Abstract

Twisted light has recently gained enormous interest in communication systems ranging from fiber-optic to radio frequency regimes. Thus far, the light-emitting diode (LED) has not yet been exploited for orbital angular momentum (OAM) encoding to transmit data, which, however, could open up an opportunity towards a new model of secure indoor communication. Here, by multiplexing and demultiplexing red, green and blue (RGB) twisted beams derived from a white light emitting diode, we build a new visible light communication system with RGB colors serving as independent channels and with OAM superposition modes encoding the information. At the sender, by means of theta-modulation, we use a computer-controlled spatial light modulator to generate two-dimensional holographic gratings to encode a large alphabet with 16 different OAM superposition modes in each RGB channel. At the receiver, based on supervised machine learning, we develop a pattern recognition method to identify the characteristic mode patterns recorded by CCD cameras, and therefore, decoding the information. We succeed in demonstrating the transmission of color images and a piece of audio over a 6-meter indoor link with the fidelity over 96%.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Theta-modulated generation of chromatic orbital angular momentum beams from a white-light source

Jikang Wang, Yuanying Zhang, Wuhong Zhang, and Lixiang Chen
Opt. Express 24(21) 23911-23916 (2016)

Information transmission using radial carpet beams

Mahdi Khodadadi Karahroudi, Mohammad Khodadadi Karahroudi, Abolhasan Mobashery, and Bahman Parmoon
Appl. Opt. 58(8) 1886-1894 (2019)

Optical communications using orbital angular momentum beams

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi
Adv. Opt. Photon. 7(1) 66-106 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref] [PubMed]
  2. S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev. 2(4), 299–313 (2008).
    [Crossref]
  3. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
    [Crossref]
  4. M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
    [Crossref]
  5. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3(2), 161–204 (2011).
    [Crossref]
  6. S. M. Barnett, M. Babiker, and M. J. Padgett, “Optical orbital angular momentum,” Phil. Trans. R. Soc. A 375, 20150444 (2017).
    [Crossref] [PubMed]
  7. A. E. Willner, Y. Ren, G. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Phil. Trans. R. Soc. A 375(2087), 20150439 (2017).
    [Crossref] [PubMed]
  8. A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photon. 7(1), 66–106 (2015).
    [Crossref]
  9. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  10. S. Berdagué and P. Facq, “Mode division multiplexing in optical fibers,” Appl. Opt. 21(11), 1950–1955 (1982).
    [Crossref] [PubMed]
  11. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
    [Crossref] [PubMed]
  12. F. E. Mahmouli and S. D. Walker, “4-Gbps Uncompressed Video Transmission over a 60-GHz Orbital Angular Momentum Wireless Channel,” IEEE Wireless Commun. Lett. 2(2), 223–226 (2013).
    [Crossref]
  13. B. Thide, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
    [Crossref] [PubMed]
  14. F. Tamburini, E. Mari, B. Thide, C. Barbieri, and F. Romanato, “Experimental verification of photon angular momentum and vorticity with radio techniques,” Appl. Phys. Lett. 99(20), 204102 (2011).
    [Crossref]
  15. F. Tamburin, E. Mari, A. Sponselli, B. Thid, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033003 (2012).
  16. R. L. Phillips and L. C. Andrews, “Spot size and divergence for Laguerre Gaussian beams of any order,” Appl. Opt. 22(5), 643–644 (1983).
    [Crossref] [PubMed]
  17. F. Tamburini, B. Thide, E. Mari, G. Parisi, Spinello, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, and F. Romanato, “N-tupling the capacity of each polarization state in radio links by using electromagnetic vorticity,” https://arxiv.org/pdf/1307.5569 .
  18. Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, and Z. Zhao, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
    [Crossref] [PubMed]
  19. J. Wang, S. Li, M. Luo, J. Liu, L. Zhu, C. Li, D. Xie, Q. Yang, S. Yu, and J. Sun, “N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes,” in European Conference on Optical Communication (Cannes, France, 2014), paper Mo.4.5.1.
  20. L. Zhu, J. Liu, Q. Mo, C. Du, and J. Wang, “Encoding/decoding using superpositions of spatial modes for image transfer in km-scale few-mode fiber,” Opt. Express 24(15), 16934–16944 (2016).
    [Crossref] [PubMed]
  21. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545 (2013).
    [Crossref] [PubMed]
  22. J. Wang, J.Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  23. M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
    [Crossref]
  24. M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. U.S.A. 113(48), 13648–13653 (2016).
    [Crossref] [PubMed]
  25. Y. Ren, Z. Wang, P. Liao, L. Li, G. Xie, H. Huang, Z. Zhao, Y. Yan, N. Ahmed, and A. Willner, “Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m,” Opt. Lett. 41(3), 622–625 (2016).
    [Crossref] [PubMed]
  26. A. G. Bell, W. Adams, and W. Preece, “Discussion on the photophone and the conversion of radiant energy into sound,” J. Soc. Telegraph Eng. 9(34), 375–383 (1880).
    [Crossref]
  27. D. K. Jackson, T. K. Buffaloe, and S. B. Leeb, “Fiat lux: a fluorescent lamp digital transceiver,” IEEE Trans. Ind. Appl. 34(3), 625–630 (1998).
    [Crossref]
  28. S. Dimitrov and H. Haas, Principles of LED Light Communications: Towards Networked Li-Fi (Cambridge University, 2015).
    [Crossref]
  29. H. Hass, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightwave Tech,  34(6), 1533–1544 (2016).
    [Crossref]
  30. H. Haas, “Wireless data from every light bulb,” (Ted, 2011). https://www.ted.com/talks/harald_haas_wireless_data_from_every_light_bulb
  31. I. B. Djordjevic, “Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation,” Opt. Express 19(15), 14277–14289(2011).
    [Crossref] [PubMed]
  32. F. Bouchard, A. Sit, F. Hufnagel, A. Abbas, Y. Zhang, K. Heshami, R. Fickler, C. Marquardt, G. Leuchs, R. W. Boyd, and E. Karimi, “Underwater Quantum Key Distribution in Outdoor Conditions with Twisted Photons,” https://arxiv.org/abs/1801.10299v1
  33. J. D. Armitage and A. W. Lohmann, “Theta Modulation in Optics,” Appl. Opt. 4(4), 399–403 (1965).
    [Crossref]
  34. J. Wang, Y. Zhang, W. Zhang, and L. Chen, “Theta-modulated generation of chromatic orbital angular momentum beams from a white-light source,” Opt. Express 24(21), 23911–23916 (2016).
    [Crossref] [PubMed]
  35. J. E. Curtis and D. G. Grier, “Structure of Optical Vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
    [Crossref] [PubMed]
  36. L. Breiman, “Bagging Predictors. Machine learning,” Springer 24(2), 123–140 (1996).
  37. C. M. Bishop, Pattern recognition and machine learning (Springer, 2006).
  38. Y. Freund and Robert E. Schapire, Experiments with a new boosting algorithm, Proc. 13th Int’l Conf. Machine Learning,  96, 148–156 (1996).
  39. H. Trevor, R. Tibshirani, and J. Friedman, The elements of statistical learning (Springer, 2009).
  40. L. I. Kuncheva, Combining pattern classifiers: methods and algorithms (John Wiley & Sons, 2004).
    [Crossref]
  41. T. G. Dietterich, Ensemble methods in machine learning (Academic, 2000).
  42. C. Schulze, A. Dudley, D. Flamm, M. Duparré, and A. Forbes, “Reconstruction of laser beam wavefronts based on mode analysis,” Appl. Opt. 52(21), 5312–5317 (2013).
    [Crossref] [PubMed]
  43. A. Forbes, A. Dudley, and M. McLaren, “Creation and detection of optical modes with spatial light modulators,” Adv. Opt. Photon. 8(2), 200–227 (2016).
    [Crossref]
  44. L. Zhu and J. Wang, “Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators,” Sci. Rep. 4, 7441 (2014).
  45. M. Bosi and R. E. Goldberg, Introduction to digital audio coding and standards (Springer, 2003).
    [Crossref]
  46. H. Haas, “High-speed wireless networking using visible light,” SPIE Newsroom 10(2.1201304), 004773 (2013).
  47. M. J. Strain, X. Cai, J. Wang, J. Zhu, D. B. Phillips, L. Chen, M. Lopez-Garcia, J. L. O’brien, M. G. Thompson, and M. Sorel, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5, 4856 (2014).
    [Crossref] [PubMed]
  48. G. Xie, Y. Ren, Y. Yan, H. Huang, N. Ahmed, L. Li, Z. Zhao, C. Bao, M. Tur, S. Ashrafi, and A. E. Willner, “Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre-Gaussian beams with different radial indices,” Opt. Lett. 41(15), 3447–3450 (2016).
    [Crossref] [PubMed]
  49. A. Trichili, C. Rosales-Guzmán, A. Dudley, B. Ndagano, A. Ben Salem, M. Zghal, and A. Forbes, “Optical communication beyond orbital angular momentum,” Sci. Rep. 6, 27674 (2016).
    [Crossref] [PubMed]
  50. Y. Zhao and J. Wang, “High-base vector beam encoding/decoding for visible-light communications,” Opt. Lett. 40(21), 4843–4846 (2015).
    [Crossref] [PubMed]

