Abstract

In this paper, we have experimentally demonstrated the feasibility of a LMS-Volterra based joint MIMO equalizer in multiband super-Nyquist carrierless amplitude phase modulation visible light communication system. To obtain higher spectrum efficiency, overlapping between different sub-bands is introduced in this experiment. By using joint MIMO equalizer, an aggregate data rate of 1.26 Gb/s is successfully achieved in 1-m indoor free space transmission with the BER below the 7% FEC limit of 3.8 × 10−3. To our best knowledge, this is the first time that our proposed joint MIMO equalizer is used to equalize multiband super-Nyquist data in VLC system.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization

Yiguang Wang, Xingxing Huang, Li Tao, Jianyang Shi, and Nan Chi
Opt. Express 23(10) 13626-13633 (2015)

Performance analysis of space multiplexing by superposed signal in multi-dimensional VLC system

Liang Qiao, Xingyu Lu, Shangyu Liang, Jiao Zhang, and Nan Chi
Opt. Express 26(16) 19762-19772 (2018)

Memory-controlled deep LSTM neural network post-equalizer used in high-speed PAM VLC system

Xingyu Lu, Chao Lu, Weixiang Yu, Liang Qiao, Shangyu Liang, Alan Pak Tao Lau, and Nan Chi
Opt. Express 27(5) 7822-7833 (2019)

References

  • View by:
  • |
  • |
  • |

  1. N. Chi, H. Haas, M. Kavehrad, T. D. C. Little, and X. L. Huang, “Visible light communications: demand factors, benefits and opportunities,” IEEE Wirel. Commun. 22(2), 5–7 (2015).
    [Crossref]
  2. Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
    [Crossref] [PubMed]
  3. Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC System Employing High-Order CAP Modulation and Hybrid Post Equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).
    [Crossref]
  4. L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
    [Crossref] [PubMed]
  5. Y. Wang, L. Tao, Y. Wang, and N. Chi, “High Speed WDM VLC System Based on Multi-Band CAP64 With Weighted Pre-Equalization and Modified CMMA Based Post-Equalization,” IEEE Commun. Lett. 18(10), 1719–1722 (2014).
    [Crossref]
  6. J. Zhang, J. Yu, F. Li, and H. C. Chien, “11×5×10Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection,” European Conference and Exhibition on Optical Communication IET, 2013,pp.1–3.
  7. I. T. Monroy, J. B. Jensen, M. I. Olmedo, Q. Zhong, S. Popov, T. Zuo, and X. Xu, “Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links,” J. Lightwave Technol. 32(4), 798–804 (2014).
    [Crossref]
  8. S. Pergoloni, A. Petroni, T.-C. Bui, G. Scarano, R. Cusani, and M. Biagi, “ASK-based Spatial Multiplexing RGB Scheme using Symbol-Dependent Self-Interference for Detection,” Opt. Express 25(13), 15028–15042 (2017).
    [Crossref] [PubMed]
  9. N. Chi, J. Zhao, and Z. Wang, “Bandwidth-efficient visible light communication system based on faster-than-Nyquist pre-coded CAP modulation,” Chin. Opt. Lett. 15(8), 6–11 (2017).
  10. A. Leven, F. Vacondio, L. Schmalen, S. Brink, and W. Idler, “Estimation of Soft FEC Performance in Optical Transmission Experiments,” IEEE Photonics Technol. Lett. 23(20), 1547–1549 (2011).
    [Crossref]
  11. F. Hamaoka, K. Saito, T. Matsuda, and A. Naka, “Super high density multi-carrier transmission system by MIMO processing,” European Conference on Optical Communication Systematic Paris Region Systems and ICT Cluster, 2014:1–3.
    [Crossref]
  12. P. R. King and S. Stavrou, “Low Elevation Wideband Land Mobile Satellite MIMO Channel Characteristics,” IEEE Trans. Wireless Commun. 6(7), 2712–2720 (2007).
    [Crossref]
  13. J. Zhang, Y. Zheng, X. Hong, and C. Guo, “Increase in Capacity of an IM/DD OFDM-PON Using Super-Nyquist Image Induced Aliasing and Simplified Nonlinear Equalization,” J. Lightwave Technol. 99, 1 (2017).
  14. J. Shi, Y. Zhou, Y. Xu, J. Zhang, J. Yu, and N. Chi, “200-Gbps DFT-S OFDM Using DD-MZM-Based Twin-SSB with a MIMO-Volterra Equalizer,” IEEE Photonics Technol. Lett. 99, 1 (2017).
  15. X. Huang, J. Shi, J. Li, Y. Wang, and N. Chi, “A Gb/s VLC Transmission Using Hardware Preequalization Circuit,” IEEE Photonics Technol. Lett. 27(18), 1915–1918 (2015).
    [Crossref]
  16. N. Chi, M. Zhang, J. Shi, and Y. Zhao, “Spectrally efficient multi-band visible light communication system based on Nyquist PAM-8 modulation,” Photon. Res. 5(6), 588 (2017).
    [Crossref]
  17. P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, C. Petr, K. Thavamaran, G. Elias, C. P. Pep, M. Hoale, P. Wasiu, R. Sujan, P. Ioannis, and D. Izzat, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wirel. Commun. 22(2), 46–53 (2015).
    [Crossref]
  18. L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
    [Crossref] [PubMed]

