Abstract

A position-deviation-compensation demodulation method is proposed to improve the channel adaptability of Fabry-Perot (F-P) sensor in a multi-channel optical fiber F-P sensing system. By combining the envelope peak position (EPP) retrieval process and the position compensation process, the proposed method enables the accurate demodulation of F-P sensors in all channels. Thereinto, the EPP retrieval process uses the phase information to recover the EPP with high precision; the position compensation process compensates the position deviation by an optical-path-based model, which is established to illustrate the principle of the position deviation between different channels. We carried out the pressure experiment to verify the effectiveness of the proposed method. The experiment results showed that the demodulation errors of all channels are no more than 0.13 kPa, which demonstrated that our approach is reliable for improving the channel adaptability of F-P sensors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A polarized low-coherence interferometry demodulation algorithm by recovering the absolute phase of a selected monochromatic frequency

Junfeng Jiang, Shaohua Wang, Tiegen Liu, Kun Liu, Jinde Yin, Xiange Meng, Yimo Zhang, Shuang Wang, Zunqi Qin, Fan Wu, and Dingjie Li
Opt. Express 20(16) 18117-18126 (2012)

Birefringence dispersion compensation demodulation algorithm for polarized low-coherence interferometry

Shuang Wang, Tiegen Liu, Junfeng Jiang, Kun Liu, Jinde Yin, and Fan Wu
Opt. Lett. 38(16) 3169-3172 (2013)

Zero-fringe demodulation method based on location-dependent birefringence dispersion in polarized low-coherence interferometry

Shuang Wang, Tiegen Liu, Junfeng Jiang, Kun Liu, Jinde Yin, Zunqi Qin, and Shengliang Zou
Opt. Lett. 39(7) 1827-1830 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1), 67–74 (2002).
    [Crossref]
  2. T. Dresel, G. Häusler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31(7), 919–925 (1992).
    [Crossref] [PubMed]
  3. B. Xu, Y. M. Liu, D. N. Wang, and J. Q. Li, “Fiber Fabry–Pérot interferometer for measurement of gas pressure and temperature,” J. Lightwave Technol. 34(21), 4920–4925 (2016).
    [Crossref]
  4. K. Li, M. Jiang, Z. Zhao, and Z. Wang, “Low coherence technique to interrogate optical sensors based on selectively filled double-core photonic crystal fiber for temperature measurement,” Opt. Commun. 389(15), 234–238 (2017).
    [Crossref]
  5. C. Gouveia, M. Zibaiic, H. Latific, M. J. B. Marques, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensors Actuat. Biol. Chem. 188, 1212–1217 (2013).
  6. S. McMurtry, J. D. Wright, and D. A. Jackson, “A multiplexed low coherence interferometric system for humidity sensing,” Sensor. Actuat. Biol. Chem. 67(1–2), 52–56 (2000).
  7. N. Lippok, S. Coen, R. Leonhardt, P. Nielsen, and F. Vanholsbeeck, “Instantaneous quadrature components or Jones vector retrieval using the Pancharatnam-Berry phase in frequency domain low-coherence interferometry,” Opt. Lett. 37(15), 3102–3104 (2012).
    [Crossref] [PubMed]
  8. V. Gaillard, D. Leduc, C. Lupi, and C. Boisrobert, “Polarized low-coherence interferometry applied to birefringent fiber characterization,” Meas. Sci. Technol. 22(3), 035301 (2011).
    [Crossref]
  9. J. Yin, T. Liu, J. Jiang, K. Liu, S. Wang, F. Wu, and Z. Ding, “Wavelength-division-multiplexing method of polarized low-coherence interferometry for fiber Fabry-Perot interferometric sensors,” Opt. Lett. 38(19), 3751–3753 (2013).
    [Crossref] [PubMed]
  10. N. J. Lawson, R. Correia, S. W. James, M. Partridge, S. E. Staines, J. E. Gautrey, K. P. Garry, J. C. Holt, and R. P. Tatam, “Development and application of optical fibre strain and pressure sensors for in-flight measurements,” Meas. Sci. Technol. 27(10), 104001 (2016).
    [Crossref]
  11. Q. Wang, L. Zhang, C. S. Sun, and Q. X. Yu, “Multiplexed Fiber-Optic Pressure and Temperature Sensor System for Down-Hole Measurement,” IEEE Sens. J. 8(11), 1879–1883 (2008).
    [Crossref]
  12. D. G. Jia, Y. L. Zhang, Z. T. Chen, H. X. Zhang, T. G. Liu, and Y. M. Zhang, “Evaluation Parameter for Self-Healing FBG Sensor Networks After Multiple Fiber Failures,” IEEE Photonics J. 7(4), 1–8 (2015).
  13. T. Liu, J. Shi, J. Jiang, K. Liu, S. Wang, J. Yin, and S. Zou, “Nonperpendicular Incidence Induced Spatial Frequency Drift in Polarized Low-Coherence Interferometry and Its Compensation,” IEEE Photonics J. 7(6), 1–7 (2015).
  14. S. S. C. Chim and G. S. Kino, “Three-dimensional image realization in interference microscopy,” Appl. Opt. 31(14), 2550–2553 (1992).
    [Crossref] [PubMed]
  15. P. de Groot, X. Colonna de Lega, J. Kramer, and M. Turzhitsky, “Determination of fringe order in white-light interference microscopy,” Appl. Opt. 41(22), 4571–4578 (2002).
    [Crossref] [PubMed]
  16. J. Jiang, S. Wang, T. Liu, K. Liu, J. Yin, X. Meng, Y. Zhang, S. Wang, Z. Qin, F. Wu, and D. Li, “A polarized low-coherence interferometry demodulation algorithm by recovering the absolute phase of a selected monochromatic frequency,” Opt. Express 20(16), 18117–18126 (2012).
    [Crossref] [PubMed]
  17. Y. Rao and D. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
    [Crossref]
  18. P. Sandoz, “Wavelet transform as a processing tool in white-light interferometry,” Opt. Lett. 22(14), 1065–1067 (1997).
    [Crossref] [PubMed]
  19. G. S. Kino and S. S. C. Chim, “Mirau correlation microscope,” Appl. Opt. 29(26), 3775–3783 (1990).
    [Crossref] [PubMed]