2017 (2)

S. M. Barnett, M. Babiker, and M. J. Padgett, “Optical orbital angular momentum,” Phil. Trans. R. Soc. A 375, 20150444 (2017).
[Crossref] [PubMed]

A. E. Willner, Y. Ren, G. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Phil. Trans. R. Soc. A 375(2087), 20150439 (2017).
[Crossref] [PubMed]

2016 (8)

H. Hass, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightwave Tech,  34(6), 1533–1544 (2016).
[Crossref]

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. U.S.A. 113(48), 13648–13653 (2016).
[Crossref] [PubMed]

A. Trichili, C. Rosales-Guzmán, A. Dudley, B. Ndagano, A. Ben Salem, M. Zghal, and A. Forbes, “Optical communication beyond orbital angular momentum,” Sci. Rep. 6, 27674 (2016).
[Crossref] [PubMed]

Y. Ren, Z. Wang, P. Liao, L. Li, G. Xie, H. Huang, Z. Zhao, Y. Yan, N. Ahmed, and A. Willner, “Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m,” Opt. Lett. 41(3), 622–625 (2016).
[Crossref] [PubMed]

A. Forbes, A. Dudley, and M. McLaren, “Creation and detection of optical modes with spatial light modulators,” Adv. Opt. Photon. 8(2), 200–227 (2016).
[Crossref]

L. Zhu, J. Liu, Q. Mo, C. Du, and J. Wang, “Encoding/decoding using superpositions of spatial modes for image transfer in km-scale few-mode fiber,” Opt. Express 24(15), 16934–16944 (2016).
[Crossref] [PubMed]