2017 (5)

S. Pergoloni, A. Petroni, T.-C. Bui, G. Scarano, R. Cusani, and M. Biagi, “ASK-based Spatial Multiplexing RGB Scheme using Symbol-Dependent Self-Interference for Detection,” Opt. Express 25(13), 15028–15042 (2017).
[Crossref] [PubMed]

N. Chi, J. Zhao, and Z. Wang, “Bandwidth-efficient visible light communication system based on faster-than-Nyquist pre-coded CAP modulation,” Chin. Opt. Lett. 15(8), 6–11 (2017).

J. Zhang, Y. Zheng, X. Hong, and C. Guo, “Increase in Capacity of an IM/DD OFDM-PON Using Super-Nyquist Image Induced Aliasing and Simplified Nonlinear Equalization,” J. Lightwave Technol. 99, 1 (2017).

J. Shi, Y. Zhou, Y. Xu, J. Zhang, J. Yu, and N. Chi, “200-Gbps DFT-S OFDM Using DD-MZM-Based Twin-SSB with a MIMO-Volterra Equalizer,” IEEE Photonics Technol. Lett. 99, 1 (2017).

N. Chi, M. Zhang, J. Shi, and Y. Zhao, “Spectrally efficient multi-band visible light communication system based on Nyquist PAM-8 modulation,” Photon. Res. 5(6), 588 (2017).
[Crossref]

2015 (4)

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, C. Petr, K. Thavamaran, G. Elias, C. P. Pep, M. Hoale, P. Wasiu, R. Sujan, P. Ioannis, and D. Izzat, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wirel. Commun. 22(2), 46–53 (2015).
[Crossref]

X. Huang, J. Shi, J. Li, Y. Wang, and N. Chi, “A Gb/s VLC Transmission Using Hardware Preequalization Circuit,” IEEE Photonics Technol. Lett. 27(18), 1915–1918 (2015).
[Crossref]

N. Chi, H. Haas, M. Kavehrad, T. D. C. Little, and X. L. Huang, “Visible light communications: demand factors, benefits and opportunities,” IEEE Wirel. Commun. 22(2), 5–7 (2015).
[Crossref]

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC System Employing High-Order CAP Modulation and Hybrid Post Equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

2014 (2)

Y. Wang, L. Tao, Y. Wang, and N. Chi, “High Speed WDM VLC System Based on Multi-Band CAP64 With Weighted Pre-Equalization and Modified CMMA Based Post-Equalization,” IEEE Commun. Lett. 18(10), 1719–1722 (2014).
[Crossref]