2017 (1)

K. Li, M. Jiang, Z. Zhao, and Z. Wang, “Low coherence technique to interrogate optical sensors based on selectively filled double-core photonic crystal fiber for temperature measurement,” Opt. Commun. 389(15), 234–238 (2017).
[Crossref]

2016 (2)

B. Xu, Y. M. Liu, D. N. Wang, and J. Q. Li, “Fiber Fabry–Pérot interferometer for measurement of gas pressure and temperature,” J. Lightwave Technol. 34(21), 4920–4925 (2016).
[Crossref]

N. J. Lawson, R. Correia, S. W. James, M. Partridge, S. E. Staines, J. E. Gautrey, K. P. Garry, J. C. Holt, and R. P. Tatam, “Development and application of optical fibre strain and pressure sensors for in-flight measurements,” Meas. Sci. Technol. 27(10), 104001 (2016).
[Crossref]

2015 (2)

D. G. Jia, Y. L. Zhang, Z. T. Chen, H. X. Zhang, T. G. Liu, and Y. M. Zhang, “Evaluation Parameter for Self-Healing FBG Sensor Networks After Multiple Fiber Failures,” IEEE Photonics J. 7(4), 1–8 (2015).

T. Liu, J. Shi, J. Jiang, K. Liu, S. Wang, J. Yin, and S. Zou, “Nonperpendicular Incidence Induced Spatial Frequency Drift in Polarized Low-Coherence Interferometry and Its Compensation,” IEEE Photonics J. 7(6), 1–7 (2015).

2013 (2)

J. Yin, T. Liu, J. Jiang, K. Liu, S. Wang, F. Wu, and Z. Ding, “Wavelength-division-multiplexing method of polarized low-coherence interferometry for fiber Fabry-Perot interferometric sensors,” Opt. Lett. 38(19), 3751–3753 (2013).
[Crossref] [PubMed]

C. Gouveia, M. Zibaiic, H. Latific, M. J. B. Marques, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensors Actuat. Biol. Chem. 188, 1212–1217 (2013).

