Abstract

In this paper, the spectral evolution properties of different transverse modes with the stimulated Raman scattering (SRS) effect are analyzed in large-mode-area (LMA) fiber amplifiers for the first time. Both the ratios of laser power in Raman Stokes light and high order modes (HOMs) can be calculated through the comprehensive analysis of transverse mode competition and nonlinear transverse mode coupling processes. The theoretical study reveals that SRS-induced inter-modal wave mixing (IM-WM) effect would transfer power from signal light in LP01 mode to Raman Stokes light in LP11 mode and lead to the onset of the mode distortion phenomenon in high-power LMA fiber amplifiers. Different from the traditional thermal-induced mode instability (MI) phenomenon, the SRS-induced mode distortion could occur by just with the contribution of quantum noise.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Theoretical analysis of mode instability in high-power fiber amplifiers

Kristian Rymann Hansen, Thomas Tanggaard Alkeskjold, Jes Broeng, and Jesper Lægsgaard
Opt. Express 21(2) 1944-1971 (2013)

Thermally induced mode loss evolution in the coiled ytterbium doped large mode area fiber

Lingchao Kong, Jinyong Leng, Pu Zhou, and Zongfu Jiang
Opt. Express 25(19) 23437-23450 (2017)

Dynamic characteristics of stimulated Raman scattering in high power fiber amplifiers in the presence of mode instabilities

