Abstract

Starch is an essential and widely distributed natural material, but its detailed conformation and thermal transition properties are not yet well understood. We present a rapid Mueller matrix imaging system to explore the structural characteristics of starch granules by using 16 measurements with different incoming and outgoing polarizations. Due to the minimum rotation of the optical elements and the self-calibration ability of this system, the full Mueller matrix images can be accurately obtained within ten-odd seconds. Both structural and molecular features of the starch granule were investigated in the static state and gelatinization process by means of multiple optical characteristics deduced from the Mueller matrix. The experimental results for the structural changes during the gelatinization were close to other nonlinear optical approaches; moreover, the crystallinity and optical rotation of the starch granule are also determined through the use of this approach.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope

Yang Dong, Ji Qi, Honghui He, Chao He, Shaoxiong Liu, Jian Wu, Daniel S. Elson, and Hui Ma
Biomed. Opt. Express 8(8) 3643-3655 (2017)

Real time complete Stokes polarimetric imager based on a linear polarizer array camera for tissue polarimetric imaging

Ji Qi, Chao He, and Daniel S. Elson
Biomed. Opt. Express 8(11) 4933-4946 (2017)

Mueller matrix polarimetry for characterizing microstructural variation of nude mouse skin during tissue optical clearing

Dongsheng Chen, Nan Zeng, Qiaolin Xie, Honghui He, Valery V. Tuchin, and Hui Ma
Biomed. Opt. Express 8(8) 3559-3570 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5(1), 3656 (2014).
    [Crossref] [PubMed]
  2. M. Dubreuil, P. Babilotte, L. Martin, D. Sevrain, S. Rivet, Y. Le Grand, G. Le Brun, B. Turlin, and B. Le Jeune, “Mueller matrix polarimetry for improved liver fibrosis diagnosis,” Opt. Lett. 37(6), 1061–1063 (2012).
    [Crossref] [PubMed]
  3. A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J. L. Totobenazara, M. R. Antonelli, T. Novikova, B. Gayet, A. DeMartino, and P. Validire, “Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas,” J. Biomed. Opt. 18(4), 046014 (2013).
    [Crossref] [PubMed]
  4. V. A. Ushenko, O. V. Dubolazov, and A. O. Karachevtsev, “Two wavelength Mueller matrix reconstruction of blood plasma films polycrystalline structure in diagnostics of breast cancer,” Appl. Opt. 53(10), B128–B139 (2014).
    [Crossref] [PubMed]
  5. M. Gao, P. Yang, D. McKee, and G. W. Kattawar, “Mueller matrix holographic method for small particle characterization: theory and numerical studies,” Appl. Opt. 52(21), 5289–5296 (2013).
    [Crossref] [PubMed]
  6. S. Otsuki, N. Murase, and H. Kano, “Mueller matrix microscopic ellipsometer,” Opt. Commun. 305, 194–200 (2013).
    [Crossref]
  7. S. Qian and J. J. J. Chen, “Polarized light-based scheme to correlate Mueller matrix elements and casein foam properties,” Can. J. Chem. Eng. 94(5), 844–858 (2016).
    [Crossref]
  8. A. M. Stephen, G. O. Phillips, and P. A. Williams, Food polysaccharides and their applications (CRC Press, 2006).
  9. A. Buléon, P. Colonna, V. Planchot, and S. Ball, “Starch granules: Structure and biosynthesis,” Int. J. Biol. Macromol. 23(2), 85–112 (1998).
    [Crossref] [PubMed]
  10. D. J. Gallant, B. Bouchet, and P. M. Baldwin, “Microscopy of starch: evidence of a new level of granule organization,” Carbohydr. Polym. 32(3–4), 177–191 (1997).
    [Crossref]
  11. A. M. Hermansson and K. Svegmark, “Developments in the understanding of starch functionality,” Trends Food Sci. Technol. 7(11), 345–353 (1996).
    [Crossref]
  12. A. A. Baker, M. J. Miles, and W. Helbert, “Internal structure of the starch granule revealed by AFM,” Carbohydr. Res. 330(2), 249–256 (2001).
    [Crossref] [PubMed]
  13. T. Y. Bogracheva, V. J. Morris, S. G. Ring, and C. L. Hedley, “The granular structure of C-type pea starch and its role in gelatinization,” Biopolymers 45(4), 323–332 (1998).
    [Crossref]
  14. J. H. Li, M. J. Guiltinan, and D. B. Thompson, “The Use of Laser Differential Interference Contrast Microscopy for the Characterization of Starch Granule Ring Structure,” Starke 58(1), 1–5 (2006).
    [Crossref]
  15. N. Mazumder, J. Qiu, M. R. Foreman, C. M. Romero, P. Török, and F. J. Kao, “Stokes vector based polarization resolved second harmonic microscopy of starch granules,” Biomed. Opt. Express 4(4), 538–547 (2013).
    [Crossref] [PubMed]
  16. S. Psilodimitrakopoulos, I. Amat-Roldan, P. Loza-Alvarez, and D. Artigas, “Effect of molecular organization on the image histograms of polarization SHG microscopy,” Biomed. Opt. Express 3(10), 2681–2693 (2012).
    [Crossref] [PubMed]
  17. S. Psilodimitrakopoulos, I. A. Roldan, P. L. Alvarez, and D. Artigas, “Estimating the helical pitch angle of amylopectin in starch using polarization second harmonic generation microscopy,” J. Opt. 12(8), 084007 (2010).
    [Crossref]
  18. A. D. Slepkov, A. Ridsdale, A. F. Pegoraro, D. J. Moffatt, and A. Stolow, “Multimodal CARS microscopy of structured carbohydrate biopolymers,” Biomed. Opt. Express 1(5), 1347–1357 (2010).
    [Crossref] [PubMed]
  19. G. Y. Zhuo, H. Lee, K. J. Hsu, M. J. Huttunen, M. Kauranen, Y. Y. Lin, and S. W. Chu, “Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism,” J. Microsc. 253(3), 183–190 (2014).
    [Crossref] [PubMed]
  20. H. Lee, M. J. Huttunen, K. J. Hsu, M. Partanen, G. Y. Zhuo, M. Kauranen, and S. W. Chu, “Chiral imaging of collagen by second-harmonic generation circular dichroism,” Biomed. Opt. Express 4(6), 909–916 (2013).
    [Crossref] [PubMed]
  21. T. Sanji, N. Kato, and M. Tanaka, “Induction of Optical Activity in an Oligothiophene Synchronized with pH-Sensitive Folding of Amylose,” Chem. Asian J. 3(1), 46–50 (2008).
    [Crossref] [PubMed]
  22. N. Mazumder, J. Qiu, M. R. Foreman, C. M. Romero, C. W. Hu, H. R. Tsai, P. Török, and F. J. Kao, “Polarization-resolved second harmonic generation microscopy with a four-channel Stokes-polarimeter,” Opt. Express 20(13), 14090–14099 (2012).
    [Crossref] [PubMed]
  23. S. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13(5), 1106–1113 (1996).
    [Crossref]
  24. C. Y. Han, C. Y. Du, and J. Y. Jhou, “Rapid full Mueller matrix imaging polarimetry based on the hybrid phase modulation technique,” Opt. Commun. 382, 501–508 (2017).
    [Crossref]
  25. C. Y. Han and Y. F. Chao, “Photoelastic modulated imaging ellipsometry by stroboscopic illumination technique,” Rev. Sci. Instrum. 77(2), 023107 (2006).
    [Crossref]
  26. S. Kumar, H. Purwar, R. Ossikovski, I. A. Vitkin, and N. Ghosh, “Comparative study of differential matrix and extended polar decomposition formalisms for polarimetric characterization of complex tissue-like turbid media,” J. Biomed. Opt. 17(10), 105006 (2012).
    [Crossref] [PubMed]
  27. O. Arteaga, “Number of independent parameters in the Mueller matrix representation of homogeneous depolarizing media,” Opt. Lett. 38(7), 1131–1133 (2013).
    [Crossref] [PubMed]
  28. O. Arteaga and B. Kahr, “Characterization of homogenous depolarizing media based on Mueller matrix differential decomposition,” Opt. Lett. 38(7), 1134–1136 (2013).
    [Crossref] [PubMed]
  29. L. Martin, G. Le Brun, and B. Le Jeune, “Mueller matrix decomposition for biological tissue analysis. Opt. Commun,” Opt. Commun. 293, 4–9 (2013).
    [Crossref]
  30. S. Perez and E. Bertoft, “The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review,” Starch 62(8), 389–420 (2010).
    [Crossref]
  31. C. H. L. Patty, D. A. Luo, F. Snik, F. Ariese, W. J. Buma, I. L. Ten Kate, R. J. M. van Spanning, W. B. Sparks, T. A. Germer, G. Garab, and M. W. Kudenov, “Imaging linear and circular polarization features in leaves with complete Mueller matrix polarimetry,” Biochim. Biophys. Acta 1862(6), 1350–1363 (2018).
    [Crossref] [PubMed]
  32. J. Schellman and H. P. Jensen, “Optical Spectroscopy of Oriented Molecules,” Chem. Rev. 87(6), 1359–1399 (1987).
    [Crossref]
  33. T. W. H. Oates, M. Ranjan, S. Facsko, and H. Arwin, “Highly anisotropic effective dielectric functions of silver nanoparticle arrays,” Opt. Express 19(3), 2014–2028 (2011).
    [Crossref] [PubMed]
  34. O. Arteaga, Mueller matrix polarimetry of anisotropic chiral media (Universitat de Barcelona. Departament de Física Aplicada i Òptica, 2010).
  35. N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13(4), 044036 (2008).
    [Crossref] [PubMed]
  36. D. L. Andrews, Photonics, Volume 4: Biomedical Photonics, Spectroscopy, and Microscopy (John Wiley & Sons Inc, 2015).
  37. C. Cai, L. Zhao, J. Huang, Y. Chen, and C. Wei, “Morphology, structure and gelatinization properties of heterogeneous starch granules from high-amylose maize,” Carbohydr. Polym. 102, 606–614 (2014).
    [Crossref] [PubMed]
  38. N. Mazumder, L. Y. Xiang, J. Qiu, and F. J. Kao, “Investigating starch gelatinization through Stokes vector resolved second harmonic generation microscopy,” Sci. Rep. 7, 45816 (2017).
    [Crossref] [PubMed]
  39. C. Cai and C. Wei, “In situ observation of crystallinity disruption patterns during starch gelatinization,” Carbohydr. Polym. 92(1), 469–478 (2013).
    [Crossref] [PubMed]
  40. D. Cooke and M. J. Gidley, “Loss of crystalline and molecular order during starch gelatinisation: origin of the enthalpic transition,” Carbohydr. Res. 227(6), 103–112 (1992).
    [Crossref]
  41. D. J. Gallant, B. Bouchet, A. Buléon, and S. Pérez, “Physical characteristics of starch granules and susceptibility to enzymatic degradation,” Eur. J. Clin. Nutr. 46(2Suppl 2), S3–S16 (1992).
    [PubMed]
  42. J. Holm, J. Lundquist, I. M. E. Björck, A. C. Eliasson, and N. G. Asp, “Degree in vitro, of starch gelatinization, and metabolic response in rats,” Am. J. Clin. Nutr. 47(6), 1010–1016 (1988).
    [Crossref] [PubMed]
  43. C. W. Kuo, C. Y. Han, J. Y. Jhou, and Z. Y. Peng, “Using a fast dual-wavelength imaging ellipsometric system to measure the flow thickness profile of an oil thin film,” Appl. Surf. Sci. 421, 465–470 (2017).
    [Crossref]