G. Xie, Y. Ren, Y. Yan, H. Huang, N. Ahmed, L. Li, Z. Zhao, C. Bao, M. Tur, S. Ashrafi, and A. E. Willner, “Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre-Gaussian beams with different radial indices,” Opt. Lett. 41(15), 3447–3450 (2016).
[Crossref] [PubMed]

J. Wang, Y. Zhang, W. Zhang, and L. Chen, “Theta-modulated generation of chromatic orbital angular momentum beams from a white-light source,” Opt. Express 24(21), 23911–23916 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (4)

M. J. Strain, X. Cai, J. Wang, J. Zhu, D. B. Phillips, L. Chen, M. Lopez-Garcia, J. L. O’brien, M. G. Thompson, and M. Sorel, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5, 4856 (2014).
[Crossref] [PubMed]

L. Zhu and J. Wang, “Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators,” Sci. Rep. 4, 7441 (2014).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, and Z. Zhao, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

2013 (5)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545 (2013).
[Crossref] [PubMed]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

F. E. Mahmouli and S. D. Walker, “4-Gbps Uncompressed Video Transmission over a 60-GHz Orbital Angular Momentum Wireless Channel,” IEEE Wireless Commun. Lett. 2(2), 223–226 (2013).
[Crossref]

H. Haas, “High-speed wireless networking using visible light,” SPIE Newsroom 10(2.1201304), 004773 (2013).

C. Schulze, A. Dudley, D. Flamm, M. Duparré, and A. Forbes, “Reconstruction of laser beam wavefronts based on mode analysis,” Appl. Opt. 52(21), 5312–5317 (2013).
[Crossref] [PubMed]

2012 (2)

J. Wang, J.Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

F. Tamburin, E. Mari, A. Sponselli, B. Thid, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033003 (2012).

2011 (3)

2008 (1)

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev. 2(4), 299–313 (2008).
[Crossref]

2007 (2)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

B. Thide, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

2004 (2)

2003 (1)

J. E. Curtis and D. G. Grier, “Structure of Optical Vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[Crossref] [PubMed]

1998 (1)

D. K. Jackson, T. K. Buffaloe, and S. B. Leeb, “Fiat lux: a fluorescent lamp digital transceiver,” IEEE Trans. Ind. Appl. 34(3), 625–630 (1998).
[Crossref]

1996 (2)

L. Breiman, “Bagging Predictors. Machine learning,” Springer 24(2), 123–140 (1996).

Y. Freund and Robert E. Schapire, Experiments with a new boosting algorithm, Proc. 13th Int’l Conf. Machine Learning,  96, 148–156 (1996).

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

1983 (1)

1982 (1)

1965 (1)

1880 (1)

A. G. Bell, W. Adams, and W. Preece, “Discussion on the photophone and the conversion of radiant energy into sound,” J. Soc. Telegraph Eng. 9(34), 375–383 (1880).
[Crossref]

Adams, W.

A. G. Bell, W. Adams, and W. Preece, “Discussion on the photophone and the conversion of radiant energy into sound,” J. Soc. Telegraph Eng. 9(34), 375–383 (1880).
[Crossref]

Ahmed, N.

Allen, L.

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev. 2(4), 299–313 (2008).
[Crossref]

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Andrews, L. C.

Armitage, J. D.

Ashrafi, N.

Ashrafi, S.

Babiker, M.

S. M. Barnett, M. Babiker, and M. J. Padgett, “Optical orbital angular momentum,” Phil. Trans. R. Soc. A 375, 20150444 (2017).
[Crossref] [PubMed]

Bao, C.

Barbieri, C.

F. Tamburini, E. Mari, B. Thide, C. Barbieri, and F. Romanato, “Experimental verification of photon angular momentum and vorticity with radio techniques,” Appl. Phys. Lett. 99(20), 204102 (2011).
[Crossref]

Barnett, S. M.

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Bell, A. G.

A. G. Bell, W. Adams, and W. Preece, “Discussion on the photophone and the conversion of radiant energy into sound,” J. Soc. Telegraph Eng. 9(34), 375–383 (1880).
[Crossref]

Ben Salem, A.

A. Trichili, C. Rosales-Guzmán, A. Dudley, B. Ndagano, A. Ben Salem, M. Zghal, and A. Forbes, “Optical communication beyond orbital angular momentum,” Sci. Rep. 6, 27674 (2016).
[Crossref] [PubMed]

Berdagué, S.

Bergman, J.

B. Thide, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Bianchini, A.

F. Tamburin, E. Mari, A. Sponselli, B. Thid, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033003 (2012).

Bishop, C. M.

C. M. Bishop, Pattern recognition and machine learning (Springer, 2006).

Bosi, M.

M. Bosi and R. E. Goldberg, Introduction to digital audio coding and standards (Springer, 2003).
[Crossref]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545 (2013).
[Crossref] [PubMed]

Breiman, L.

L. Breiman, “Bagging Predictors. Machine learning,” Springer 24(2), 123–140 (1996).

Buffaloe, T. K.

D. K. Jackson, T. K. Buffaloe, and S. B. Leeb, “Fiat lux: a fluorescent lamp digital transceiver,” IEEE Trans. Ind. Appl. 34(3), 625–630 (1998).
[Crossref]

Cai, X.

M. J. Strain, X. Cai, J. Wang, J. Zhu, D. B. Phillips, L. Chen, M. Lopez-Garcia, J. L. O’brien, M. G. Thompson, and M. Sorel, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5, 4856 (2014).
[Crossref] [PubMed]

Cao, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photon. 7(1), 66–106 (2015).
[Crossref]

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, and Z. Zhao, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Carozzi, T. D.

