Abstract

We propose a novel direct detection (DD) scheme for polarization division multiplexed (PDM) single sideband (SSB) signals with two orthogonal carriers located at the opposite sides. Polarization diversity is realized with a pair of optical filters that are used to suppress the unwanted orthogonal carrier component. A PDM-SSB DD receiver is thus constructed without polarization de-rotation. The intra-polarization signal-signal beat interference (SSBI) can be mitigated by Kramers-Kronig detection or iterative SSBI cancellation. For inter-polarization SSBI mitigation, we propose a joint iterative SSBI cancellation method. The proposed PDM-SSB DD scheme is validated with a principle experiment of 40Gbaud PDM-SSB 16-ary quadrature amplitude modulation (16-QAM) signals. After 80km standard single-mode fiber (SSMF) transmission, the bit-error rates (BERs) achieve 20% hard-decision forward error correction (HD-FEC) threshold of 1.5 × 10−2. The performance of iterative SSBI cancellation, Kramers-Kronig detection, and joint iterative SSBI cancellation are evaluated for PDM-SSB signals with different carrier-to-signal ratios (CSPRs) through numerical simulations. Moreover, a multi-input-multi-output (MIMO) equalization scheme is proposed and validated with numerical simulation, which can suppress the linear inter-polarization crosstalk and relax the sharpness requirement of optical filter edges.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Spectrally efficient polarization multiplexed direct-detection OFDM system without frequency gap

Chia-Chien Wei, Wei-Siang Zeng, and Chun-Ting Lin
Opt. Express 24(2) 1823-1828 (2016)

Single wavelength 480 Gb/s direct detection over 80km SSMF enabled by Stokes vector Kramers Kronig transceiver