2018 (1)

C. H. L. Patty, D. A. Luo, F. Snik, F. Ariese, W. J. Buma, I. L. Ten Kate, R. J. M. van Spanning, W. B. Sparks, T. A. Germer, G. Garab, and M. W. Kudenov, “Imaging linear and circular polarization features in leaves with complete Mueller matrix polarimetry,” Biochim. Biophys. Acta 1862(6), 1350–1363 (2018).
[Crossref] [PubMed]

2017 (3)

C. Y. Han, C. Y. Du, and J. Y. Jhou, “Rapid full Mueller matrix imaging polarimetry based on the hybrid phase modulation technique,” Opt. Commun. 382, 501–508 (2017).
[Crossref]

N. Mazumder, L. Y. Xiang, J. Qiu, and F. J. Kao, “Investigating starch gelatinization through Stokes vector resolved second harmonic generation microscopy,” Sci. Rep. 7, 45816 (2017).
[Crossref] [PubMed]

C. W. Kuo, C. Y. Han, J. Y. Jhou, and Z. Y. Peng, “Using a fast dual-wavelength imaging ellipsometric system to measure the flow thickness profile of an oil thin film,” Appl. Surf. Sci. 421, 465–470 (2017).
[Crossref]

2016 (1)

S. Qian and J. J. J. Chen, “Polarized light-based scheme to correlate Mueller matrix elements and casein foam properties,” Can. J. Chem. Eng. 94(5), 844–858 (2016).
[Crossref]

2014 (4)

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5(1), 3656 (2014).
[Crossref] [PubMed]

V. A. Ushenko, O. V. Dubolazov, and A. O. Karachevtsev, “Two wavelength Mueller matrix reconstruction of blood plasma films polycrystalline structure in diagnostics of breast cancer,” Appl. Opt. 53(10), B128–B139 (2014).
[Crossref] [PubMed]

C. Cai, L. Zhao, J. Huang, Y. Chen, and C. Wei, “Morphology, structure and gelatinization properties of heterogeneous starch granules from high-amylose maize,” Carbohydr. Polym. 102, 606–614 (2014).
[Crossref] [PubMed]

G. Y. Zhuo, H. Lee, K. J. Hsu, M. J. Huttunen, M. Kauranen, Y. Y. Lin, and S. W. Chu, “Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism,” J. Microsc. 253(3), 183–190 (2014).
[Crossref] [PubMed]

2013 (9)

H. Lee, M. J. Huttunen, K. J. Hsu, M. Partanen, G. Y. Zhuo, M. Kauranen, and S. W. Chu, “Chiral imaging of collagen by second-harmonic generation circular dichroism,” Biomed. Opt. Express 4(6), 909–916 (2013).
[Crossref] [PubMed]

O. Arteaga, “Number of independent parameters in the Mueller matrix representation of homogeneous depolarizing media,” Opt. Lett. 38(7), 1131–1133 (2013).
[Crossref] [PubMed]

O. Arteaga and B. Kahr, “Characterization of homogenous depolarizing media based on Mueller matrix differential decomposition,” Opt. Lett. 38(7), 1134–1136 (2013).
[Crossref] [PubMed]

L. Martin, G. Le Brun, and B. Le Jeune, “Mueller matrix decomposition for biological tissue analysis. Opt. Commun,” Opt. Commun. 293, 4–9 (2013).
[Crossref]

M. Gao, P. Yang, D. McKee, and G. W. Kattawar, “Mueller matrix holographic method for small particle characterization: theory and numerical studies,” Appl. Opt. 52(21), 5289–5296 (2013).
[Crossref] [PubMed]

S. Otsuki, N. Murase, and H. Kano, “Mueller matrix microscopic ellipsometer,” Opt. Commun. 305, 194–200 (2013).
[Crossref]

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J. L. Totobenazara, M. R. Antonelli, T. Novikova, B. Gayet, A. DeMartino, and P. Validire, “Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas,” J. Biomed. Opt. 18(4), 046014 (2013).
[Crossref] [PubMed]