B. Thide, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Chen, C.

H. Hass, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightwave Tech,  34(6), 1533–1544 (2016).
[Crossref]

Chen, L.

J. Wang, Y. Zhang, W. Zhang, and L. Chen, “Theta-modulated generation of chromatic orbital angular momentum beams from a white-light source,” Opt. Express 24(21), 23911–23916 (2016).
[Crossref] [PubMed]

M. J. Strain, X. Cai, J. Wang, J. Zhu, D. B. Phillips, L. Chen, M. Lopez-Garcia, J. L. O’brien, M. G. Thompson, and M. Sorel, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5, 4856 (2014).
[Crossref] [PubMed]

Courtial, J.

Curtis, J. E.

J. E. Curtis and D. G. Grier, “Structure of Optical Vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[Crossref] [PubMed]

Dietterich, T. G.

T. G. Dietterich, Ensemble methods in machine learning (Academic, 2000).

Dimitrov, S.

S. Dimitrov and H. Haas, Principles of LED Light Communications: Towards Networked Li-Fi (Cambridge University, 2015).
[Crossref]

Djordjevic, I. B.

Dolinar, S.

J. Wang, J.Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Du, C.

Dudley, A.

Duparré, M.

Facq, P.

Fazal, I. M.

J. Wang, J.Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Fickler, R.

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. U.S.A. 113(48), 13648–13653 (2016).
[Crossref] [PubMed]

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Fink, M.

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. U.S.A. 113(48), 13648–13653 (2016).
[Crossref] [PubMed]

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

Flamm, D.

Forbes, A.

Franke-Arnold, S.

Freund, Y.

Y. Freund and Robert E. Schapire, Experiments with a new boosting algorithm, Proc. 13th Int’l Conf. Machine Learning,  96, 148–156 (1996).

Friedman, J.

H. Trevor, R. Tibshirani, and J. Friedman, The elements of statistical learning (Springer, 2009).

Gibson, G.

Goldberg, R. E.

M. Bosi and R. E. Goldberg, Introduction to digital audio coding and standards (Springer, 2003).
[Crossref]

Grier, D. G.

J. E. Curtis and D. G. Grier, “Structure of Optical Vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[Crossref] [PubMed]

Haas, H.

H. Haas, “High-speed wireless networking using visible light,” SPIE Newsroom 10(2.1201304), 004773 (2013).

S. Dimitrov and H. Haas, Principles of LED Light Communications: Towards Networked Li-Fi (Cambridge University, 2015).
[Crossref]

Handsteiner, J.

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. U.S.A. 113(48), 13648–13653 (2016).
[Crossref] [PubMed]

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

Hass, H.

H. Hass, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightwave Tech,  34(6), 1533–1544 (2016).
[Crossref]

Huang, H.

Y. Ren, Z. Wang, P. Liao, L. Li, G. Xie, H. Huang, Z. Zhao, Y. Yan, N. Ahmed, and A. Willner, “Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m,” Opt. Lett. 41(3), 622–625 (2016).
[Crossref] [PubMed]

G. Xie, Y. Ren, Y. Yan, H. Huang, N. Ahmed, L. Li, Z. Zhao, C. Bao, M. Tur, S. Ashrafi, and A. E. Willner, “Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre-Gaussian beams with different radial indices,” Opt. Lett. 41(15), 3447–3450 (2016).
[Crossref] [PubMed]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photon. 7(1), 66–106 (2015).
[Crossref]

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, and Z. Zhao, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545 (2013).
[Crossref] [PubMed]

J. Wang, J.Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Ibragimov, N. H.

B. Thide, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Istomin, Y. N.

B. Thide, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Jackson, D. K.

D. K. Jackson, T. K. Buffaloe, and S. B. Leeb, “Fiat lux: a fluorescent lamp digital transceiver,” IEEE Trans. Ind. Appl. 34(3), 625–630 (1998).
[Crossref]

Khamitova, R.

B. Thide, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Krenn, M.

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. U.S.A. 113(48), 13648–13653 (2016).
[Crossref] [PubMed]

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545 (2013).
[Crossref] [PubMed]

Kuncheva, L. I.

L. I. Kuncheva, Combining pattern classifiers: methods and algorithms (John Wiley & Sons, 2004).
[Crossref]

Lavery, M. P. J.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photon. 7(1), 66–106 (2015).
[Crossref]

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, and Z. Zhao, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Leeb, S. B.

D. K. Jackson, T. K. Buffaloe, and S. B. Leeb, “Fiat lux: a fluorescent lamp digital transceiver,” IEEE Trans. Ind. Appl. 34(3), 625–630 (1998).
[Crossref]

Li, C.

J. Wang, S. Li, M. Luo, J. Liu, L. Zhu, C. Li, D. Xie, Q. Yang, S. Yu, and J. Sun, “N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes,” in European Conference on Optical Communication (Cannes, France, 2014), paper Mo.4.5.1.

Li, L.

Li, S.

J. Wang, S. Li, M. Luo, J. Liu, L. Zhu, C. Li, D. Xie, Q. Yang, S. Yu, and J. Sun, “N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes,” in European Conference on Optical Communication (Cannes, France, 2014), paper Mo.4.5.1.

Liao, P.

Liu, J.

L. Zhu, J. Liu, Q. Mo, C. Du, and J. Wang, “Encoding/decoding using superpositions of spatial modes for image transfer in km-scale few-mode fiber,” Opt. Express 24(15), 16934–16944 (2016).
[Crossref] [PubMed]

J. Wang, S. Li, M. Luo, J. Liu, L. Zhu, C. Li, D. Xie, Q. Yang, S. Yu, and J. Sun, “N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes,” in European Conference on Optical Communication (Cannes, France, 2014), paper Mo.4.5.1.