Rumao Tao, Hu Xiao, Hanwei Zhang, Jinyong Leng, Xiaolin Wang, Pu Zhou, and Xiaojun Xu
Opt. Express 26(19) 25098-25110 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  2. M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123S (2014).
    [Crossref]
  3. P. Zhou, H. Xiao, J. Leng, J. Xu, Z. Chen, H. Zhang, and Z. Liu, “High-power fiber lasers based on tandem pumping,” J. Opt. Soc. Am. B 34(3), A29–A36 (2017).
    [Crossref]
  4. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
    [Crossref] [PubMed]
  5. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by Stimulated Raman and Brillouin scattering,” Appl. Opt. 11(11), 2489–2494 (1972).
    [Crossref] [PubMed]
  6. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004).
    [Crossref] [PubMed]
  7. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  8. M. N. Zervas, “Power scaling limits in high power fiber amplifiers due to transverse mode instability, thermal lensing, and fiber mechanical reliability,” Proc. SPIE 10512, 1051205 (2018).
  9. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
    [Crossref] [PubMed]
  10. B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
    [Crossref] [PubMed]
  11. C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
    [Crossref] [PubMed]
  12. K. R. Hansen and J. Lægsgaard, “Impact of gain saturation on the mode instability threshold in high-power fiber amplifiers,” Opt. Express 22(9), 11267–11278 (2014).
    [Crossref] [PubMed]
  13. T. Sosnowski, A. Kuznetsov, R. Maynard, X. Ma, C. Zhu, I.-N. Hu, A. Galvanauskas, J. J. Koponen, and T. S. McComb, “3C Yb-doped Fiber Based High Energy and Power Pulsed Fiber Lasers,” Proc. SPIE 8601, 86011M (2013).
    [Crossref]
  14. L. Dong, K. Saitoh, F. Kong, P. Foy, T. Hawkins, D. Mcclane, and G. Gu, “All-solid photonic bandgap fibers for high power lasers,” Proc. SPIE 8547, 85470J (2012).
    [Crossref]
  15. C. Robin, I. Dajani, and B. Pulford, “Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power,” Opt. Lett. 39(3), 666–669 (2014).
    [Crossref] [PubMed]
  16. P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24(4), 4187–4195 (2016).
    [Crossref] [PubMed]
  17. F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, J. Limpert, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier,” Opt. Express 25(13), 14892–14899 (2017).
    [Crossref] [PubMed]
  18. R. Tao, X. Wang, and P. Zhou, “Comprehensive theoretical study of mode instability in high power fiber lasers by employing a universal model and its implications,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0903319 (2018).
    [Crossref]
  19. K. Hejaz, M. Shayganmanesh, R. Rezaei-Nasirabad, A. Roohforouz, S. Azizi, A. Abedinajafi, and V. Vatani, “Modal instability induced by stimulated Raman scattering in high-power Yb-doped fiber amplifiers,” Opt. Lett. 42(24), 5274–5277 (2017).
    [Crossref] [PubMed]
  20. C. Jauregui, J. Limpert, and A. Tünnermann, “Derivation of Raman treshold formulas for CW double-clad fiber amplifiers,” Opt. Express 17(10), 8476–8490 (2009).
    [Crossref] [PubMed]
  21. W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, “General analysis of SRS-limited high-power fiber lasers and design strategy,” Opt. Express 24(23), 26715–26721 (2016).
    [Crossref] [PubMed]
  22. V. Bock, A. Liem, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Explanation of stimulated Raman scattering in high power fiber systems,” Proc. SPIE 10512, 105121F (2018).
  23. H. Xu, M. Jiang, C. Shi, P. Zhou, G. Zhao, and X. Gu, “Spectral shaping for suppressing stimulated-Raman-scattering in a fiber laser,” Appl. Opt. 56(12), 3538–3542 (2017).
    [Crossref] [PubMed]
  24. S. J. Garth and R. A. Sammut, “Theory of stimulated Raman scattering in two-mode optical fibers,” J. Opt. Soc. Am. B 10(11), 2040–2047 (1993).
    [Crossref]
  25. Z. Jiang and J. R. Marciante, “Impact of transverse spatial-hole burning on beam quality in large-mode-area Yb-doped fibers,” J. Opt. Soc. Am. B 25(2), 247–254 (2008).
    [Crossref]
  26. W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, “Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source,” Opt. Express 24(8), 8708–8717 (2016).
    [Crossref] [PubMed]
  27. F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B 25(10), 1645–1654 (2008).
    [Crossref]
  28. Y. Xiao, R. J. Essiambre, M. Desgroseilliers, A. M. Tulino, R. Ryf, S. Mumtaz, and G. P. Agrawal, “Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers,” Opt. Express 22(26), 32039–32059 (2014).
    [Crossref] [PubMed]
  29. M. Gong, Y. Yuan, C. Li, P. Yan, H. Zhang, and S. Liao, “Numerical modeling of transverse mode competition in strongly pumped multimode fiber lasers and amplifiers,” Opt. Express 15(6), 3236–3246 (2007).
    [Crossref] [PubMed]
  30. C. H. Henry, “Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers,” J. Lightwave Technol. 4(3), 288–297 (1986).
    [Crossref]
  31. A. V. Smith and J. J. Smith, “Spontaneous Rayleigh seed for stimulated Rayleigh scattering in high power fiber amplifiers,” IEEE Photonics J. 5(5), 7100807 (2013).
    [Crossref]
  32. A. V. Smith and J. J. Smith, “Overview of a steady-periodic model of modal instability in fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3000112 (2014).
    [Crossref]
  33. S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, P. Horak, and F. Parmigiani, “Inter-modal four-wave mixing study in a two-mode fiber,” Opt. Express 24(26), 30338–30349 (2016).
    [Crossref] [PubMed]
  34. M. Ziemienczuk, A. M. Walser, A. Abdolvand, and P. St. J. Russell, “Intermodal stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” J. Opt. Soc. Am. B 29(7), 1563–1568 (2012).
    [Crossref]
  35. J.-P. Fève, “Phase-matching and mitigation of four-wave mixing in fibers with positive gain,” Opt. Express 15(2), 577–582 (2007).
    [Crossref] [PubMed]
  36. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2012).

2018 (3)

M. N. Zervas, “Power scaling limits in high power fiber amplifiers due to transverse mode instability, thermal lensing, and fiber mechanical reliability,” Proc. SPIE 10512, 1051205 (2018).

R. Tao, X. Wang, and P. Zhou, “Comprehensive theoretical study of mode instability in high power fiber lasers by employing a universal model and its implications,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0903319 (2018).
[Crossref]

V. Bock, A. Liem, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Explanation of stimulated Raman scattering in high power fiber systems,” Proc. SPIE 10512, 105121F (2018).