N. Mazumder, J. Qiu, M. R. Foreman, C. M. Romero, P. Török, and F. J. Kao, “Stokes vector based polarization resolved second harmonic microscopy of starch granules,” Biomed. Opt. Express 4(4), 538–547 (2013).
[Crossref] [PubMed]

C. Cai and C. Wei, “In situ observation of crystallinity disruption patterns during starch gelatinization,” Carbohydr. Polym. 92(1), 469–478 (2013).
[Crossref] [PubMed]

2012 (4)

2011 (1)

2010 (3)

S. Perez and E. Bertoft, “The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review,” Starch 62(8), 389–420 (2010).
[Crossref]

S. Psilodimitrakopoulos, I. A. Roldan, P. L. Alvarez, and D. Artigas, “Estimating the helical pitch angle of amylopectin in starch using polarization second harmonic generation microscopy,” J. Opt. 12(8), 084007 (2010).
[Crossref]

A. D. Slepkov, A. Ridsdale, A. F. Pegoraro, D. J. Moffatt, and A. Stolow, “Multimodal CARS microscopy of structured carbohydrate biopolymers,” Biomed. Opt. Express 1(5), 1347–1357 (2010).
[Crossref] [PubMed]

2008 (2)

T. Sanji, N. Kato, and M. Tanaka, “Induction of Optical Activity in an Oligothiophene Synchronized with pH-Sensitive Folding of Amylose,” Chem. Asian J. 3(1), 46–50 (2008).
[Crossref] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13(4), 044036 (2008).
[Crossref] [PubMed]

2006 (2)

C. Y. Han and Y. F. Chao, “Photoelastic modulated imaging ellipsometry by stroboscopic illumination technique,” Rev. Sci. Instrum. 77(2), 023107 (2006).
[Crossref]

J. H. Li, M. J. Guiltinan, and D. B. Thompson, “The Use of Laser Differential Interference Contrast Microscopy for the Characterization of Starch Granule Ring Structure,” Starke 58(1), 1–5 (2006).
[Crossref]

2001 (1)

A. A. Baker, M. J. Miles, and W. Helbert, “Internal structure of the starch granule revealed by AFM,” Carbohydr. Res. 330(2), 249–256 (2001).
[Crossref] [PubMed]

1998 (2)

T. Y. Bogracheva, V. J. Morris, S. G. Ring, and C. L. Hedley, “The granular structure of C-type pea starch and its role in gelatinization,” Biopolymers 45(4), 323–332 (1998).
[Crossref]

A. Buléon, P. Colonna, V. Planchot, and S. Ball, “Starch granules: Structure and biosynthesis,” Int. J. Biol. Macromol. 23(2), 85–112 (1998).
[Crossref] [PubMed]

1997 (1)

D. J. Gallant, B. Bouchet, and P. M. Baldwin, “Microscopy of starch: evidence of a new level of granule organization,” Carbohydr. Polym. 32(3–4), 177–191 (1997).
[Crossref]

1996 (2)

A. M. Hermansson and K. Svegmark, “Developments in the understanding of starch functionality,” Trends Food Sci. Technol. 7(11), 345–353 (1996).
[Crossref]

S. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13(5), 1106–1113 (1996).
[Crossref]

1992 (2)

D. Cooke and M. J. Gidley, “Loss of crystalline and molecular order during starch gelatinisation: origin of the enthalpic transition,” Carbohydr. Res. 227(6), 103–112 (1992).
[Crossref]

D. J. Gallant, B. Bouchet, A. Buléon, and S. Pérez, “Physical characteristics of starch granules and susceptibility to enzymatic degradation,” Eur. J. Clin. Nutr. 46(2Suppl 2), S3–S16 (1992).
[PubMed]

1988 (1)

J. Holm, J. Lundquist, I. M. E. Björck, A. C. Eliasson, and N. G. Asp, “Degree in vitro, of starch gelatinization, and metabolic response in rats,” Am. J. Clin. Nutr. 47(6), 1010–1016 (1988).
[Crossref] [PubMed]

1987 (1)

J. Schellman and H. P. Jensen, “Optical Spectroscopy of Oriented Molecules,” Chem. Rev. 87(6), 1359–1399 (1987).
[Crossref]

Alvarez, P. L.

S. Psilodimitrakopoulos, I. A. Roldan, P. L. Alvarez, and D. Artigas, “Estimating the helical pitch angle of amylopectin in starch using polarization second harmonic generation microscopy,” J. Opt. 12(8), 084007 (2010).
[Crossref]

Amat-Roldan, I.

Antonelli, M. R.

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J. L. Totobenazara, M. R. Antonelli, T. Novikova, B. Gayet, A. DeMartino, and P. Validire, “Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas,” J. Biomed. Opt. 18(4), 046014 (2013).
[Crossref] [PubMed]

Ariese, F.

C. H. L. Patty, D. A. Luo, F. Snik, F. Ariese, W. J. Buma, I. L. Ten Kate, R. J. M. van Spanning, W. B. Sparks, T. A. Germer, G. Garab, and M. W. Kudenov, “Imaging linear and circular polarization features in leaves with complete Mueller matrix polarimetry,” Biochim. Biophys. Acta 1862(6), 1350–1363 (2018).
[Crossref] [PubMed]

Arteaga, O.

Artigas, D.

S. Psilodimitrakopoulos, I. Amat-Roldan, P. Loza-Alvarez, and D. Artigas, “Effect of molecular organization on the image histograms of polarization SHG microscopy,” Biomed. Opt. Express 3(10), 2681–2693 (2012).
[Crossref] [PubMed]

S. Psilodimitrakopoulos, I. A. Roldan, P. L. Alvarez, and D. Artigas, “Estimating the helical pitch angle of amylopectin in starch using polarization second harmonic generation microscopy,” J. Opt. 12(8), 084007 (2010).
[Crossref]

Arwin, H.

Asp, N. G.

J. Holm, J. Lundquist, I. M. E. Björck, A. C. Eliasson, and N. G. Asp, “Degree in vitro, of starch gelatinization, and metabolic response in rats,” Am. J. Clin. Nutr. 47(6), 1010–1016 (1988).
[Crossref] [PubMed]

Babilotte, P.

Baker, A. A.

A. A. Baker, M. J. Miles, and W. Helbert, “Internal structure of the starch granule revealed by AFM,” Carbohydr. Res. 330(2), 249–256 (2001).
[Crossref] [PubMed]

Baldwin, P. M.

D. J. Gallant, B. Bouchet, and P. M. Baldwin, “Microscopy of starch: evidence of a new level of granule organization,” Carbohydr. Polym. 32(3–4), 177–191 (1997).
[Crossref]

Ball, S.

A. Buléon, P. Colonna, V. Planchot, and S. Ball, “Starch granules: Structure and biosynthesis,” Int. J. Biol. Macromol. 23(2), 85–112 (1998).
[Crossref] [PubMed]

Bartolino, R.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5(1), 3656 (2014).
[Crossref] [PubMed]

Benali, A.

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J. L. Totobenazara, M. R. Antonelli, T. Novikova, B. Gayet, A. DeMartino, and P. Validire, “Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas,” J. Biomed. Opt. 18(4), 046014 (2013).
[Crossref] [PubMed]

Bertoft, E.

S. Perez and E. Bertoft, “The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review,” Starch 62(8), 389–420 (2010).
[Crossref]

Björck, I. M. E.

J. Holm, J. Lundquist, I. M. E. Björck, A. C. Eliasson, and N. G. Asp, “Degree in vitro, of starch gelatinization, and metabolic response in rats,” Am. J. Clin. Nutr. 47(6), 1010–1016 (1988).
[Crossref] [PubMed]

Bogracheva, T. Y.