I. T. Monroy, J. B. Jensen, M. I. Olmedo, Q. Zhong, S. Popov, T. Zuo, and X. Xu, “Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links,” J. Lightwave Technol. 32(4), 798–804 (2014).
[Crossref]

2013 (3)

2011 (1)

A. Leven, F. Vacondio, L. Schmalen, S. Brink, and W. Idler, “Estimation of Soft FEC Performance in Optical Transmission Experiments,” IEEE Photonics Technol. Lett. 23(20), 1547–1549 (2011).
[Crossref]

2007 (1)

P. R. King and S. Stavrou, “Low Elevation Wideband Land Mobile Satellite MIMO Channel Characteristics,” IEEE Trans. Wireless Commun. 6(7), 2712–2720 (2007).
[Crossref]

Biagi, M.

Brink, S.

A. Leven, F. Vacondio, L. Schmalen, S. Brink, and W. Idler, “Estimation of Soft FEC Performance in Optical Transmission Experiments,” IEEE Photonics Technol. Lett. 23(20), 1547–1549 (2011).
[Crossref]

Bui, T.-C.

Chi, N.

N. Chi, M. Zhang, J. Shi, and Y. Zhao, “Spectrally efficient multi-band visible light communication system based on Nyquist PAM-8 modulation,” Photon. Res. 5(6), 588 (2017).
[Crossref]

N. Chi, J. Zhao, and Z. Wang, “Bandwidth-efficient visible light communication system based on faster-than-Nyquist pre-coded CAP modulation,” Chin. Opt. Lett. 15(8), 6–11 (2017).

J. Shi, Y. Zhou, Y. Xu, J. Zhang, J. Yu, and N. Chi, “200-Gbps DFT-S OFDM Using DD-MZM-Based Twin-SSB with a MIMO-Volterra Equalizer,” IEEE Photonics Technol. Lett. 99, 1 (2017).

X. Huang, J. Shi, J. Li, Y. Wang, and N. Chi, “A Gb/s VLC Transmission Using Hardware Preequalization Circuit,” IEEE Photonics Technol. Lett. 27(18), 1915–1918 (2015).
[Crossref]

N. Chi, H. Haas, M. Kavehrad, T. D. C. Little, and X. L. Huang, “Visible light communications: demand factors, benefits and opportunities,” IEEE Wirel. Commun. 22(2), 5–7 (2015).
[Crossref]

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC System Employing High-Order CAP Modulation and Hybrid Post Equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

Y. Wang, L. Tao, Y. Wang, and N. Chi, “High Speed WDM VLC System Based on Multi-Band CAP64 With Weighted Pre-Equalization and Modified CMMA Based Post-Equalization,” IEEE Commun. Lett. 18(10), 1719–1722 (2014).
[Crossref]

Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
[Crossref] [PubMed]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
[Crossref] [PubMed]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
[Crossref] [PubMed]

Chien, H. C.

J. Zhang, J. Yu, F. Li, and H. C. Chien, “11×5×10Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection,” European Conference and Exhibition on Optical Communication IET, 2013,pp.1–3.

Cusani, R.

Elias, G.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, C. Petr, K. Thavamaran, G. Elias, C. P. Pep, M. Hoale, P. Wasiu, R. Sujan, P. Ioannis, and D. Izzat, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wirel. Commun. 22(2), 46–53 (2015).
[Crossref]

Gao, Y.

Ghassemlooy, Z.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, C. Petr, K. Thavamaran, G. Elias, C. P. Pep, M. Hoale, P. Wasiu, R. Sujan, P. Ioannis, and D. Izzat, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wirel. Commun. 22(2), 46–53 (2015).
[Crossref]

Guo, C.