Thang M. Hoang, Mohammed Y. S. Sowailem, Qunbi Zhuge, Zhenping Xing, Mohamed Morsy-Osman, Eslam El-Fiky, Sujie Fan, Meng Xiang, and David V. Plant
Opt. Express 25(26) 33534-33542 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. N. Liu, L. Zhang, T. Zuo, and Q. Zhang, “IM/DD transmission techniques for emerging 5G fronthaul, DCI and metro applications,” J. Lightwave Technol. 36(2), 560–567 (2018).
    [Crossref]
  2. K. Zhong, X. Zhou, J. Huo, C. Yu, C. Lu, and A. P. T. Lau, “Digital signal processing for short-reach optical communications: a review of current technologies and future trends,” J. Lightwave Technol. 36(2), 377–400 (2018).
    [Crossref]
  3. J. Shi, J. Zhang, Y. Zhou, Y. Wang, N. Chi, and J. Yu, “Transmission performance comparison for 100-Gb/s PAM-4, CAP-16, and DFT-S OFDM with direct detection,” J. Lightwave Technol. 35(23), 5127–5133 (2017).
    [Crossref]
  4. D. Che, Q. Hu, and W. Shieh, “Linearization of direct detection optical channels using self-coherent subsystems,” J. Lightwave Technol. 34(2), 516–524 (2016).
    [Crossref]
  5. Y. Zhu, K. Zou, Z. Chen, and F. Zhang, “224Gb/s optical carrier-assisted Nyquist 16-QAM half-cycle single-sideband direct detection transmission over 160km SSMF,” J. Lightwave Technol. 35(9), 1557–1565 (2017).
    [Crossref]
  6. X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, J. Sinsky, A. Mecozzi, M. Shtaif, and P. Winzer, “218-Gb/s single-wavelength, single-polarization, single-photodiode transmission over 125-km of standard single-mode fiber using Kramers-Kronig detection,” Proc. Optical Fiber Communication Conference, Paper Th5B.6 (2017).
  7. W. Peng, X. Wu, V. R. Arbab, K. Feng, B. Shamee, L. C. Christen, J. Yang, and A. E. Willner, “Theoretical and experimental investigations of direct-detected RF-tone assisted optical OFDM systems,” J. Lightwave Technol. 27(10), 1332–1339 (2009).
    [Crossref]
  8. T. M. F. Alves, L. M. M. Mendes, and A. V. T. Cartaxo, “High granularity multiband OFDM virtual carrier-assisted direct-detection metro networks,” J. Lightwave Technol. 33(1), 42–54 (2015).
    [Crossref]
  9. S. T. Le, K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. M. Engenhardt, “1.72Tb/s virtual-carrier assisted direct-detection transmission over 200km,” J. Lightwave Technol. 36(6), 1347–1353 (2018).
    [Crossref]
  10. W. R. Peng, X. Wu, K. M. Feng, V. R. Arbab, B. Shamee, J. Y. Yang, L. C. Christen, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission employing an iterative estimation and cancellation technique,” Opt. Express 17(11), 9099–9111 (2009).
    [Crossref] [PubMed]
  11. K. Zou, Y. Zhu, F. Zhang, and Z. Chen, “Spectrally efficient terabit optical transmission with Nyquist 64-QAM half-cycle subcarrier modulation and direct detection,” Opt. Lett. 41(12), 2767–2770 (2016).
    [Crossref] [PubMed]
  12. Z. Li, M. Erkılınç, K. Shi, E. Sillekens, L. Galdino, B. Thomsen, P. Bayvel, and R. Killey, “SSBI mitigation and the Kramers-Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation,” J. Lightwave Technol. 35(10), 1887–1893 (2017).
    [Crossref]
  13. A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers-kronig coherent receiver,” Optica 3(11), 1220–1227 (2016).
    [Crossref]
  14. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol. 28(4), 484–493 (2010).
    [Crossref]
  15. D. Che, C. Sun, and W. Shieh, “Direct detection of the optical field beyond single polarization mode,” Opt. Express 26(3), 3368–3380 (2018).
    [Crossref] [PubMed]
  16. W. Peng, K. Feng, and A. E. Willner, “Direct-detected polarization division multiplexed OFDM systems with self-polarization diversity,” Proc. LEOS, paper. MH3(2008).
    [Crossref]
  17. M. Nazarathy and A. Agmon, “Doubling direct-detection data rate by polarization multiplexing of 16-QAM without active polarization control,” Opt. Express 21(26), 31998–32012 (2013).
    [Crossref] [PubMed]
  18. T. M. Hoang, M. Y. S. Sowailem, Q. Zhuge, Z. Xing, M. Morsy-Osman, E. El-Fiky, S. Fan, M. Xiang, and D. V. Plant, “Single wavelength 480 Gb/s direct detection over 80km SSMF enabled by Stokes vector Kramers Kronig transceiver,” Opt. Express 25(26), 33534–33542 (2017).
    [Crossref]
  19. D. Che, C. Sun, and W. Shieh, “Single-channel 480-Gb/s direct detection of POL-MUX IQ signal using single-sideband Stokes vector receiver,” Proc. Optical Fiber Communication Conference, Tu2C.7 (2018).
    [Crossref]
  20. C. Antonelli, A. Mecozzi, M. Shtaif, X. Chen, S. Chandrasekhar, and P. J. Winzer, “Polarization multiplexing with the Kramers-Kronig receiver,” J. Lightwave Technol. 35(24), 5418–5424 (2017).
    [Crossref]
  21. D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “Stokes Vector Direct Detection for Linear Complex Optical Channels,” J. Lightwave Technol. 33(3), 678–684 (2015).
    [Crossref]
  22. A. A. Amin, H. Takahashi, I. Morita, and H. Tanaka, “100-Gb/s direct-detection OFDM transmission on independent polarization tributaries,” IEEE Photonics Technol. Lett. 22(7), 468–470 (2010).
    [Crossref]
  23. R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, “32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode fiber,” Proc. Optical Fiber Communication Conference, PDP5A.1(2013).
  24. X. Zhou, “An improved feed-forward carrier recovery algorithm for coherent receiver with M-QAM modulation format,” IEEE Photonics Technol. Lett. 22(14), 1051–1053 (2010).
    [Crossref]

2018 (4)

2017 (5)

2016 (3)

2015 (2)

2013 (1)

2010 (3)

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol. 28(4), 484–493 (2010).
[Crossref]

A. A. Amin, H. Takahashi, I. Morita, and H. Tanaka, “100-Gb/s direct-detection OFDM transmission on independent polarization tributaries,” IEEE Photonics Technol. Lett. 22(7), 468–470 (2010).
[Crossref]

X. Zhou, “An improved feed-forward carrier recovery algorithm for coherent receiver with M-QAM modulation format,” IEEE Photonics Technol. Lett. 22(14), 1051–1053 (2010).
[Crossref]

2009 (2)

Agmon, A.