2017 (4)

2016 (4)

2014 (5)

2013 (3)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

T. Sosnowski, A. Kuznetsov, R. Maynard, X. Ma, C. Zhu, I.-N. Hu, A. Galvanauskas, J. J. Koponen, and T. S. McComb, “3C Yb-doped Fiber Based High Energy and Power Pulsed Fiber Lasers,” Proc. SPIE 8601, 86011M (2013).
[Crossref]

A. V. Smith and J. J. Smith, “Spontaneous Rayleigh seed for stimulated Rayleigh scattering in high power fiber amplifiers,” IEEE Photonics J. 5(5), 7100807 (2013).
[Crossref]

2012 (4)

2011 (1)

2010 (1)

2009 (1)

2008 (3)

2007 (2)

2004 (1)

1993 (1)

1986 (1)

C. H. Henry, “Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers,” J. Lightwave Technol. 4(3), 288–297 (1986).
[Crossref]

1972 (1)

Abdolvand, A.

Abedinajafi, A.

Agrawal, G. P.

Azizi, S.

Barty, C. P. J.

Beach, R. J.

Begleris, I.

Beier, F.

Bock, V.

V. Bock, A. Liem, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Explanation of stimulated Raman scattering in high power fiber systems,” Proc. SPIE 10512, 105121F (2018).

Chen, Z.

Clarkson, W. A.

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123S (2014).
[Crossref]

Dajani, I.

Dawson, J. W.

Desgroseilliers, M.

Dong, L.

L. Dong, K. Saitoh, F. Kong, P. Foy, T. Hawkins, D. Mcclane, and G. Gu, “All-solid photonic bandgap fibers for high power lasers,” Proc. SPIE 8547, 85470J (2012).
[Crossref]

Eberhardt, R.

Eidam, T.

Essiambre, R. J.

Fève, J.-P.

Foy, P.

L. Dong, K. Saitoh, F. Kong, P. Foy, T. Hawkins, D. Mcclane, and G. Gu, “All-solid photonic bandgap fibers for high power lasers,” Proc. SPIE 8547, 85470J (2012).
[Crossref]

Friis, S. M. M.

Galvanauskas, A.

T. Sosnowski, A. Kuznetsov, R. Maynard, X. Ma, C. Zhu, I.-N. Hu, A. Galvanauskas, J. J. Koponen, and T. S. McComb, “3C Yb-doped Fiber Based High Energy and Power Pulsed Fiber Lasers,” Proc. SPIE 8601, 86011M (2013).
[Crossref]

Garth, S. J.

Gong, M.

Gu, G.

L. Dong, K. Saitoh, F. Kong, P. Foy, T. Hawkins, D. Mcclane, and G. Gu, “All-solid photonic bandgap fibers for high power lasers,” Proc. SPIE 8547, 85470J (2012).
[Crossref]

Gu, X.

Haarlammert, N.

Hansen, K. R.

Hawkins, T.

L. Dong, K. Saitoh, F. Kong, P. Foy, T. Hawkins, D. Mcclane, and G. Gu, “All-solid photonic bandgap fibers for high power lasers,” Proc. SPIE 8547, 85470J (2012).
[Crossref]

Heebner, J. E.

Hein, S.

Hejaz, K.

Henry, C. H.

C. H. Henry, “Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers,” J. Lightwave Technol. 4(3), 288–297 (1986).
[Crossref]

Horak, P.

Hu, I.-N.

T. Sosnowski, A. Kuznetsov, R. Maynard, X. Ma, C. Zhu, I.-N. Hu, A. Galvanauskas, J. J. Koponen, and T. S. McComb, “3C Yb-doped Fiber Based High Energy and Power Pulsed Fiber Lasers,” Proc. SPIE 8601, 86011M (2013).
[Crossref]

Hupel, C.

Jansen, F.

Jauregui, C.

Jeong, Y.

Jiang, M.

Jiang, Z.

Jung, Y.

Kong, F.

L. Dong, K. Saitoh, F. Kong, P. Foy, T. Hawkins, D. Mcclane, and G. Gu, “All-solid photonic bandgap fibers for high power lasers,” Proc. SPIE 8547, 85470J (2012).
[Crossref]

Koponen, J. J.

T. Sosnowski, A. Kuznetsov, R. Maynard, X. Ma, C. Zhu, I.-N. Hu, A. Galvanauskas, J. J. Koponen, and T. S. McComb, “3C Yb-doped Fiber Based High Energy and Power Pulsed Fiber Lasers,” Proc. SPIE 8601, 86011M (2013).
[Crossref]

Kuhn, S.