T. Y. Bogracheva, V. J. Morris, S. G. Ring, and C. L. Hedley, “The granular structure of C-type pea starch and its role in gelatinization,” Biopolymers 45(4), 323–332 (1998).
[Crossref]

Bouchet, B.

D. J. Gallant, B. Bouchet, and P. M. Baldwin, “Microscopy of starch: evidence of a new level of granule organization,” Carbohydr. Polym. 32(3–4), 177–191 (1997).
[Crossref]

D. J. Gallant, B. Bouchet, A. Buléon, and S. Pérez, “Physical characteristics of starch granules and susceptibility to enzymatic degradation,” Eur. J. Clin. Nutr. 46(2Suppl 2), S3–S16 (1992).
[PubMed]

Buléon, A.

A. Buléon, P. Colonna, V. Planchot, and S. Ball, “Starch granules: Structure and biosynthesis,” Int. J. Biol. Macromol. 23(2), 85–112 (1998).
[Crossref] [PubMed]

D. J. Gallant, B. Bouchet, A. Buléon, and S. Pérez, “Physical characteristics of starch granules and susceptibility to enzymatic degradation,” Eur. J. Clin. Nutr. 46(2Suppl 2), S3–S16 (1992).
[PubMed]

Buma, W. J.

C. H. L. Patty, D. A. Luo, F. Snik, F. Ariese, W. J. Buma, I. L. Ten Kate, R. J. M. van Spanning, W. B. Sparks, T. A. Germer, G. Garab, and M. W. Kudenov, “Imaging linear and circular polarization features in leaves with complete Mueller matrix polarimetry,” Biochim. Biophys. Acta 1862(6), 1350–1363 (2018).
[Crossref] [PubMed]

Cai, C.

C. Cai, L. Zhao, J. Huang, Y. Chen, and C. Wei, “Morphology, structure and gelatinization properties of heterogeneous starch granules from high-amylose maize,” Carbohydr. Polym. 102, 606–614 (2014).
[Crossref] [PubMed]

C. Cai and C. Wei, “In situ observation of crystallinity disruption patterns during starch gelatinization,” Carbohydr. Polym. 92(1), 469–478 (2013).
[Crossref] [PubMed]

Chao, Y. F.

C. Y. Han and Y. F. Chao, “Photoelastic modulated imaging ellipsometry by stroboscopic illumination technique,” Rev. Sci. Instrum. 77(2), 023107 (2006).
[Crossref]

Chen, J. J. J.

S. Qian and J. J. J. Chen, “Polarized light-based scheme to correlate Mueller matrix elements and casein foam properties,” Can. J. Chem. Eng. 94(5), 844–858 (2016).
[Crossref]

Chen, Y.

C. Cai, L. Zhao, J. Huang, Y. Chen, and C. Wei, “Morphology, structure and gelatinization properties of heterogeneous starch granules from high-amylose maize,” Carbohydr. Polym. 102, 606–614 (2014).
[Crossref] [PubMed]

Chipman, R. A.

Chu, S. W.

G. Y. Zhuo, H. Lee, K. J. Hsu, M. J. Huttunen, M. Kauranen, Y. Y. Lin, and S. W. Chu, “Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism,” J. Microsc. 253(3), 183–190 (2014).
[Crossref] [PubMed]

H. Lee, M. J. Huttunen, K. J. Hsu, M. Partanen, G. Y. Zhuo, M. Kauranen, and S. W. Chu, “Chiral imaging of collagen by second-harmonic generation circular dichroism,” Biomed. Opt. Express 4(6), 909–916 (2013).
[Crossref] [PubMed]

Cipparrone, G.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5(1), 3656 (2014).
[Crossref] [PubMed]

Colonna, P.

A. Buléon, P. Colonna, V. Planchot, and S. Ball, “Starch granules: Structure and biosynthesis,” Int. J. Biol. Macromol. 23(2), 85–112 (1998).
[Crossref] [PubMed]

Cooke, D.

D. Cooke and M. J. Gidley, “Loss of crystalline and molecular order during starch gelatinisation: origin of the enthalpic transition,” Carbohydr. Res. 227(6), 103–112 (1992).
[Crossref]

DeMartino, A.

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J. L. Totobenazara, M. R. Antonelli, T. Novikova, B. Gayet, A. DeMartino, and P. Validire, “Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas,” J. Biomed. Opt. 18(4), 046014 (2013).
[Crossref] [PubMed]

Donato, M. G.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5(1), 3656 (2014).
[Crossref] [PubMed]

Du, C. Y.

C. Y. Han, C. Y. Du, and J. Y. Jhou, “Rapid full Mueller matrix imaging polarimetry based on the hybrid phase modulation technique,” Opt. Commun. 382, 501–508 (2017).
[Crossref]

Dubolazov, O. V.

Dubreuil, M.

Eliasson, A. C.

J. Holm, J. Lundquist, I. M. E. Björck, A. C. Eliasson, and N. G. Asp, “Degree in vitro, of starch gelatinization, and metabolic response in rats,” Am. J. Clin. Nutr. 47(6), 1010–1016 (1988).
[Crossref] [PubMed]

Facsko, S.

Fallet, C.

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J. L. Totobenazara, M. R. Antonelli, T. Novikova, B. Gayet, A. DeMartino, and P. Validire, “Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas,” J. Biomed. Opt. 18(4), 046014 (2013).
[Crossref] [PubMed]

Foreman, M. R.

Gallant, D. J.

D. J. Gallant, B. Bouchet, and P. M. Baldwin, “Microscopy of starch: evidence of a new level of granule organization,” Carbohydr. Polym. 32(3–4), 177–191 (1997).
[Crossref]

D. J. Gallant, B. Bouchet, A. Buléon, and S. Pérez, “Physical characteristics of starch granules and susceptibility to enzymatic degradation,” Eur. J. Clin. Nutr. 46(2Suppl 2), S3–S16 (1992).
[PubMed]

Gao, M.

Garab, G.

C. H. L. Patty, D. A. Luo, F. Snik, F. Ariese, W. J. Buma, I. L. Ten Kate, R. J. M. van Spanning, W. B. Sparks, T. A. Germer, G. Garab, and M. W. Kudenov, “Imaging linear and circular polarization features in leaves with complete Mueller matrix polarimetry,” Biochim. Biophys. Acta 1862(6), 1350–1363 (2018).
[Crossref] [PubMed]

Gayet, B.

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J. L. Totobenazara, M. R. Antonelli, T. Novikova, B. Gayet, A. DeMartino, and P. Validire, “Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas,” J. Biomed. Opt. 18(4), 046014 (2013).
[Crossref] [PubMed]

Germer, T. A.

C. H. L. Patty, D. A. Luo, F. Snik, F. Ariese, W. J. Buma, I. L. Ten Kate, R. J. M. van Spanning, W. B. Sparks, T. A. Germer, G. Garab, and M. W. Kudenov, “Imaging linear and circular polarization features in leaves with complete Mueller matrix polarimetry,” Biochim. Biophys. Acta 1862(6), 1350–1363 (2018).
[Crossref] [PubMed]

Ghosh, N.

S. Kumar, H. Purwar, R. Ossikovski, I. A. Vitkin, and N. Ghosh, “Comparative study of differential matrix and extended polar decomposition formalisms for polarimetric characterization of complex tissue-like turbid media,” J. Biomed. Opt. 17(10), 105006 (2012).
[Crossref] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13(4), 044036 (2008).
[Crossref] [PubMed]

Gidley, M. J.

D. Cooke and M. J. Gidley, “Loss of crystalline and molecular order during starch gelatinisation: origin of the enthalpic transition,” Carbohydr. Res. 227(6), 103–112 (1992).
[Crossref]

Gucciardi, P. G.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5(1), 3656 (2014).
[Crossref] [PubMed]

Guiltinan, M. J.