J. Zhang, Y. Zheng, X. Hong, and C. Guo, “Increase in Capacity of an IM/DD OFDM-PON Using Super-Nyquist Image Induced Aliasing and Simplified Nonlinear Equalization,” J. Lightwave Technol. 99, 1 (2017).

Haas, H.

N. Chi, H. Haas, M. Kavehrad, T. D. C. Little, and X. L. Huang, “Visible light communications: demand factors, benefits and opportunities,” IEEE Wirel. Commun. 22(2), 5–7 (2015).
[Crossref]

Haigh, P. A.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, C. Petr, K. Thavamaran, G. Elias, C. P. Pep, M. Hoale, P. Wasiu, R. Sujan, P. Ioannis, and D. Izzat, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wirel. Commun. 22(2), 46–53 (2015).
[Crossref]

Hamaoka, F.

F. Hamaoka, K. Saito, T. Matsuda, and A. Naka, “Super high density multi-carrier transmission system by MIMO processing,” European Conference on Optical Communication Systematic Paris Region Systems and ICT Cluster, 2014:1–3.
[Crossref]

Hoale, M.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, C. Petr, K. Thavamaran, G. Elias, C. P. Pep, M. Hoale, P. Wasiu, R. Sujan, P. Ioannis, and D. Izzat, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wirel. Commun. 22(2), 46–53 (2015).
[Crossref]

Hong, X.

J. Zhang, Y. Zheng, X. Hong, and C. Guo, “Increase in Capacity of an IM/DD OFDM-PON Using Super-Nyquist Image Induced Aliasing and Simplified Nonlinear Equalization,” J. Lightwave Technol. 99, 1 (2017).

Huang, X.

X. Huang, J. Shi, J. Li, Y. Wang, and N. Chi, “A Gb/s VLC Transmission Using Hardware Preequalization Circuit,” IEEE Photonics Technol. Lett. 27(18), 1915–1918 (2015).
[Crossref]

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC System Employing High-Order CAP Modulation and Hybrid Post Equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

Huang, X. L.

N. Chi, H. Haas, M. Kavehrad, T. D. C. Little, and X. L. Huang, “Visible light communications: demand factors, benefits and opportunities,” IEEE Wirel. Commun. 22(2), 5–7 (2015).
[Crossref]

Idler, W.

A. Leven, F. Vacondio, L. Schmalen, S. Brink, and W. Idler, “Estimation of Soft FEC Performance in Optical Transmission Experiments,” IEEE Photonics Technol. Lett. 23(20), 1547–1549 (2011).
[Crossref]

Ioannis, P.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, C. Petr, K. Thavamaran, G. Elias, C. P. Pep, M. Hoale, P. Wasiu, R. Sujan, P. Ioannis, and D. Izzat, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wirel. Commun. 22(2), 46–53 (2015).
[Crossref]

Izzat, D.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, C. Petr, K. Thavamaran, G. Elias, C. P. Pep, M. Hoale, P. Wasiu, R. Sujan, P. Ioannis, and D. Izzat, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wirel. Commun. 22(2), 46–53 (2015).
[Crossref]

Jensen, J. B.

Kavehrad, M.

N. Chi, H. Haas, M. Kavehrad, T. D. C. Little, and X. L. Huang, “Visible light communications: demand factors, benefits and opportunities,” IEEE Wirel. Commun. 22(2), 5–7 (2015).
[Crossref]

King, P. R.

P. R. King and S. Stavrou, “Low Elevation Wideband Land Mobile Satellite MIMO Channel Characteristics,” IEEE Trans. Wireless Commun. 6(7), 2712–2720 (2007).
[Crossref]

Lau, A. P. T.

Le, S. T.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, C. Petr, K. Thavamaran, G. Elias, C. P. Pep, M. Hoale, P. Wasiu, R. Sujan, P. Ioannis, and D. Izzat, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wirel. Commun. 22(2), 46–53 (2015).
[Crossref]

Leven, A.