Kuznetsov, A.

T. Sosnowski, A. Kuznetsov, R. Maynard, X. Ma, C. Zhu, I.-N. Hu, A. Galvanauskas, J. J. Koponen, and T. S. McComb, “3C Yb-doped Fiber Based High Energy and Power Pulsed Fiber Lasers,” Proc. SPIE 8601, 86011M (2013).
[Crossref]

Lægsgaard, J.

Leng, J.

Li, C.

Liao, S.

Liem, A.

Limpert, J.

Liu, W.

Liu, Z.

Lv, H.

Ma, P.

Ma, X.

T. Sosnowski, A. Kuznetsov, R. Maynard, X. Ma, C. Zhu, I.-N. Hu, A. Galvanauskas, J. J. Koponen, and T. S. McComb, “3C Yb-doped Fiber Based High Energy and Power Pulsed Fiber Lasers,” Proc. SPIE 8601, 86011M (2013).
[Crossref]

Marciante, J. R.

Maynard, R.

T. Sosnowski, A. Kuznetsov, R. Maynard, X. Ma, C. Zhu, I.-N. Hu, A. Galvanauskas, J. J. Koponen, and T. S. McComb, “3C Yb-doped Fiber Based High Energy and Power Pulsed Fiber Lasers,” Proc. SPIE 8601, 86011M (2013).
[Crossref]

Mcclane, D.

L. Dong, K. Saitoh, F. Kong, P. Foy, T. Hawkins, D. Mcclane, and G. Gu, “All-solid photonic bandgap fibers for high power lasers,” Proc. SPIE 8547, 85470J (2012).
[Crossref]

McComb, T. S.

T. Sosnowski, A. Kuznetsov, R. Maynard, X. Ma, C. Zhu, I.-N. Hu, A. Galvanauskas, J. J. Koponen, and T. S. McComb, “3C Yb-doped Fiber Based High Energy and Power Pulsed Fiber Lasers,” Proc. SPIE 8601, 86011M (2013).
[Crossref]

Messerly, M. J.

Mumtaz, S.

Nilsson, J.

Nold, J.

Otto, H. J.

Parmigiani, F.

Pax, P. H.

Payne, D.

Petropoulos, P.

Poletti, F.

Proske, F.

Pulford, B.

Rezaei-Nasirabad, R.

Richardson, D. J.

Robin, C.

Roohforouz, A.

Rottwitt, K.

Russell, P. St. J.

Ryf, R.

Sahu, J.

Saitoh, K.

L. Dong, K. Saitoh, F. Kong, P. Foy, T. Hawkins, D. Mcclane, and G. Gu, “All-solid photonic bandgap fibers for high power lasers,” Proc. SPIE 8547, 85470J (2012).
[Crossref]

Sammut, R. A.

Sattler, B.

Schreiber, T.

Shayganmanesh, M.

Shi, C.

Shverdin, M. Y.

Siders, C. W.

Smith, A. V.

A. V. Smith and J. J. Smith, “Overview of a steady-periodic model of modal instability in fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3000112 (2014).
[Crossref]

A. V. Smith and J. J. Smith, “Spontaneous Rayleigh seed for stimulated Rayleigh scattering in high power fiber amplifiers,” IEEE Photonics J. 5(5), 7100807 (2013).
[Crossref]

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
[Crossref] [PubMed]

Smith, J. J.

A. V. Smith and J. J. Smith, “Overview of a steady-periodic model of modal instability in fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3000112 (2014).
[Crossref]

A. V. Smith and J. J. Smith, “Spontaneous Rayleigh seed for stimulated Rayleigh scattering in high power fiber amplifiers,” IEEE Photonics J. 5(5), 7100807 (2013).
[Crossref]

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
[Crossref] [PubMed]

Smith, R. G.

Sosnowski, T.

T. Sosnowski, A. Kuznetsov, R. Maynard, X. Ma, C. Zhu, I.-N. Hu, A. Galvanauskas, J. J. Koponen, and T. S. McComb, “3C Yb-doped Fiber Based High Energy and Power Pulsed Fiber Lasers,” Proc. SPIE 8601, 86011M (2013).
[Crossref]

Sridharan, A. K.