J. H. Li, M. J. Guiltinan, and D. B. Thompson, “The Use of Laser Differential Interference Contrast Microscopy for the Characterization of Starch Granule Ring Structure,” Starke 58(1), 1–5 (2006).
[Crossref]

Han, C. Y.

C. Y. Han, C. Y. Du, and J. Y. Jhou, “Rapid full Mueller matrix imaging polarimetry based on the hybrid phase modulation technique,” Opt. Commun. 382, 501–508 (2017).
[Crossref]

C. W. Kuo, C. Y. Han, J. Y. Jhou, and Z. Y. Peng, “Using a fast dual-wavelength imaging ellipsometric system to measure the flow thickness profile of an oil thin film,” Appl. Surf. Sci. 421, 465–470 (2017).
[Crossref]

C. Y. Han and Y. F. Chao, “Photoelastic modulated imaging ellipsometry by stroboscopic illumination technique,” Rev. Sci. Instrum. 77(2), 023107 (2006).
[Crossref]

Hedley, C. L.

T. Y. Bogracheva, V. J. Morris, S. G. Ring, and C. L. Hedley, “The granular structure of C-type pea starch and its role in gelatinization,” Biopolymers 45(4), 323–332 (1998).
[Crossref]

Helbert, W.

A. A. Baker, M. J. Miles, and W. Helbert, “Internal structure of the starch granule revealed by AFM,” Carbohydr. Res. 330(2), 249–256 (2001).
[Crossref] [PubMed]

Hermansson, A. M.

A. M. Hermansson and K. Svegmark, “Developments in the understanding of starch functionality,” Trends Food Sci. Technol. 7(11), 345–353 (1996).
[Crossref]

Hernandez, J.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5(1), 3656 (2014).
[Crossref] [PubMed]

Holm, J.

J. Holm, J. Lundquist, I. M. E. Björck, A. C. Eliasson, and N. G. Asp, “Degree in vitro, of starch gelatinization, and metabolic response in rats,” Am. J. Clin. Nutr. 47(6), 1010–1016 (1988).
[Crossref] [PubMed]

Hsu, K. J.

G. Y. Zhuo, H. Lee, K. J. Hsu, M. J. Huttunen, M. Kauranen, Y. Y. Lin, and S. W. Chu, “Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism,” J. Microsc. 253(3), 183–190 (2014).
[Crossref] [PubMed]

H. Lee, M. J. Huttunen, K. J. Hsu, M. Partanen, G. Y. Zhuo, M. Kauranen, and S. W. Chu, “Chiral imaging of collagen by second-harmonic generation circular dichroism,” Biomed. Opt. Express 4(6), 909–916 (2013).
[Crossref] [PubMed]

Hu, C. W.

Huang, J.

C. Cai, L. Zhao, J. Huang, Y. Chen, and C. Wei, “Morphology, structure and gelatinization properties of heterogeneous starch granules from high-amylose maize,” Carbohydr. Polym. 102, 606–614 (2014).
[Crossref] [PubMed]

Huttunen, M. J.

G. Y. Zhuo, H. Lee, K. J. Hsu, M. J. Huttunen, M. Kauranen, Y. Y. Lin, and S. W. Chu, “Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism,” J. Microsc. 253(3), 183–190 (2014).
[Crossref] [PubMed]

H. Lee, M. J. Huttunen, K. J. Hsu, M. Partanen, G. Y. Zhuo, M. Kauranen, and S. W. Chu, “Chiral imaging of collagen by second-harmonic generation circular dichroism,” Biomed. Opt. Express 4(6), 909–916 (2013).
[Crossref] [PubMed]

Jensen, H. P.

J. Schellman and H. P. Jensen, “Optical Spectroscopy of Oriented Molecules,” Chem. Rev. 87(6), 1359–1399 (1987).
[Crossref]

Jhou, J. Y.

C. W. Kuo, C. Y. Han, J. Y. Jhou, and Z. Y. Peng, “Using a fast dual-wavelength imaging ellipsometric system to measure the flow thickness profile of an oil thin film,” Appl. Surf. Sci. 421, 465–470 (2017).
[Crossref]

C. Y. Han, C. Y. Du, and J. Y. Jhou, “Rapid full Mueller matrix imaging polarimetry based on the hybrid phase modulation technique,” Opt. Commun. 382, 501–508 (2017).
[Crossref]

Kahr, B.

Kano, H.

S. Otsuki, N. Murase, and H. Kano, “Mueller matrix microscopic ellipsometer,” Opt. Commun. 305, 194–200 (2013).
[Crossref]

Kao, F. J.

Karachevtsev, A. O.

Kato, N.

T. Sanji, N. Kato, and M. Tanaka, “Induction of Optical Activity in an Oligothiophene Synchronized with pH-Sensitive Folding of Amylose,” Chem. Asian J. 3(1), 46–50 (2008).
[Crossref] [PubMed]

Kattawar, G. W.

Kauranen, M.

G. Y. Zhuo, H. Lee, K. J. Hsu, M. J. Huttunen, M. Kauranen, Y. Y. Lin, and S. W. Chu, “Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism,” J. Microsc. 253(3), 183–190 (2014).
[Crossref] [PubMed]

H. Lee, M. J. Huttunen, K. J. Hsu, M. Partanen, G. Y. Zhuo, M. Kauranen, and S. W. Chu, “Chiral imaging of collagen by second-harmonic generation circular dichroism,” Biomed. Opt. Express 4(6), 909–916 (2013).
[Crossref] [PubMed]

Kudenov, M. W.

C. H. L. Patty, D. A. Luo, F. Snik, F. Ariese, W. J. Buma, I. L. Ten Kate, R. J. M. van Spanning, W. B. Sparks, T. A. Germer, G. Garab, and M. W. Kudenov, “Imaging linear and circular polarization features in leaves with complete Mueller matrix polarimetry,” Biochim. Biophys. Acta 1862(6), 1350–1363 (2018).
[Crossref] [PubMed]

Kumar, S.

S. Kumar, H. Purwar, R. Ossikovski, I. A. Vitkin, and N. Ghosh, “Comparative study of differential matrix and extended polar decomposition formalisms for polarimetric characterization of complex tissue-like turbid media,” J. Biomed. Opt. 17(10), 105006 (2012).
[Crossref] [PubMed]

Kuo, C. W.

C. W. Kuo, C. Y. Han, J. Y. Jhou, and Z. Y. Peng, “Using a fast dual-wavelength imaging ellipsometric system to measure the flow thickness profile of an oil thin film,” Appl. Surf. Sci. 421, 465–470 (2017).
[Crossref]

Le Brun, G.

Le Grand, Y.

Le Jeune, B.

Lee, H.

G. Y. Zhuo, H. Lee, K. J. Hsu, M. J. Huttunen, M. Kauranen, Y. Y. Lin, and S. W. Chu, “Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism,” J. Microsc. 253(3), 183–190 (2014).
[Crossref] [PubMed]

H. Lee, M. J. Huttunen, K. J. Hsu, M. Partanen, G. Y. Zhuo, M. Kauranen, and S. W. Chu, “Chiral imaging of collagen by second-harmonic generation circular dichroism,” Biomed. Opt. Express 4(6), 909–916 (2013).
[Crossref] [PubMed]

Li, J. H.

J. H. Li, M. J. Guiltinan, and D. B. Thompson, “The Use of Laser Differential Interference Contrast Microscopy for the Characterization of Starch Granule Ring Structure,” Starke 58(1), 1–5 (2006).
[Crossref]

Lin, Y. Y.

G. Y. Zhuo, H. Lee, K. J. Hsu, M. J. Huttunen, M. Kauranen, Y. Y. Lin, and S. W. Chu, “Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism,” J. Microsc. 253(3), 183–190 (2014).
[Crossref] [PubMed]

Loza-Alvarez, P.