A. Leven, F. Vacondio, L. Schmalen, S. Brink, and W. Idler, “Estimation of Soft FEC Performance in Optical Transmission Experiments,” IEEE Photonics Technol. Lett. 23(20), 1547–1549 (2011).
[Crossref]

Li, F.

J. Zhang, J. Yu, F. Li, and H. C. Chien, “11×5×10Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection,” European Conference and Exhibition on Optical Communication IET, 2013,pp.1–3.

Li, J.

X. Huang, J. Shi, J. Li, Y. Wang, and N. Chi, “A Gb/s VLC Transmission Using Hardware Preequalization Circuit,” IEEE Photonics Technol. Lett. 27(18), 1915–1918 (2015).
[Crossref]

Little, T. D. C.

N. Chi, H. Haas, M. Kavehrad, T. D. C. Little, and X. L. Huang, “Visible light communications: demand factors, benefits and opportunities,” IEEE Wirel. Commun. 22(2), 5–7 (2015).
[Crossref]

Lu, C.

Luo, P.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, C. Petr, K. Thavamaran, G. Elias, C. P. Pep, M. Hoale, P. Wasiu, R. Sujan, P. Ioannis, and D. Izzat, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wirel. Commun. 22(2), 46–53 (2015).
[Crossref]

Matsuda, T.

F. Hamaoka, K. Saito, T. Matsuda, and A. Naka, “Super high density multi-carrier transmission system by MIMO processing,” European Conference on Optical Communication Systematic Paris Region Systems and ICT Cluster, 2014:1–3.
[Crossref]

Monroy, I. T.

Naka, A.

F. Hamaoka, K. Saito, T. Matsuda, and A. Naka, “Super high density multi-carrier transmission system by MIMO processing,” European Conference on Optical Communication Systematic Paris Region Systems and ICT Cluster, 2014:1–3.
[Crossref]

Olmedo, M. I.

Pep, C. P.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, C. Petr, K. Thavamaran, G. Elias, C. P. Pep, M. Hoale, P. Wasiu, R. Sujan, P. Ioannis, and D. Izzat, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wirel. Commun. 22(2), 46–53 (2015).
[Crossref]

Pergoloni, S.

Petr, C.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, C. Petr, K. Thavamaran, G. Elias, C. P. Pep, M. Hoale, P. Wasiu, R. Sujan, P. Ioannis, and D. Izzat, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wirel. Commun. 22(2), 46–53 (2015).
[Crossref]

Petroni, A.

Popov, S.

Saito, K.

F. Hamaoka, K. Saito, T. Matsuda, and A. Naka, “Super high density multi-carrier transmission system by MIMO processing,” European Conference on Optical Communication Systematic Paris Region Systems and ICT Cluster, 2014:1–3.
[Crossref]

Scarano, G.

Schmalen, L.

A. Leven, F. Vacondio, L. Schmalen, S. Brink, and W. Idler, “Estimation of Soft FEC Performance in Optical Transmission Experiments,” IEEE Photonics Technol. Lett. 23(20), 1547–1549 (2011).
[Crossref]

Shang, H.

Shi, J.

J. Shi, Y. Zhou, Y. Xu, J. Zhang, J. Yu, and N. Chi, “200-Gbps DFT-S OFDM Using DD-MZM-Based Twin-SSB with a MIMO-Volterra Equalizer,” IEEE Photonics Technol. Lett. 99, 1 (2017).

N. Chi, M. Zhang, J. Shi, and Y. Zhao, “Spectrally efficient multi-band visible light communication system based on Nyquist PAM-8 modulation,” Photon. Res. 5(6), 588 (2017).
[Crossref]

X. Huang, J. Shi, J. Li, Y. Wang, and N. Chi, “A Gb/s VLC Transmission Using Hardware Preequalization Circuit,” IEEE Photonics Technol. Lett. 27(18), 1915–1918 (2015).
[Crossref]

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC System Employing High-Order CAP Modulation and Hybrid Post Equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

Stavrou, S.