Alves, T. M. F.

Amin, A. A.

A. A. Amin, H. Takahashi, I. Morita, and H. Tanaka, “100-Gb/s direct-detection OFDM transmission on independent polarization tributaries,” IEEE Photonics Technol. Lett. 22(7), 468–470 (2010).
[Crossref]

Antonelli, C.

Arbab, V. R.

Aref, V.

Bayvel, P.

Buchali, F.

Buelow, H.

Cartaxo, A. V. T.

Chagnon, M.

Chandrasekhar, S.

Che, D.

Chen, X.

Chen, Z.

Chi, N.

Chi, S.

Christen, L. C.

Cvijetic, N.

Dischler, R.

El-Fiky, E.

Engenhardt, K. M.

Erkilinç, M.

Fan, S.

Feng, K.

Feng, K. M.

Galdino, L.

Hoang, T. M.

Hu, J.

Hu, Q.

Huo, J.

Killey, R.

Lau, A. P. T.

Le, S. T.

Li, A.

Li, Z.

Liu, G. N.

Lu, C.

Mecozzi, A.

Mendes, L. M. M.

Morita, I.

A. A. Amin, H. Takahashi, I. Morita, and H. Tanaka, “100-Gb/s direct-detection OFDM transmission on independent polarization tributaries,” IEEE Photonics Technol. Lett. 22(7), 468–470 (2010).
[Crossref]

Morsy-Osman, M.

Nazarathy, M.

Peng, W.

Peng, W. R.

Plant, D. V.

Qian, D.

Schuh, K.

Shamee, B.

Shi, J.

Shi, K.

Shieh, W.

Shtaif, M.

Sillekens, E.

Sowailem, M. Y. S.

Sun, C.

Takahashi, H.

A. A. Amin, H. Takahashi, I. Morita, and H. Tanaka, “100-Gb/s direct-detection OFDM transmission on independent polarization tributaries,” IEEE Photonics Technol. Lett. 22(7), 468–470 (2010).
[Crossref]

Tanaka, H.

A. A. Amin, H. Takahashi, I. Morita, and H. Tanaka, “100-Gb/s direct-detection OFDM transmission on independent polarization tributaries,” IEEE Photonics Technol. Lett. 22(7), 468–470 (2010).
[Crossref]

Thomsen, B.

Wang, T.

Wang, Y.

Willner, A. E.

Winzer, P. J.

Wu, X.

Xiang, M.

Xing, Z.

Yang, J.

Yang, J. Y.

Yu, C.

Yu, J.

Zhang, F.

Zhang, J.

Zhang, L.

Zhang, Q.

Zhong, K.

Zhou, X.

K. Zhong, X. Zhou, J. Huo, C. Yu, C. Lu, and A. P. T. Lau, “Digital signal processing for short-reach optical communications: a review of current technologies and future trends,” J. Lightwave Technol. 36(2), 377–400 (2018).
[Crossref]

X. Zhou, “An improved feed-forward carrier recovery algorithm for coherent receiver with M-QAM modulation format,” IEEE Photonics Technol. Lett. 22(14), 1051–1053 (2010).
[Crossref]

Zhou, Y.

Zhu, Y.

Zhuge, Q.

Zou, K.

Zuo, T.

IEEE Photonics Technol. Lett. (2)

A. A. Amin, H. Takahashi, I. Morita, and H. Tanaka, “100-Gb/s direct-detection OFDM transmission on independent polarization tributaries,” IEEE Photonics Technol. Lett. 22(7), 468–470 (2010).
[Crossref]

X. Zhou, “An improved feed-forward carrier recovery algorithm for coherent receiver with M-QAM modulation format,” IEEE Photonics Technol. Lett. 22(14), 1051–1053 (2010).
[Crossref]

J. Lightwave Technol. (12)

G. N. Liu, L. Zhang, T. Zuo, and Q. Zhang, “IM/DD transmission techniques for emerging 5G fronthaul, DCI and metro applications,” J. Lightwave Technol. 36(2), 560–567 (2018).
[Crossref]