Lu, S.

Lundquist, J.

J. Holm, J. Lundquist, I. M. E. Björck, A. C. Eliasson, and N. G. Asp, “Degree in vitro, of starch gelatinization, and metabolic response in rats,” Am. J. Clin. Nutr. 47(6), 1010–1016 (1988).
[Crossref] [PubMed]

Luo, D. A.

C. H. L. Patty, D. A. Luo, F. Snik, F. Ariese, W. J. Buma, I. L. Ten Kate, R. J. M. van Spanning, W. B. Sparks, T. A. Germer, G. Garab, and M. W. Kudenov, “Imaging linear and circular polarization features in leaves with complete Mueller matrix polarimetry,” Biochim. Biophys. Acta 1862(6), 1350–1363 (2018).
[Crossref] [PubMed]

Magazzù, A.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5(1), 3656 (2014).
[Crossref] [PubMed]

Manhas, S.

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J. L. Totobenazara, M. R. Antonelli, T. Novikova, B. Gayet, A. DeMartino, and P. Validire, “Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas,” J. Biomed. Opt. 18(4), 046014 (2013).
[Crossref] [PubMed]

Maragò, O. M.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5(1), 3656 (2014).
[Crossref] [PubMed]

Martin, L.

Mazumder, N.

Mazzulla, A.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5(1), 3656 (2014).
[Crossref] [PubMed]

McKee, D.

Miles, M. J.

A. A. Baker, M. J. Miles, and W. Helbert, “Internal structure of the starch granule revealed by AFM,” Carbohydr. Res. 330(2), 249–256 (2001).
[Crossref] [PubMed]

Moffatt, D. J.

Morris, V. J.

T. Y. Bogracheva, V. J. Morris, S. G. Ring, and C. L. Hedley, “The granular structure of C-type pea starch and its role in gelatinization,” Biopolymers 45(4), 323–332 (1998).
[Crossref]

Murase, N.

S. Otsuki, N. Murase, and H. Kano, “Mueller matrix microscopic ellipsometer,” Opt. Commun. 305, 194–200 (2013).
[Crossref]

Novikova, T.

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J. L. Totobenazara, M. R. Antonelli, T. Novikova, B. Gayet, A. DeMartino, and P. Validire, “Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas,” J. Biomed. Opt. 18(4), 046014 (2013).
[Crossref] [PubMed]

Oates, T. W. H.

Ossikovski, R.

S. Kumar, H. Purwar, R. Ossikovski, I. A. Vitkin, and N. Ghosh, “Comparative study of differential matrix and extended polar decomposition formalisms for polarimetric characterization of complex tissue-like turbid media,” J. Biomed. Opt. 17(10), 105006 (2012).
[Crossref] [PubMed]

Otsuki, S.

S. Otsuki, N. Murase, and H. Kano, “Mueller matrix microscopic ellipsometer,” Opt. Commun. 305, 194–200 (2013).
[Crossref]

Pagliusi, P.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5(1), 3656 (2014).
[Crossref] [PubMed]

Partanen, M.

Patty, C. H. L.

C. H. L. Patty, D. A. Luo, F. Snik, F. Ariese, W. J. Buma, I. L. Ten Kate, R. J. M. van Spanning, W. B. Sparks, T. A. Germer, G. Garab, and M. W. Kudenov, “Imaging linear and circular polarization features in leaves with complete Mueller matrix polarimetry,” Biochim. Biophys. Acta 1862(6), 1350–1363 (2018).
[Crossref] [PubMed]

Pegoraro, A. F.

Peng, Z. Y.

C. W. Kuo, C. Y. Han, J. Y. Jhou, and Z. Y. Peng, “Using a fast dual-wavelength imaging ellipsometric system to measure the flow thickness profile of an oil thin film,” Appl. Surf. Sci. 421, 465–470 (2017).
[Crossref]

Perez, S.

S. Perez and E. Bertoft, “The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review,” Starch 62(8), 389–420 (2010).
[Crossref]

Pérez, S.

D. J. Gallant, B. Bouchet, A. Buléon, and S. Pérez, “Physical characteristics of starch granules and susceptibility to enzymatic degradation,” Eur. J. Clin. Nutr. 46(2Suppl 2), S3–S16 (1992).
[PubMed]

Pierangelo, A.

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J. L. Totobenazara, M. R. Antonelli, T. Novikova, B. Gayet, A. DeMartino, and P. Validire, “Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas,” J. Biomed. Opt. 18(4), 046014 (2013).
[Crossref] [PubMed]

Planchot, V.

A. Buléon, P. Colonna, V. Planchot, and S. Ball, “Starch granules: Structure and biosynthesis,” Int. J. Biol. Macromol. 23(2), 85–112 (1998).
[Crossref] [PubMed]

Provenzano, C.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5(1), 3656 (2014).
[Crossref] [PubMed]

Psilodimitrakopoulos, S.

S. Psilodimitrakopoulos, I. Amat-Roldan, P. Loza-Alvarez, and D. Artigas, “Effect of molecular organization on the image histograms of polarization SHG microscopy,” Biomed. Opt. Express 3(10), 2681–2693 (2012).
[Crossref] [PubMed]

S. Psilodimitrakopoulos, I. A. Roldan, P. L. Alvarez, and D. Artigas, “Estimating the helical pitch angle of amylopectin in starch using polarization second harmonic generation microscopy,” J. Opt. 12(8), 084007 (2010).
[Crossref]

Purwar, H.

S. Kumar, H. Purwar, R. Ossikovski, I. A. Vitkin, and N. Ghosh, “Comparative study of differential matrix and extended polar decomposition formalisms for polarimetric characterization of complex tissue-like turbid media,” J. Biomed. Opt. 17(10), 105006 (2012).
[Crossref] [PubMed]

Qian, S.

S. Qian and J. J. J. Chen, “Polarized light-based scheme to correlate Mueller matrix elements and casein foam properties,” Can. J. Chem. Eng. 94(5), 844–858 (2016).
[Crossref]

Qiu, J.

Ranjan, M.

Ridsdale, A.

Ring, S. G.

T. Y. Bogracheva, V. J. Morris, S. G. Ring, and C. L. Hedley, “The granular structure of C-type pea starch and its role in gelatinization,” Biopolymers 45(4), 323–332 (1998).
[Crossref]

Rivet, S.

Roldan, I. A.

S. Psilodimitrakopoulos, I. A. Roldan, P. L. Alvarez, and D. Artigas, “Estimating the helical pitch angle of amylopectin in starch using polarization second harmonic generation microscopy,” J. Opt. 12(8), 084007 (2010).
[Crossref]

Romero, C. M.

Saija, R.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5(1), 3656 (2014).
[Crossref] [PubMed]

Sanji, T.

T. Sanji, N. Kato, and M. Tanaka, “Induction of Optical Activity in an Oligothiophene Synchronized with pH-Sensitive Folding of Amylose,” Chem. Asian J. 3(1), 46–50 (2008).
[Crossref] [PubMed]

Sayed, R.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5(1), 3656 (2014).
[Crossref] [PubMed]

Schellman, J.

J. Schellman and H. P. Jensen, “Optical Spectroscopy of Oriented Molecules,” Chem. Rev. 87(6), 1359–1399 (1987).
[Crossref]

Sevrain, D.

Slepkov, A. D.

Snik, F.

C. H. L. Patty, D. A. Luo, F. Snik, F. Ariese, W. J. Buma, I. L. Ten Kate, R. J. M. van Spanning, W. B. Sparks, T. A. Germer, G. Garab, and M. W. Kudenov, “Imaging linear and circular polarization features in leaves with complete Mueller matrix polarimetry,” Biochim. Biophys. Acta 1862(6), 1350–1363 (2018).
[Crossref] [PubMed]

Sparks, W. B.