P. R. King and S. Stavrou, “Low Elevation Wideband Land Mobile Satellite MIMO Channel Characteristics,” IEEE Trans. Wireless Commun. 6(7), 2712–2720 (2007).
[Crossref]

Sujan, R.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, C. Petr, K. Thavamaran, G. Elias, C. P. Pep, M. Hoale, P. Wasiu, R. Sujan, P. Ioannis, and D. Izzat, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wirel. Commun. 22(2), 46–53 (2015).
[Crossref]

Tao, L.

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC System Employing High-Order CAP Modulation and Hybrid Post Equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

Y. Wang, L. Tao, Y. Wang, and N. Chi, “High Speed WDM VLC System Based on Multi-Band CAP64 With Weighted Pre-Equalization and Modified CMMA Based Post-Equalization,” IEEE Commun. Lett. 18(10), 1719–1722 (2014).
[Crossref]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
[Crossref] [PubMed]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
[Crossref] [PubMed]

Thavamaran, K.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, C. Petr, K. Thavamaran, G. Elias, C. P. Pep, M. Hoale, P. Wasiu, R. Sujan, P. Ioannis, and D. Izzat, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wirel. Commun. 22(2), 46–53 (2015).
[Crossref]

Vacondio, F.

A. Leven, F. Vacondio, L. Schmalen, S. Brink, and W. Idler, “Estimation of Soft FEC Performance in Optical Transmission Experiments,” IEEE Photonics Technol. Lett. 23(20), 1547–1549 (2011).
[Crossref]

Wang, Y.

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC System Employing High-Order CAP Modulation and Hybrid Post Equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

X. Huang, J. Shi, J. Li, Y. Wang, and N. Chi, “A Gb/s VLC Transmission Using Hardware Preequalization Circuit,” IEEE Photonics Technol. Lett. 27(18), 1915–1918 (2015).
[Crossref]

Y. Wang, L. Tao, Y. Wang, and N. Chi, “High Speed WDM VLC System Based on Multi-Band CAP64 With Weighted Pre-Equalization and Modified CMMA Based Post-Equalization,” IEEE Commun. Lett. 18(10), 1719–1722 (2014).
[Crossref]

Y. Wang, L. Tao, Y. Wang, and N. Chi, “High Speed WDM VLC System Based on Multi-Band CAP64 With Weighted Pre-Equalization and Modified CMMA Based Post-Equalization,” IEEE Commun. Lett. 18(10), 1719–1722 (2014).
[Crossref]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
[Crossref] [PubMed]

Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
[Crossref] [PubMed]

Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
[Crossref] [PubMed]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
[Crossref] [PubMed]

Wang, Z.

N. Chi, J. Zhao, and Z. Wang, “Bandwidth-efficient visible light communication system based on faster-than-Nyquist pre-coded CAP modulation,” Chin. Opt. Lett. 15(8), 6–11 (2017).

Wasiu, P.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, C. Petr, K. Thavamaran, G. Elias, C. P. Pep, M. Hoale, P. Wasiu, R. Sujan, P. Ioannis, and D. Izzat, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wirel. Commun. 22(2), 46–53 (2015).
[Crossref]

Xu, T.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, C. Petr, K. Thavamaran, G. Elias, C. P. Pep, M. Hoale, P. Wasiu, R. Sujan, P. Ioannis, and D. Izzat, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wirel. Commun. 22(2), 46–53 (2015).
[Crossref]

Xu, X.

Xu, Y.

J. Shi, Y. Zhou, Y. Xu, J. Zhang, J. Yu, and N. Chi, “200-Gbps DFT-S OFDM Using DD-MZM-Based Twin-SSB with a MIMO-Volterra Equalizer,” IEEE Photonics Technol. Lett. 99, 1 (2017).

Yu, J.