K. Zhong, X. Zhou, J. Huo, C. Yu, C. Lu, and A. P. T. Lau, “Digital signal processing for short-reach optical communications: a review of current technologies and future trends,” J. Lightwave Technol. 36(2), 377–400 (2018).
[Crossref]

J. Shi, J. Zhang, Y. Zhou, Y. Wang, N. Chi, and J. Yu, “Transmission performance comparison for 100-Gb/s PAM-4, CAP-16, and DFT-S OFDM with direct detection,” J. Lightwave Technol. 35(23), 5127–5133 (2017).
[Crossref]

D. Che, Q. Hu, and W. Shieh, “Linearization of direct detection optical channels using self-coherent subsystems,” J. Lightwave Technol. 34(2), 516–524 (2016).
[Crossref]

Y. Zhu, K. Zou, Z. Chen, and F. Zhang, “224Gb/s optical carrier-assisted Nyquist 16-QAM half-cycle single-sideband direct detection transmission over 160km SSMF,” J. Lightwave Technol. 35(9), 1557–1565 (2017).
[Crossref]

W. Peng, X. Wu, V. R. Arbab, K. Feng, B. Shamee, L. C. Christen, J. Yang, and A. E. Willner, “Theoretical and experimental investigations of direct-detected RF-tone assisted optical OFDM systems,” J. Lightwave Technol. 27(10), 1332–1339 (2009).
[Crossref]

T. M. F. Alves, L. M. M. Mendes, and A. V. T. Cartaxo, “High granularity multiband OFDM virtual carrier-assisted direct-detection metro networks,” J. Lightwave Technol. 33(1), 42–54 (2015).
[Crossref]

S. T. Le, K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. M. Engenhardt, “1.72Tb/s virtual-carrier assisted direct-detection transmission over 200km,” J. Lightwave Technol. 36(6), 1347–1353 (2018).
[Crossref]

Z. Li, M. Erkılınç, K. Shi, E. Sillekens, L. Galdino, B. Thomsen, P. Bayvel, and R. Killey, “SSBI mitigation and the Kramers-Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation,” J. Lightwave Technol. 35(10), 1887–1893 (2017).
[Crossref]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol. 28(4), 484–493 (2010).
[Crossref]

C. Antonelli, A. Mecozzi, M. Shtaif, X. Chen, S. Chandrasekhar, and P. J. Winzer, “Polarization multiplexing with the Kramers-Kronig receiver,” J. Lightwave Technol. 35(24), 5418–5424 (2017).
[Crossref]

D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “Stokes Vector Direct Detection for Linear Complex Optical Channels,” J. Lightwave Technol. 33(3), 678–684 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Optica (1)

Other (4)

W. Peng, K. Feng, and A. E. Willner, “Direct-detected polarization division multiplexed OFDM systems with self-polarization diversity,” Proc. LEOS, paper. MH3(2008).
[Crossref]

D. Che, C. Sun, and W. Shieh, “Single-channel 480-Gb/s direct detection of POL-MUX IQ signal using single-sideband Stokes vector receiver,” Proc. Optical Fiber Communication Conference, Tu2C.7 (2018).
[Crossref]

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, J. Sinsky, A. Mecozzi, M. Shtaif, and P. Winzer, “218-Gb/s single-wavelength, single-polarization, single-photodiode transmission over 125-km of standard single-mode fiber using Kramers-Kronig detection,” Proc. Optical Fiber Communication Conference, Paper Th5B.6 (2017).