Lohmann, A. W.

Lopez-Garcia, M.

M. J. Strain, X. Cai, J. Wang, J. Zhu, D. B. Phillips, L. Chen, M. Lopez-Garcia, J. L. O’brien, M. G. Thompson, and M. Sorel, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5, 4856 (2014).
[Crossref] [PubMed]

Luo, M.

J. Wang, S. Li, M. Luo, J. Liu, L. Zhu, C. Li, D. Xie, Q. Yang, S. Yu, and J. Sun, “N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes,” in European Conference on Optical Communication (Cannes, France, 2014), paper Mo.4.5.1.

Mahmouli, F. E.

F. E. Mahmouli and S. D. Walker, “4-Gbps Uncompressed Video Transmission over a 60-GHz Orbital Angular Momentum Wireless Channel,” IEEE Wireless Commun. Lett. 2(2), 223–226 (2013).
[Crossref]

Malik, M.

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. U.S.A. 113(48), 13648–13653 (2016).
[Crossref] [PubMed]

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

Mari, E.

F. Tamburin, E. Mari, A. Sponselli, B. Thid, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033003 (2012).

F. Tamburini, E. Mari, B. Thide, C. Barbieri, and F. Romanato, “Experimental verification of photon angular momentum and vorticity with radio techniques,” Appl. Phys. Lett. 99(20), 204102 (2011).
[Crossref]

McLaren, M.

Mo, Q.

Molina-Terriza, G.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Molisch, A. F.

A. E. Willner, Y. Ren, G. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Phil. Trans. R. Soc. A 375(2087), 20150439 (2017).
[Crossref] [PubMed]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photon. 7(1), 66–106 (2015).
[Crossref]

Ndagano, B.

A. Trichili, C. Rosales-Guzmán, A. Dudley, B. Ndagano, A. Ben Salem, M. Zghal, and A. Forbes, “Optical communication beyond orbital angular momentum,” Sci. Rep. 6, 27674 (2016).
[Crossref] [PubMed]

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

O’brien, J. L.

M. J. Strain, X. Cai, J. Wang, J. Zhu, D. B. Phillips, L. Chen, M. Lopez-Garcia, J. L. O’brien, M. G. Thompson, and M. Sorel, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5, 4856 (2014).
[Crossref] [PubMed]

Padgett, M.

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev. 2(4), 299–313 (2008).
[Crossref]

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

Padgett, M. J.

Palmer, K.

B. Thide, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Pas’ko, V.

Phillips, D. B.

M. J. Strain, X. Cai, J. Wang, J. Zhu, D. B. Phillips, L. Chen, M. Lopez-Garcia, J. L. O’brien, M. G. Thompson, and M. Sorel, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5, 4856 (2014).
[Crossref] [PubMed]

Phillips, R. L.

Preece, W.

A. G. Bell, W. Adams, and W. Preece, “Discussion on the photophone and the conversion of radiant energy into sound,” J. Soc. Telegraph Eng. 9(34), 375–383 (1880).
[Crossref]

Ramachandran, S.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photon. 7(1), 66–106 (2015).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545 (2013).
[Crossref] [PubMed]

Ren, Y.

A. E. Willner, Y. Ren, G. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Phil. Trans. R. Soc. A 375(2087), 20150439 (2017).
[Crossref] [PubMed]

Y. Ren, Z. Wang, P. Liao, L. Li, G. Xie, H. Huang, Z. Zhao, Y. Yan, N. Ahmed, and A. Willner, “Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m,” Opt. Lett. 41(3), 622–625 (2016).
[Crossref] [PubMed]

G. Xie, Y. Ren, Y. Yan, H. Huang, N. Ahmed, L. Li, Z. Zhao, C. Bao, M. Tur, S. Ashrafi, and A. E. Willner, “Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre-Gaussian beams with different radial indices,” Opt. Lett. 41(15), 3447–3450 (2016).
[Crossref] [PubMed]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photon. 7(1), 66–106 (2015).
[Crossref]

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, and Z. Zhao, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545 (2013).
[Crossref] [PubMed]

J. Wang, J.Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Romanato, F.

F. Tamburin, E. Mari, A. Sponselli, B. Thid, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033003 (2012).

F. Tamburini, E. Mari, B. Thide, C. Barbieri, and F. Romanato, “Experimental verification of photon angular momentum and vorticity with radio techniques,” Appl. Phys. Lett. 99(20), 204102 (2011).
[Crossref]

Rosales-Guzmán, C.

A. Trichili, C. Rosales-Guzmán, A. Dudley, B. Ndagano, A. Ben Salem, M. Zghal, and A. Forbes, “Optical communication beyond orbital angular momentum,” Sci. Rep. 6, 27674 (2016).
[Crossref] [PubMed]

Schapire, Robert E.

Y. Freund and Robert E. Schapire, Experiments with a new boosting algorithm, Proc. 13th Int’l Conf. Machine Learning,  96, 148–156 (1996).

Scheidl, T.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

Schulze, C.

Sjoholm, J.

B. Thide, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Sorel, M.

M. J. Strain, X. Cai, J. Wang, J. Zhu, D. B. Phillips, L. Chen, M. Lopez-Garcia, J. L. O’brien, M. G. Thompson, and M. Sorel, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5, 4856 (2014).
[Crossref] [PubMed]

Sponselli, A.