C. H. L. Patty, D. A. Luo, F. Snik, F. Ariese, W. J. Buma, I. L. Ten Kate, R. J. M. van Spanning, W. B. Sparks, T. A. Germer, G. Garab, and M. W. Kudenov, “Imaging linear and circular polarization features in leaves with complete Mueller matrix polarimetry,” Biochim. Biophys. Acta 1862(6), 1350–1363 (2018).
[Crossref] [PubMed]

Stolow, A.

Svegmark, K.

A. M. Hermansson and K. Svegmark, “Developments in the understanding of starch functionality,” Trends Food Sci. Technol. 7(11), 345–353 (1996).
[Crossref]

Tanaka, M.

T. Sanji, N. Kato, and M. Tanaka, “Induction of Optical Activity in an Oligothiophene Synchronized with pH-Sensitive Folding of Amylose,” Chem. Asian J. 3(1), 46–50 (2008).
[Crossref] [PubMed]

Ten Kate, I. L.

C. H. L. Patty, D. A. Luo, F. Snik, F. Ariese, W. J. Buma, I. L. Ten Kate, R. J. M. van Spanning, W. B. Sparks, T. A. Germer, G. Garab, and M. W. Kudenov, “Imaging linear and circular polarization features in leaves with complete Mueller matrix polarimetry,” Biochim. Biophys. Acta 1862(6), 1350–1363 (2018).
[Crossref] [PubMed]

Thompson, D. B.

J. H. Li, M. J. Guiltinan, and D. B. Thompson, “The Use of Laser Differential Interference Contrast Microscopy for the Characterization of Starch Granule Ring Structure,” Starke 58(1), 1–5 (2006).
[Crossref]

Török, P.

Totobenazara, J. L.

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J. L. Totobenazara, M. R. Antonelli, T. Novikova, B. Gayet, A. DeMartino, and P. Validire, “Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas,” J. Biomed. Opt. 18(4), 046014 (2013).
[Crossref] [PubMed]

Tsai, H. R.

Turlin, B.

Ushenko, V. A.

Validire, P.

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J. L. Totobenazara, M. R. Antonelli, T. Novikova, B. Gayet, A. DeMartino, and P. Validire, “Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas,” J. Biomed. Opt. 18(4), 046014 (2013).
[Crossref] [PubMed]

van Spanning, R. J. M.

C. H. L. Patty, D. A. Luo, F. Snik, F. Ariese, W. J. Buma, I. L. Ten Kate, R. J. M. van Spanning, W. B. Sparks, T. A. Germer, G. Garab, and M. W. Kudenov, “Imaging linear and circular polarization features in leaves with complete Mueller matrix polarimetry,” Biochim. Biophys. Acta 1862(6), 1350–1363 (2018).
[Crossref] [PubMed]

Vasi, S.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5(1), 3656 (2014).
[Crossref] [PubMed]

Vitkin, I. A.

S. Kumar, H. Purwar, R. Ossikovski, I. A. Vitkin, and N. Ghosh, “Comparative study of differential matrix and extended polar decomposition formalisms for polarimetric characterization of complex tissue-like turbid media,” J. Biomed. Opt. 17(10), 105006 (2012).
[Crossref] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13(4), 044036 (2008).
[Crossref] [PubMed]

Wei, C.

C. Cai, L. Zhao, J. Huang, Y. Chen, and C. Wei, “Morphology, structure and gelatinization properties of heterogeneous starch granules from high-amylose maize,” Carbohydr. Polym. 102, 606–614 (2014).
[Crossref] [PubMed]

C. Cai and C. Wei, “In situ observation of crystallinity disruption patterns during starch gelatinization,” Carbohydr. Polym. 92(1), 469–478 (2013).
[Crossref] [PubMed]

Wood, M. F. G.

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13(4), 044036 (2008).
[Crossref] [PubMed]

Xiang, L. Y.

N. Mazumder, L. Y. Xiang, J. Qiu, and F. J. Kao, “Investigating starch gelatinization through Stokes vector resolved second harmonic generation microscopy,” Sci. Rep. 7, 45816 (2017).
[Crossref] [PubMed]

Yang, P.

Zhao, L.

C. Cai, L. Zhao, J. Huang, Y. Chen, and C. Wei, “Morphology, structure and gelatinization properties of heterogeneous starch granules from high-amylose maize,” Carbohydr. Polym. 102, 606–614 (2014).
[Crossref] [PubMed]

Zhuo, G. Y.

G. Y. Zhuo, H. Lee, K. J. Hsu, M. J. Huttunen, M. Kauranen, Y. Y. Lin, and S. W. Chu, “Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism,” J. Microsc. 253(3), 183–190 (2014).
[Crossref] [PubMed]

H. Lee, M. J. Huttunen, K. J. Hsu, M. Partanen, G. Y. Zhuo, M. Kauranen, and S. W. Chu, “Chiral imaging of collagen by second-harmonic generation circular dichroism,” Biomed. Opt. Express 4(6), 909–916 (2013).
[Crossref] [PubMed]

Am. J. Clin. Nutr. (1)

J. Holm, J. Lundquist, I. M. E. Björck, A. C. Eliasson, and N. G. Asp, “Degree in vitro, of starch gelatinization, and metabolic response in rats,” Am. J. Clin. Nutr. 47(6), 1010–1016 (1988).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Surf. Sci. (1)

C. W. Kuo, C. Y. Han, J. Y. Jhou, and Z. Y. Peng, “Using a fast dual-wavelength imaging ellipsometric system to measure the flow thickness profile of an oil thin film,” Appl. Surf. Sci. 421, 465–470 (2017).
[Crossref]

Biochim. Biophys. Acta (1)

C. H. L. Patty, D. A. Luo, F. Snik, F. Ariese, W. J. Buma, I. L. Ten Kate, R. J. M. van Spanning, W. B. Sparks, T. A. Germer, G. Garab, and M. W. Kudenov, “Imaging linear and circular polarization features in leaves with complete Mueller matrix polarimetry,” Biochim. Biophys. Acta 1862(6), 1350–1363 (2018).
[Crossref] [PubMed]

Biomed. Opt. Express (4)

Biopolymers (1)

T. Y. Bogracheva, V. J. Morris, S. G. Ring, and C. L. Hedley, “The granular structure of C-type pea starch and its role in gelatinization,” Biopolymers 45(4), 323–332 (1998).
[Crossref]

Can. J. Chem. Eng. (1)

S. Qian and J. J. J. Chen, “Polarized light-based scheme to correlate Mueller matrix elements and casein foam properties,” Can. J. Chem. Eng. 94(5), 844–858 (2016).
[Crossref]

Carbohydr. Polym. (3)

D. J. Gallant, B. Bouchet, and P. M. Baldwin, “Microscopy of starch: evidence of a new level of granule organization,” Carbohydr. Polym. 32(3–4), 177–191 (1997).
[Crossref]

C. Cai, L. Zhao, J. Huang, Y. Chen, and C. Wei, “Morphology, structure and gelatinization properties of heterogeneous starch granules from high-amylose maize,” Carbohydr. Polym. 102, 606–614 (2014).
[Crossref] [PubMed]

C. Cai and C. Wei, “In situ observation of crystallinity disruption patterns during starch gelatinization,” Carbohydr. Polym. 92(1), 469–478 (2013).
[Crossref] [PubMed]

Carbohydr. Res. (2)

D. Cooke and M. J. Gidley, “Loss of crystalline and molecular order during starch gelatinisation: origin of the enthalpic transition,” Carbohydr. Res. 227(6), 103–112 (1992).
[Crossref]

A. A. Baker, M. J. Miles, and W. Helbert, “Internal structure of the starch granule revealed by AFM,” Carbohydr. Res. 330(2), 249–256 (2001).
[Crossref] [PubMed]

Chem. Asian J. (1)

