( r , t ) g p g g n g ( r , t ) ) 0 d ν σ p ( ν ) h ν I p ( r , t , ν )
k j j ret ( E j < E j ) = k 0 ( E j E j B v ) β exp ( α E j E j k B T ) .
k j j ret ( E j > E j ) = k j j ret ( E j < E j ) 2 j + 1 2 j + 1 exp ( E j E j k B T ) .
1 τ = ( k B T 2 π m ) 1 2 a V

Metrics