F. Tamburin, E. Mari, A. Sponselli, B. Thid, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033003 (2012).

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Strain, M. J.

M. J. Strain, X. Cai, J. Wang, J. Zhu, D. B. Phillips, L. Chen, M. Lopez-Garcia, J. L. O’brien, M. G. Thompson, and M. Sorel, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5, 4856 (2014).
[Crossref] [PubMed]

Sun, J.

J. Wang, S. Li, M. Luo, J. Liu, L. Zhu, C. Li, D. Xie, Q. Yang, S. Yu, and J. Sun, “N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes,” in European Conference on Optical Communication (Cannes, France, 2014), paper Mo.4.5.1.

Tamburin, F.

F. Tamburin, E. Mari, A. Sponselli, B. Thid, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033003 (2012).

Tamburini, F.

F. Tamburini, E. Mari, B. Thide, C. Barbieri, and F. Romanato, “Experimental verification of photon angular momentum and vorticity with radio techniques,” Appl. Phys. Lett. 99(20), 204102 (2011).
[Crossref]

Then, H.

B. Thide, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Thid, B.

F. Tamburin, E. Mari, A. Sponselli, B. Thid, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033003 (2012).

Thide, B.

F. Tamburini, E. Mari, B. Thide, C. Barbieri, and F. Romanato, “Experimental verification of photon angular momentum and vorticity with radio techniques,” Appl. Phys. Lett. 99(20), 204102 (2011).
[Crossref]

B. Thide, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Thompson, M. G.

M. J. Strain, X. Cai, J. Wang, J. Zhu, D. B. Phillips, L. Chen, M. Lopez-Garcia, J. L. O’brien, M. G. Thompson, and M. Sorel, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5, 4856 (2014).
[Crossref] [PubMed]

Tibshirani, R.

H. Trevor, R. Tibshirani, and J. Friedman, The elements of statistical learning (Springer, 2009).

Torner, L.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Torres, J. P.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Trevor, H.

H. Trevor, R. Tibshirani, and J. Friedman, The elements of statistical learning (Springer, 2009).

Trichili, A.

A. Trichili, C. Rosales-Guzmán, A. Dudley, B. Ndagano, A. Ben Salem, M. Zghal, and A. Forbes, “Optical communication beyond orbital angular momentum,” Sci. Rep. 6, 27674 (2016).
[Crossref] [PubMed]

Tur, M.

A. E. Willner, Y. Ren, G. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Phil. Trans. R. Soc. A 375(2087), 20150439 (2017).
[Crossref] [PubMed]

G. Xie, Y. Ren, Y. Yan, H. Huang, N. Ahmed, L. Li, Z. Zhao, C. Bao, M. Tur, S. Ashrafi, and A. E. Willner, “Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre-Gaussian beams with different radial indices,” Opt. Lett. 41(15), 3447–3450 (2016).
[Crossref] [PubMed]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photon. 7(1), 66–106 (2015).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545 (2013).
[Crossref] [PubMed]

J. Wang, J.Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Ursin, R.

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. U.S.A. 113(48), 13648–13653 (2016).
[Crossref] [PubMed]

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

Vasnetsov, M.

Walker, S. D.

F. E. Mahmouli and S. D. Walker, “4-Gbps Uncompressed Video Transmission over a 60-GHz Orbital Angular Momentum Wireless Channel,” IEEE Wireless Commun. Lett. 2(2), 223–226 (2013).
[Crossref]

Wang, J.

A. E. Willner, Y. Ren, G. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Phil. Trans. R. Soc. A 375(2087), 20150439 (2017).
[Crossref] [PubMed]

L. Zhu, J. Liu, Q. Mo, C. Du, and J. Wang, “Encoding/decoding using superpositions of spatial modes for image transfer in km-scale few-mode fiber,” Opt. Express 24(15), 16934–16944 (2016).
[Crossref] [PubMed]

J. Wang, Y. Zhang, W. Zhang, and L. Chen, “Theta-modulated generation of chromatic orbital angular momentum beams from a white-light source,” Opt. Express 24(21), 23911–23916 (2016).
[Crossref] [PubMed]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photon. 7(1), 66–106 (2015).
[Crossref]

Y. Zhao and J. Wang, “High-base vector beam encoding/decoding for visible-light communications,” Opt. Lett. 40(21), 4843–4846 (2015).
[Crossref] [PubMed]

L. Zhu and J. Wang, “Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators,” Sci. Rep. 4, 7441 (2014).

M. J. Strain, X. Cai, J. Wang, J. Zhu, D. B. Phillips, L. Chen, M. Lopez-Garcia, J. L. O’brien, M. G. Thompson, and M. Sorel, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5, 4856 (2014).
[Crossref] [PubMed]

J. Wang, J.Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

J. Wang, S. Li, M. Luo, J. Liu, L. Zhu, C. Li, D. Xie, Q. Yang, S. Yu, and J. Sun, “N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes,” in European Conference on Optical Communication (Cannes, France, 2014), paper Mo.4.5.1.

Wang, Y.

H. Hass, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightwave Tech,  34(6), 1533–1544 (2016).
[Crossref]

Wang, Z.

Willner, A.

Willner, A. E.