R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, “32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode fiber,” Proc. Optical Fiber Communication Conference, PDP5A.1(2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Bias induced carrier generation scheme. (b) Digital virtual carrier generation scheme. (c) Optical carrier generation scheme. (d) Reception principle of the optical filter based PDM DD scheme. ECL: external cavity laser; OFCG: optical frequency comb generator; SP: single polarization; Mod.: modulator; PBC: polarization beam combiner; AWG: arbitrary waveform generator; DP: dual polarization; PM-OC: polarization-maintaining optical coupler; OBPF: optical band-pass filter; Pol.: polarization.
Fig. 2
Fig. 2 DSP flows of (a) Iterative SSBI cancellation; (b) Kramers-Kronig detection; (c) Joint iterative SSBI cancellation.
Fig. 3
Fig. 3 Experimental setup. AWG: arbitrary waveform generator; ECL: external cavity laser; Mod.: modulator; PM-EDFA: polarization-maintaining erbium-doped fiber amplifier; OC: optical coupler; PBC: polarization beam combiner; SSMF: standard single-mode fiber; OBPF: optical band-pass filter; PD: photodiode; EA: electrical amplifier; DSO: digital storage oscilloscope.
Fig. 4
Fig. 4 (a) Transmitter side DSP. (b) Receiver side DSP; (c) Frame structure of transmitted signal. RRC: root raise cosine, Pre CD comp.: chromatic dispersion pre-compensation.
Fig. 5
Fig. 5 (a) Optical spectra at the transmitter. (b) Transmitted and received optical spectra. (c) Optical spectrum of the OBPF in our experiment. The resolution is set as 0.02nm.
Fig. 6
Fig. 6 (a) Measured BERs of X/Y polarization versus total launch power after 80km SSMF transmission. SSBI-C = 0: without SSBI compensation; KK: with KK detection; SSBI-C = 2: with joint iterative SSBI cancellation. (b)&(c) Typical constellations of X/Y polarizations without SSBI compensation at 12dBm launch power. (d)&(e) Typical constellations of X/Y polarization with KK detection at 12dBm launch power. (f)&(g) Typical constellations of X/Y polarizations with joint iterative SSBI cancellation. Pol.: polarization; w/o: without; w/: with.
Fig. 7
Fig. 7 (a) Measured BERs versus OSNR for PDM/SP signal at BTB scenario, respectively. SSBI-C = 0: without SSBI compensation; KK: with KK detection; SSBI = 2: with joint iterative SSBI cancellation. (b)&(c) Typical constellations of X/Y polarizations without SSBI compensation for PDM signals. (d)&(e) Typical constellations of X/Y polarizations with KK detection for PDM signals. (f)&(g) Typical constellations of X/Y polarizations with joint iterative SSBI cancellation. The OSNR are all fixed as 52dB. Pol.: polarization; SP: single polarization; w/o: without; w/: with.
Fig. 8
Fig. 8 (a) Simulated BERs versus OSNR for PDM-SSB signals with different CSPRs at BTB. SSBI-C = 0: without SSBI cancellation; SSBI-C = 1: with iterative SSBI cancellation; SSBI-C = 2, with joint iterative SSBI cancellation; KK, with KK detection. (b)-(e) Typical constellations of a 10dB CSPR signal at 45dB OSNR without SSBI cancellation, with iterative SSBI cancellation, with KK detection, and with joint iterative SSBI cancellation, respectively.
Fig. 9
Fig. 9 (a) DSP flow of the modified MIMO equalization. Conj(·): conjugation operation; RLS: recursive least square algorithm. (b) Simulated BERs versus OSNR of a 12dB CSPR signal with 4th-order Gaussian OBPF at BTB. (c)-(f) Typical constellations of a 12dB CSPR signal at 45dB OSNR without SSBI cancellation, with KK detection, with joint iterative SSBI cancellation, and with both joint SSBI cancellation and MIMO equalization, respectively.
Fig. 10
Fig. 10 (a) Simulated BERs versus OSNR with different OBPF orders with/without MIMO equalization at BTB. (b) Simulated BERs versus OSNR with different guard bands with/without MIMO equalization at BTB. w/o: without; w/: with.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I 1 = | S x + C x | 2 + | S y + C y /α | 2 = | C x | 2 + | C y /α | 2 +2Re{ S x C x }+ 2Re{ S y C y }/α + | S x | 2 + | S y | 2 .
I 2 = | S x + C x /α | 2 + | S y + C y | 2 = | C y | 2 + | C x /α | 2 + 2Re{ S y C y }+2Re{ S x C x }/α + | S x | 2 + | S y | 2 .
I 1 = | C x + S x | 2 + | S y | 2 = | C x | 2 +2Re{ S x C x }+ | S x | 2 + | S y | 2 .
I 2 = | S x | 2 + | C y + S y | 2 = | C y | 2 +2Re{ S y C y }+ | S y | 2 + | S x | 2 .
CSPR( dB )=10 log 10 P xcarrier + P ycarrier P xsignal + P ysignal .
t 1 =( t x 0 ), t 2 =( 0 t y ), t x = t y .

Metrics