Stappaerts, E. A.

Stutzki, F.

Su, R.

Tao, R.

R. Tao, X. Wang, and P. Zhou, “Comprehensive theoretical study of mode instability in high power fiber lasers by employing a universal model and its implications,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0903319 (2018).
[Crossref]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24(4), 4187–4195 (2016).
[Crossref] [PubMed]

Tulino, A. M.

Tünnermann, A.

Vatani, V.

Walser, A. M.

Wang, X.

R. Tao, X. Wang, and P. Zhou, “Comprehensive theoretical study of mode instability in high power fiber lasers by employing a universal model and its implications,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0903319 (2018).
[Crossref]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24(4), 4187–4195 (2016).
[Crossref] [PubMed]

Ward, B.

Xiao, H.

Xiao, Y.

Xu, H.

Xu, J.

Yan, P.

Yuan, Y.

Zervas, M. N.

M. N. Zervas, “Power scaling limits in high power fiber amplifiers due to transverse mode instability, thermal lensing, and fiber mechanical reliability,” Proc. SPIE 10512, 1051205 (2018).

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123S (2014).
[Crossref]

Zhang, H.

Zhao, G.

Zhou, P.

Zhu, C.

T. Sosnowski, A. Kuznetsov, R. Maynard, X. Ma, C. Zhu, I.-N. Hu, A. Galvanauskas, J. J. Koponen, and T. S. McComb, “3C Yb-doped Fiber Based High Energy and Power Pulsed Fiber Lasers,” Proc. SPIE 8601, 86011M (2013).
[Crossref]

Ziemienczuk, M.

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (3)

A. V. Smith and J. J. Smith, “Overview of a steady-periodic model of modal instability in fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3000112 (2014).
[Crossref]

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123S (2014).
[Crossref]

R. Tao, X. Wang, and P. Zhou, “Comprehensive theoretical study of mode instability in high power fiber lasers by employing a universal model and its implications,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0903319 (2018).
[Crossref]

IEEE Photonics J. (1)

A. V. Smith and J. J. Smith, “Spontaneous Rayleigh seed for stimulated Rayleigh scattering in high power fiber amplifiers,” IEEE Photonics J. 5(5), 7100807 (2013).
[Crossref]

J. Lightwave Technol. (1)

C. H. Henry, “Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers,” J. Lightwave Technol. 4(3), 288–297 (1986).
[Crossref]

J. Opt. Soc. Am. B (6)

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Opt. Express (15)

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24(4), 4187–4195 (2016).
[Crossref] [PubMed]

F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, J. Limpert, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier,” Opt. Express 25(13), 14892–14899 (2017).
[Crossref] [PubMed]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004).
[Crossref] [PubMed]

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
[Crossref] [PubMed]

B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

K. R. Hansen and J. Lægsgaard, “Impact of gain saturation on the mode instability threshold in high-power fiber amplifiers,” Opt. Express 22(9), 11267–11278 (2014).
[Crossref] [PubMed]

Y. Xiao, R. J. Essiambre, M. Desgroseilliers, A. M. Tulino, R. Ryf, S. Mumtaz, and G. P. Agrawal, “Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers,” Opt. Express 22(26), 32039–32059 (2014).
[Crossref] [PubMed]

M. Gong, Y. Yuan, C. Li, P. Yan, H. Zhang, and S. Liao, “Numerical modeling of transverse mode competition in strongly pumped multimode fiber lasers and amplifiers,” Opt. Express 15(6), 3236–3246 (2007).
[Crossref] [PubMed]

C. Jauregui, J. Limpert, and A. Tünnermann, “Derivation of Raman treshold formulas for CW double-clad fiber amplifiers,” Opt. Express 17(10), 8476–8490 (2009).
[Crossref] [PubMed]

W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, “General analysis of SRS-limited high-power fiber lasers and design strategy,” Opt. Express 24(23), 26715–26721 (2016).
[Crossref] [PubMed]

W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, “Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source,” Opt. Express 24(8), 8708–8717 (2016).
[Crossref] [PubMed]

J.-P. Fève, “Phase-matching and mitigation of four-wave mixing in fibers with positive gain,” Opt. Express 15(2), 577–582 (2007).
[Crossref] [PubMed]

S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, P. Horak, and F. Parmigiani, “Inter-modal four-wave mixing study in a two-mode fiber,” Opt. Express 24(26), 30338–30349 (2016).
[Crossref] [PubMed]

Opt. Lett. (2)

Proc. SPIE (4)

M. N. Zervas, “Power scaling limits in high power fiber amplifiers due to transverse mode instability, thermal lensing, and fiber mechanical reliability,” Proc. SPIE 10512, 1051205 (2018).