A. E. Willner, Y. Ren, G. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Phil. Trans. R. Soc. A 375(2087), 20150439 (2017).
[Crossref] [PubMed]

G. Xie, Y. Ren, Y. Yan, H. Huang, N. Ahmed, L. Li, Z. Zhao, C. Bao, M. Tur, S. Ashrafi, and A. E. Willner, “Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre-Gaussian beams with different radial indices,” Opt. Lett. 41(15), 3447–3450 (2016).
[Crossref] [PubMed]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photon. 7(1), 66–106 (2015).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545 (2013).
[Crossref] [PubMed]

J. Wang, J.Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Xie, D.

J. Wang, S. Li, M. Luo, J. Liu, L. Zhu, C. Li, D. Xie, Q. Yang, S. Yu, and J. Sun, “N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes,” in European Conference on Optical Communication (Cannes, France, 2014), paper Mo.4.5.1.

Xie, G.

Yan, Y.

A. E. Willner, Y. Ren, G. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Phil. Trans. R. Soc. A 375(2087), 20150439 (2017).
[Crossref] [PubMed]

G. Xie, Y. Ren, Y. Yan, H. Huang, N. Ahmed, L. Li, Z. Zhao, C. Bao, M. Tur, S. Ashrafi, and A. E. Willner, “Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre-Gaussian beams with different radial indices,” Opt. Lett. 41(15), 3447–3450 (2016).
[Crossref] [PubMed]

Y. Ren, Z. Wang, P. Liao, L. Li, G. Xie, H. Huang, Z. Zhao, Y. Yan, N. Ahmed, and A. Willner, “Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m,” Opt. Lett. 41(3), 622–625 (2016).
[Crossref] [PubMed]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photon. 7(1), 66–106 (2015).
[Crossref]

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, and Z. Zhao, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

J. Wang, J.Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, J.Y.

J. Wang, J.Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, Q.

J. Wang, S. Li, M. Luo, J. Liu, L. Zhu, C. Li, D. Xie, Q. Yang, S. Yu, and J. Sun, “N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes,” in European Conference on Optical Communication (Cannes, France, 2014), paper Mo.4.5.1.

Yao, A. M.

Yin, L.

H. Hass, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightwave Tech,  34(6), 1533–1544 (2016).
[Crossref]

Yu, S.

J. Wang, S. Li, M. Luo, J. Liu, L. Zhu, C. Li, D. Xie, Q. Yang, S. Yu, and J. Sun, “N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes,” in European Conference on Optical Communication (Cannes, France, 2014), paper Mo.4.5.1.

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545 (2013).
[Crossref] [PubMed]

J. Wang, J.Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zeilinger, A.

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. U.S.A. 113(48), 13648–13653 (2016).
[Crossref] [PubMed]

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

Zghal, M.

A. Trichili, C. Rosales-Guzmán, A. Dudley, B. Ndagano, A. Ben Salem, M. Zghal, and A. Forbes, “Optical communication beyond orbital angular momentum,” Sci. Rep. 6, 27674 (2016).
[Crossref] [PubMed]

Zhang, W.

Zhang, Y.

Zhao, Y.

Zhao, Z.

Zhu, J.

M. J. Strain, X. Cai, J. Wang, J. Zhu, D. B. Phillips, L. Chen, M. Lopez-Garcia, J. L. O’brien, M. G. Thompson, and M. Sorel, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5, 4856 (2014).
[Crossref] [PubMed]

Zhu, L.

L. Zhu, J. Liu, Q. Mo, C. Du, and J. Wang, “Encoding/decoding using superpositions of spatial modes for image transfer in km-scale few-mode fiber,” Opt. Express 24(15), 16934–16944 (2016).
[Crossref] [PubMed]

L. Zhu and J. Wang, “Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators,” Sci. Rep. 4, 7441 (2014).

J. Wang, S. Li, M. Luo, J. Liu, L. Zhu, C. Li, D. Xie, Q. Yang, S. Yu, and J. Sun, “N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes,” in European Conference on Optical Communication (Cannes, France, 2014), paper Mo.4.5.1.

Adv. Opt. Photon. (3)

Appl. Opt. (4)

Appl. Phys. Lett. (1)

F. Tamburini, E. Mari, B. Thide, C. Barbieri, and F. Romanato, “Experimental verification of photon angular momentum and vorticity with radio techniques,” Appl. Phys. Lett. 99(20), 204102 (2011).
[Crossref]

IEEE Trans. Ind. Appl. (1)

D. K. Jackson, T. K. Buffaloe, and S. B. Leeb, “Fiat lux: a fluorescent lamp digital transceiver,” IEEE Trans. Ind. Appl. 34(3), 625–630 (1998).
[Crossref]

IEEE Wireless Commun. Lett. (1)

F. E. Mahmouli and S. D. Walker, “4-Gbps Uncompressed Video Transmission over a 60-GHz Orbital Angular Momentum Wireless Channel,” IEEE Wireless Commun. Lett. 2(2), 223–226 (2013).
[Crossref]

J. Lightwave Tech (1)

H. Hass, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightwave Tech,  34(6), 1533–1544 (2016).
[Crossref]

J. Soc. Telegraph Eng. (1)

A. G. Bell, W. Adams, and W. Preece, “Discussion on the photophone and the conversion of radiant energy into sound,” J. Soc. Telegraph Eng. 9(34), 375–383 (1880).
[Crossref]

Laser Photon. Rev. (1)

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev. 2(4), 299–313 (2008).
[Crossref]

Nat. Commun. (2)

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, and Z. Zhao, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

M. J. Strain, X. Cai, J. Wang, J. Zhu, D. B. Phillips, L. Chen, M. Lopez-Garcia, J. L. O’brien, M. G. Thompson, and M. Sorel, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5, 4856 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

J. Wang, J.Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Nat. Phys. (1)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

New J. Phys. (2)

F. Tamburin, E. Mari, A. Sponselli, B. Thid, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033003 (2012).

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Phil. Trans. R. Soc. A (2)

S. M. Barnett, M. Babiker, and M. J. Padgett, “Optical orbital angular momentum,” Phil. Trans. R. Soc. A 375, 20150444 (2017).
[Crossref] [PubMed]

A. E. Willner, Y. Ren, G. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Phil. Trans. R. Soc. A 375(2087), 20150439 (2017).
[Crossref] [PubMed]

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

J. E. Curtis and D. G. Grier, “Structure of Optical Vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[Crossref] [PubMed]

B. Thide, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Phys. Today (1)

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

Proc. 13th Int’l Conf. Machine Learning (1)

Y. Freund and Robert E. Schapire, Experiments with a new boosting algorithm, Proc. 13th Int’l Conf. Machine Learning,  96, 148–156 (1996).