T. Sanji, N. Kato, and M. Tanaka, “Induction of Optical Activity in an Oligothiophene Synchronized with pH-Sensitive Folding of Amylose,” Chem. Asian J. 3(1), 46–50 (2008).
[Crossref] [PubMed]

Chem. Rev. (1)

J. Schellman and H. P. Jensen, “Optical Spectroscopy of Oriented Molecules,” Chem. Rev. 87(6), 1359–1399 (1987).
[Crossref]

Eur. J. Clin. Nutr. (1)

D. J. Gallant, B. Bouchet, A. Buléon, and S. Pérez, “Physical characteristics of starch granules and susceptibility to enzymatic degradation,” Eur. J. Clin. Nutr. 46(2Suppl 2), S3–S16 (1992).
[PubMed]

Int. J. Biol. Macromol. (1)

A. Buléon, P. Colonna, V. Planchot, and S. Ball, “Starch granules: Structure and biosynthesis,” Int. J. Biol. Macromol. 23(2), 85–112 (1998).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J. L. Totobenazara, M. R. Antonelli, T. Novikova, B. Gayet, A. DeMartino, and P. Validire, “Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas,” J. Biomed. Opt. 18(4), 046014 (2013).
[Crossref] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13(4), 044036 (2008).
[Crossref] [PubMed]

S. Kumar, H. Purwar, R. Ossikovski, I. A. Vitkin, and N. Ghosh, “Comparative study of differential matrix and extended polar decomposition formalisms for polarimetric characterization of complex tissue-like turbid media,” J. Biomed. Opt. 17(10), 105006 (2012).
[Crossref] [PubMed]

J. Microsc. (1)

G. Y. Zhuo, H. Lee, K. J. Hsu, M. J. Huttunen, M. Kauranen, Y. Y. Lin, and S. W. Chu, “Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism,” J. Microsc. 253(3), 183–190 (2014).
[Crossref] [PubMed]

J. Opt. (1)

S. Psilodimitrakopoulos, I. A. Roldan, P. L. Alvarez, and D. Artigas, “Estimating the helical pitch angle of amylopectin in starch using polarization second harmonic generation microscopy,” J. Opt. 12(8), 084007 (2010).
[Crossref]

J. Opt. Soc. Am. A (1)

Nat. Commun. (1)

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5(1), 3656 (2014).
[Crossref] [PubMed]

Opt. Commun. (3)

S. Otsuki, N. Murase, and H. Kano, “Mueller matrix microscopic ellipsometer,” Opt. Commun. 305, 194–200 (2013).
[Crossref]

C. Y. Han, C. Y. Du, and J. Y. Jhou, “Rapid full Mueller matrix imaging polarimetry based on the hybrid phase modulation technique,” Opt. Commun. 382, 501–508 (2017).
[Crossref]

L. Martin, G. Le Brun, and B. Le Jeune, “Mueller matrix decomposition for biological tissue analysis. Opt. Commun,” Opt. Commun. 293, 4–9 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

C. Y. Han and Y. F. Chao, “Photoelastic modulated imaging ellipsometry by stroboscopic illumination technique,” Rev. Sci. Instrum. 77(2), 023107 (2006).
[Crossref]

Sci. Rep. (1)

N. Mazumder, L. Y. Xiang, J. Qiu, and F. J. Kao, “Investigating starch gelatinization through Stokes vector resolved second harmonic generation microscopy,” Sci. Rep. 7, 45816 (2017).
[Crossref] [PubMed]

Starch (1)

S. Perez and E. Bertoft, “The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review,” Starch 62(8), 389–420 (2010).
[Crossref]

Starke (1)

J. H. Li, M. J. Guiltinan, and D. B. Thompson, “The Use of Laser Differential Interference Contrast Microscopy for the Characterization of Starch Granule Ring Structure,” Starke 58(1), 1–5 (2006).
[Crossref]

Trends Food Sci. Technol. (1)

A. M. Hermansson and K. Svegmark, “Developments in the understanding of starch functionality,” Trends Food Sci. Technol. 7(11), 345–353 (1996).
[Crossref]

Other (3)

A. M. Stephen, G. O. Phillips, and P. A. Williams, Food polysaccharides and their applications (CRC Press, 2006).

D. L. Andrews, Photonics, Volume 4: Biomedical Photonics, Spectroscopy, and Microscopy (John Wiley & Sons Inc, 2015).

O. Arteaga, Mueller matrix polarimetry of anisotropic chiral media (Universitat de Barcelona. Departament de Física Aplicada i Òptica, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Optical configuration for the Mueller matrix polarization imaging system.
Fig. 2
Fig. 2 Polarization images under various conditions. The red arrow indicates starch granules and the white arrow indicates the glycerin. Upper right and bottom right figures are enlarged images of I11 and I15.
Fig. 3
Fig. 3 Measured Mueller matrix images of the starch granules.
Fig. 4
Fig. 4 Images of the Mueller matrix and through the procedure of the Lu-Chipman decomposition. (a) polarizance image (b) diattenuation image. The white arrow indicates the ring lines. (c) depolarization coefficient image. (d) retardance image. The white arrow indicates the hilum and bulk amorphous region.
Fig. 5
Fig. 5 Components of depolarization images. (a) horizontal/vertical linear depolarization. (b) ± 45° linear depolarization. (c) circular depolarization.
Fig. 6
Fig. 6 Retardance images (a) linear retardation (b) optical rotation.
Fig. 7
Fig. 7 Polarization images of the gelatinization process (a) images of crossed linear polarization (b) images of crossed circular polarization. The timeline of the heating treatment is shown in the figure below. The interval of examination is 90 seconds, including 20 seconds for image acquisition and transfer.
Fig. 8
Fig. 8 Retardance images of the gelatinization process.
Fig. 9
Fig. 9 Linear retardation images of the gelatinization process.
Fig. 10
Fig. 10 Histograms of linear retardation during the gelatinization process. Left figure indicates the region (110x110 pixel) for counting.

Tables (2)

Tables Icon

Table 1 Measurement sequence of 16 intensities under the condition of retardation of LCVRs for the chosen set of analyzer and temporal phase angle of the PEM.

Tables Icon

Table 2 Set of 16 intensities for calculating the full Mueller matrix elements.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

M T = M PSA M S M PSG = M a ( A ) M PEM ( θ p , 0 ) M S M LCV R 2 ( δ 2 , 45 ) M LCV R 1 ( δ 2 , 90 ) M P ( 45 )
I(A, θ p , δ 1 , δ 2 )= I 0 4 m 00 m 02 cos δ 1 1 2 m 01 sin δ 1 sin δ 2 +cos2A( m 01 1 2 m 11 sin δ 1 sin δ 2 m 12 cos δ 1 + m 13 sin δ 1 cos δ 2 ) + 1 2 sin2A [ cos(πsin θ p )(2 m 20 m 21 sin δ 1 sin δ 2 2 m 22 cos δ 1 ) +sin(πsin θ p )(2 m 30 sin2A m 31 sin δ 1 sin δ 2 2 m 32 sin2A) ] +sin δ 1 cos δ 2 { m 03 +sin2A[ m 23 cos(πsin θ p )+ m 33 sin(πsin θ p ) ] }
M=( 1 D T P m )
d= 1 M(0,0) M (0,1) 2 +M (0,2) 2 +M (0,3) 2
p= 1 M(0,0) M (1,0) 2 +M (2,0) 2 +M (3,0) 2 .
M=M Δ M R M D
R= cos 1 [ tr( M R ) 2 1 ]
δ=co s -1 ( ( M R (1,1)+ M R (2,2) ) 2 + ( M R (2,1)+ M R (1,2) ) 2 1 )
ψ= ta n -1 ( M R (2,1)- M R (1,2) M R (1,1)+ M R (2,2) )
Δ=1 | tr( M Δ )1 | 3

Metrics