T. Sosnowski, A. Kuznetsov, R. Maynard, X. Ma, C. Zhu, I.-N. Hu, A. Galvanauskas, J. J. Koponen, and T. S. McComb, “3C Yb-doped Fiber Based High Energy and Power Pulsed Fiber Lasers,” Proc. SPIE 8601, 86011M (2013).
[Crossref]

L. Dong, K. Saitoh, F. Kong, P. Foy, T. Hawkins, D. Mcclane, and G. Gu, “All-solid photonic bandgap fibers for high power lasers,” Proc. SPIE 8547, 85470J (2012).
[Crossref]

V. Bock, A. Liem, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Explanation of stimulated Raman scattering in high power fiber systems,” Proc. SPIE 10512, 105121F (2018).

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The spectrum of the seed source.
Fig. 2
Fig. 2 The power distribution along the fiber amplifier.
Fig. 3
Fig. 3 The normalized output spectra and corresponding temporal properties of lasers in the two modes: (a) the optical spectra for lasers in the two modes; (b) the temporal evolution for laser in LP11 mode; (c) the ACFs for lasers in the two modes.
Fig. 4
Fig. 4 The spectral evolution of laser in the two modes along the fiber amplifier: (a) spectra of laser in LP01 mode; (b) spectra of laser in LP11 mode.
Fig. 5
Fig. 5 The power distributions along the fiber amplifier for three cases: (a) neglecting active gain term; (b) neglecting Raman amplification term; (c) neglecting SRS-induced IM-WM term.
Fig. 6
Fig. 6 The properties of the output powers verse the pump power: (a) the power slope of signal light in LP01 mode; (b) the ratios of laser power in LP11 mode and Raman Stokes light.

Tables (2)

Tables Icon

Table 1 Dispersion parameters and power overlap factors for LP01 and LP11 modes

Tables Icon

Table 2 Major simulation parameters for the fiber amplifier

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A u ( z,ω ) z = D u ( z,ω )+ N u ( z,ω )+ G u ( z,ω )+ f u ( z,ω ),
D u ( z,ω )=i[ ( β 0 ( u ) β 0 ( 01 ) )+( β 1 ( u ) β 1 ( 01 ) )ω+ n2 β n ( u ) n! ω n ] A u ( z,ω )
N u ( z,t )=iγ( 1+ ω ω 0 )F{ Q uu A u (z,t)R(t) | A u (z,t) | 2 + Q uv A u (z,t)R(t) | A v (z,t) | 2 + Q uv A v (z,t)R(t)[ A v (z,t) A u (z,t) ] },
G u ( z,ω )= 1 2 [ Γ u ( ω )( σ a s ( ω )+ σ e s ( ω ) ) N 2 ( z ) σ a ( ω ) N 0 α u ] A u ( z,ω )
d P p (z) dz = Γ p { σ a ( ω p ) N 0 ( σ a ( ω p )+ σ e ( ω p ) ) N 2 } P p (z) α p P p (z)
N 2 N 0 = Γ p ω p A σ a ( ω p ) P p + 1 2π T m A σ a ( ω ˜ ) ω ˜ ( Γ u | A u (z,ω) | 2 + Γ v | A v (z,ω) | 2 )dω Γ p ω p A ( σ a ( ω p )+ σ e ( ω p ) ) P p + 1 τ + 1 2π T m A σ a ( ω ˜ )+ σ e ( ω ˜ ) ω ˜ ( Γ u | A u (z,ω) | 2 + Γ v | A v (z,ω) | 2 )dω ,
{ f u ( z,ω ) f u ( z , ω ) =2 D FF ( z,ω )δ( z z )δ( ω ω ) f u (z,ω) =0 D FF (z,ω)= ( ω+ ω 0 ) 3 π c 2 G(z,ω) n sp ,

Metrics