J. Shi, Y. Zhou, Y. Xu, J. Zhang, J. Yu, and N. Chi, “200-Gbps DFT-S OFDM Using DD-MZM-Based Twin-SSB with a MIMO-Volterra Equalizer,” IEEE Photonics Technol. Lett. 99, 1 (2017).

Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
[Crossref] [PubMed]

J. Zhang, J. Yu, F. Li, and H. C. Chien, “11×5×10Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection,” European Conference and Exhibition on Optical Communication IET, 2013,pp.1–3.

Zhang, J.

J. Zhang, Y. Zheng, X. Hong, and C. Guo, “Increase in Capacity of an IM/DD OFDM-PON Using Super-Nyquist Image Induced Aliasing and Simplified Nonlinear Equalization,” J. Lightwave Technol. 99, 1 (2017).

J. Shi, Y. Zhou, Y. Xu, J. Zhang, J. Yu, and N. Chi, “200-Gbps DFT-S OFDM Using DD-MZM-Based Twin-SSB with a MIMO-Volterra Equalizer,” IEEE Photonics Technol. Lett. 99, 1 (2017).

J. Zhang, J. Yu, F. Li, and H. C. Chien, “11×5×10Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection,” European Conference and Exhibition on Optical Communication IET, 2013,pp.1–3.

Zhang, M.

Zhao, J.

N. Chi, J. Zhao, and Z. Wang, “Bandwidth-efficient visible light communication system based on faster-than-Nyquist pre-coded CAP modulation,” Chin. Opt. Lett. 15(8), 6–11 (2017).

Zhao, Y.

Zheng, Y.

J. Zhang, Y. Zheng, X. Hong, and C. Guo, “Increase in Capacity of an IM/DD OFDM-PON Using Super-Nyquist Image Induced Aliasing and Simplified Nonlinear Equalization,” J. Lightwave Technol. 99, 1 (2017).

Zhong, Q.

Zhou, Y.

J. Shi, Y. Zhou, Y. Xu, J. Zhang, J. Yu, and N. Chi, “200-Gbps DFT-S OFDM Using DD-MZM-Based Twin-SSB with a MIMO-Volterra Equalizer,” IEEE Photonics Technol. Lett. 99, 1 (2017).

Zuo, T.

Zvanovec, S.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, C. Petr, K. Thavamaran, G. Elias, C. P. Pep, M. Hoale, P. Wasiu, R. Sujan, P. Ioannis, and D. Izzat, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wirel. Commun. 22(2), 46–53 (2015).
[Crossref]

Chin. Opt. Lett. (1)

N. Chi, J. Zhao, and Z. Wang, “Bandwidth-efficient visible light communication system based on faster-than-Nyquist pre-coded CAP modulation,” Chin. Opt. Lett. 15(8), 6–11 (2017).

IEEE Commun. Lett. (1)

Y. Wang, L. Tao, Y. Wang, and N. Chi, “High Speed WDM VLC System Based on Multi-Band CAP64 With Weighted Pre-Equalization and Modified CMMA Based Post-Equalization,” IEEE Commun. Lett. 18(10), 1719–1722 (2014).
[Crossref]

IEEE Photonics J. (1)

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC System Employing High-Order CAP Modulation and Hybrid Post Equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (3)

A. Leven, F. Vacondio, L. Schmalen, S. Brink, and W. Idler, “Estimation of Soft FEC Performance in Optical Transmission Experiments,” IEEE Photonics Technol. Lett. 23(20), 1547–1549 (2011).
[Crossref]

J. Shi, Y. Zhou, Y. Xu, J. Zhang, J. Yu, and N. Chi, “200-Gbps DFT-S OFDM Using DD-MZM-Based Twin-SSB with a MIMO-Volterra Equalizer,” IEEE Photonics Technol. Lett. 99, 1 (2017).