Proc. Natl. Acad. Sci. U.S.A. (1)

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. U.S.A. 113(48), 13648–13653 (2016).
[Crossref] [PubMed]

Sci. Rep. (2)

L. Zhu and J. Wang, “Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators,” Sci. Rep. 4, 7441 (2014).

A. Trichili, C. Rosales-Guzmán, A. Dudley, B. Ndagano, A. Ben Salem, M. Zghal, and A. Forbes, “Optical communication beyond orbital angular momentum,” Sci. Rep. 6, 27674 (2016).
[Crossref] [PubMed]

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545 (2013).
[Crossref] [PubMed]

SPIE Newsroom (1)

H. Haas, “High-speed wireless networking using visible light,” SPIE Newsroom 10(2.1201304), 004773 (2013).

Springer (1)

L. Breiman, “Bagging Predictors. Machine learning,” Springer 24(2), 123–140 (1996).

Other (10)

C. M. Bishop, Pattern recognition and machine learning (Springer, 2006).

F. Bouchard, A. Sit, F. Hufnagel, A. Abbas, Y. Zhang, K. Heshami, R. Fickler, C. Marquardt, G. Leuchs, R. W. Boyd, and E. Karimi, “Underwater Quantum Key Distribution in Outdoor Conditions with Twisted Photons,” https://arxiv.org/abs/1801.10299v1

H. Haas, “Wireless data from every light bulb,” (Ted, 2011). https://www.ted.com/talks/harald_haas_wireless_data_from_every_light_bulb

S. Dimitrov and H. Haas, Principles of LED Light Communications: Towards Networked Li-Fi (Cambridge University, 2015).
[Crossref]

J. Wang, S. Li, M. Luo, J. Liu, L. Zhu, C. Li, D. Xie, Q. Yang, S. Yu, and J. Sun, “N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes,” in European Conference on Optical Communication (Cannes, France, 2014), paper Mo.4.5.1.

F. Tamburini, B. Thide, E. Mari, G. Parisi, Spinello, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, and F. Romanato, “N-tupling the capacity of each polarization state in radio links by using electromagnetic vorticity,” https://arxiv.org/pdf/1307.5569 .

M. Bosi and R. E. Goldberg, Introduction to digital audio coding and standards (Springer, 2003).
[Crossref]

H. Trevor, R. Tibshirani, and J. Friedman, The elements of statistical learning (Springer, 2009).

L. I. Kuncheva, Combining pattern classifiers: methods and algorithms (John Wiley & Sons, 2004).
[Crossref]

T. G. Dietterich, Ensemble methods in machine learning (Academic, 2000).

Supplementary Material (2)

NameDescription
» Visualization 1       The original audio
» Visualization 2       The received and recovered audio

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Pattern recognition with supervised machine learning. (a) Learning rules: the OAM superposition modes, = 0, ±1, ±2, … ± 15, are assigned by the numbers, 0, 1,2, …, 15, respectively. (b) The validation crosstalk matrix of the predictor. The number 5 indicates that each OAM superposition mode, ±, has been sent five times has been sent five times.
Fig. 2
Fig. 2 Strategy of pattern recognition using bagged classification trees.
Fig. 3
Fig. 3 Sketch of the experimental setup for visible light communication link based on the RGB twisted light encoding/decoding. (a) The sender. The right upper insert is a typical specially designed hologram. (b) The receiver, see the text for details.
Fig. 4
Fig. 4 Experimental results for transmission of a tri-circle image of RGB primary colors. (a) The 4-bit original image to be sent. (b–d) The received and reconstructed red, green and blue components of the image, respectively. (e) The full-color image reconstructed by adding three primary components (b–d) together. (f–h) The corresponding crosstalk matrices of OAM superposition modes for red, green and blue channels, respectively, where the numbers denote the events and zero OAM modes are used to transmit the dark background trivially.
Fig. 5
Fig. 5 Experimental results for transmission of the color Albert Einstein image. (a) The 4-bit original image to be sent. (b–d) The received and reconstructed red, green and blue components of the image, respectively. (e) The full-color image reconstructed by adding three primary components (b–d) together. (f–h) The corresponding crosstalk matrices for red, green and blue channels, respectively.
Fig. 6
Fig. 6 The error rates for transmitting the primary RGB color and the Albert Einstein image. (a) The measured error rates for the transmission of a tri-circle image of RGB primary colors. (b) The measured error rates for the transmission of the Albert Einstein image.
Fig. 7
Fig. 7 The waveform graphs of 20.862s Canon in D composed by Johann Pachelbel. (a) The original audio waveform. (b) The received and recovered waveform by our OAM-based visible light communication system, see supplementray materials for the Visualization 1 for (a) and Visualization 2 for (b).

Metrics