X. Huang, J. Shi, J. Li, Y. Wang, and N. Chi, “A Gb/s VLC Transmission Using Hardware Preequalization Circuit,” IEEE Photonics Technol. Lett. 27(18), 1915–1918 (2015).
[Crossref]

IEEE Trans. Wireless Commun. (1)

P. R. King and S. Stavrou, “Low Elevation Wideband Land Mobile Satellite MIMO Channel Characteristics,” IEEE Trans. Wireless Commun. 6(7), 2712–2720 (2007).
[Crossref]

IEEE Wirel. Commun. (2)

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, C. Petr, K. Thavamaran, G. Elias, C. P. Pep, M. Hoale, P. Wasiu, R. Sujan, P. Ioannis, and D. Izzat, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wirel. Commun. 22(2), 46–53 (2015).
[Crossref]

N. Chi, H. Haas, M. Kavehrad, T. D. C. Little, and X. L. Huang, “Visible light communications: demand factors, benefits and opportunities,” IEEE Wirel. Commun. 22(2), 5–7 (2015).
[Crossref]

J. Lightwave Technol. (2)

I. T. Monroy, J. B. Jensen, M. I. Olmedo, Q. Zhong, S. Popov, T. Zuo, and X. Xu, “Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links,” J. Lightwave Technol. 32(4), 798–804 (2014).
[Crossref]

J. Zhang, Y. Zheng, X. Hong, and C. Guo, “Increase in Capacity of an IM/DD OFDM-PON Using Super-Nyquist Image Induced Aliasing and Simplified Nonlinear Equalization,” J. Lightwave Technol. 99, 1 (2017).

Opt. Express (4)

Photon. Res. (1)

Other (2)

F. Hamaoka, K. Saito, T. Matsuda, and A. Naka, “Super high density multi-carrier transmission system by MIMO processing,” European Conference on Optical Communication Systematic Paris Region Systems and ICT Cluster, 2014:1–3.
[Crossref]

J. Zhang, J. Yu, F. Li, and H. C. Chien, “11×5×10Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection,” European Conference and Exhibition on Optical Communication IET, 2013,pp.1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Structure of the MIMO equalizer.
Fig. 2
Fig. 2 Experimental setup of the multiband VLC super-Nyquist system
Fig. 3
Fig. 3 The measured electrical spectra of received signal: when bandwidth is 315MHz and (a) overlap is 0; (b) overlap is 2.5%; (c) overlap is 5%; when overlap is 6% and (d) bandwidth is 300MHz (e) bandwidth is 310MHz (f) bandwidth is 315MHz
Fig. 4
Fig. 4 The error value vs. different iteration number of joint MIMO equalizer for: (a) band1 (b) band2.
Fig. 5
Fig. 5 Measured BER versus (a) different bias current and (b) different input signal
Fig. 6
Fig. 6 Measured BER of subband2 versus system baud rate at different sub-bands overlap
Fig. 7
Fig. 7 Measured system Q factor versus overlap of the two-band CAP16

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S i n e j ( 2 π f 1 t + φ 1 ( t ) ) + e j ( 2 π f 2 t + φ 2 ( t ) )
y 1 ( n ) = i = 0 N 1 h 11 ( n ) x 1 ( n i ) + i = 0 N 1 h 12 ( n ) x 2 ( n i ) + k = 0 L 1 i = k L 1 w 11 ( n ) x 1 ( n k ) x 1 ( n i ) + k = 0 L 1 i = k L 1 w 12 ( n ) x 2 ( n k ) x 2 ( n i )
y 2 ( n ) = i = 0 N 1 h 22 ( n ) x 2 ( n i ) + i = 0 N 1 h 21 ( n ) x 1 ( n i ) + k = 0 L 1 i = k L 1 w 22 ( n ) x 2 ( n k ) x 2 ( n i ) + k = 0 L 1 i = k L 1 w 21 ( n ) x 1 ( n k ) x 1 ( n i )

Metrics