2012 (2)

2011 (1)

V. Gaillard, D. Leduc, C. Lupi, and C. Boisrobert, “Polarized low-coherence interferometry applied to birefringent fiber characterization,” Meas. Sci. Technol. 22(3), 035301 (2011).
[Crossref]

2008 (1)

Q. Wang, L. Zhang, C. S. Sun, and Q. X. Yu, “Multiplexed Fiber-Optic Pressure and Temperature Sensor System for Down-Hole Measurement,” IEEE Sens. J. 8(11), 1879–1883 (2008).
[Crossref]

2002 (2)

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1), 67–74 (2002).
[Crossref]

P. de Groot, X. Colonna de Lega, J. Kramer, and M. Turzhitsky, “Determination of fringe order in white-light interference microscopy,” Appl. Opt. 41(22), 4571–4578 (2002).
[Crossref] [PubMed]

2000 (1)

S. McMurtry, J. D. Wright, and D. A. Jackson, “A multiplexed low coherence interferometric system for humidity sensing,” Sensor. Actuat. Biol. Chem. 67(1–2), 52–56 (2000).

1997 (1)

1996 (1)

Y. Rao and D. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
[Crossref]

1992 (2)

1990 (1)

Baptista, J. M.

C. Gouveia, M. Zibaiic, H. Latific, M. J. B. Marques, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensors Actuat. Biol. Chem. 188, 1212–1217 (2013).

Boisrobert, C.

V. Gaillard, D. Leduc, C. Lupi, and C. Boisrobert, “Polarized low-coherence interferometry applied to birefringent fiber characterization,” Meas. Sci. Technol. 22(3), 035301 (2011).
[Crossref]

Chen, Z. T.

D. G. Jia, Y. L. Zhang, Z. T. Chen, H. X. Zhang, T. G. Liu, and Y. M. Zhang, “Evaluation Parameter for Self-Healing FBG Sensor Networks After Multiple Fiber Failures,” IEEE Photonics J. 7(4), 1–8 (2015).

Chim, S. S. C.

Coen, S.

Colonna de Lega, X.

Correia, R.

N. J. Lawson, R. Correia, S. W. James, M. Partridge, S. E. Staines, J. E. Gautrey, K. P. Garry, J. C. Holt, and R. P. Tatam, “Development and application of optical fibre strain and pressure sensors for in-flight measurements,” Meas. Sci. Technol. 27(10), 104001 (2016).
[Crossref]

de Groot, P.

Ding, Z.

Dresel, T.

Fercher, A. F.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1), 67–74 (2002).
[Crossref]

Gaillard, V.

V. Gaillard, D. Leduc, C. Lupi, and C. Boisrobert, “Polarized low-coherence interferometry applied to birefringent fiber characterization,” Meas. Sci. Technol. 22(3), 035301 (2011).
[Crossref]

Garry, K. P.

N. J. Lawson, R. Correia, S. W. James, M. Partridge, S. E. Staines, J. E. Gautrey, K. P. Garry, J. C. Holt, and R. P. Tatam, “Development and application of optical fibre strain and pressure sensors for in-flight measurements,” Meas. Sci. Technol. 27(10), 104001 (2016).
[Crossref]

Gautrey, J. E.

N. J. Lawson, R. Correia, S. W. James, M. Partridge, S. E. Staines, J. E. Gautrey, K. P. Garry, J. C. Holt, and R. P. Tatam, “Development and application of optical fibre strain and pressure sensors for in-flight measurements,” Meas. Sci. Technol. 27(10), 104001 (2016).
[Crossref]

Gouveia, C.

C. Gouveia, M. Zibaiic, H. Latific, M. J. B. Marques, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensors Actuat. Biol. Chem. 188, 1212–1217 (2013).

Häusler, G.

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1), 67–74 (2002).
[Crossref]

Holt, J. C.

N. J. Lawson, R. Correia, S. W. James, M. Partridge, S. E. Staines, J. E. Gautrey, K. P. Garry, J. C. Holt, and R. P. Tatam, “Development and application of optical fibre strain and pressure sensors for in-flight measurements,” Meas. Sci. Technol. 27(10), 104001 (2016).
[Crossref]

Jackson, D.

Y. Rao and D. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
[Crossref]

Jackson, D. A.

S. McMurtry, J. D. Wright, and D. A. Jackson, “A multiplexed low coherence interferometric system for humidity sensing,” Sensor. Actuat. Biol. Chem. 67(1–2), 52–56 (2000).

James, S. W.

N. J. Lawson, R. Correia, S. W. James, M. Partridge, S. E. Staines, J. E. Gautrey, K. P. Garry, J. C. Holt, and R. P. Tatam, “Development and application of optical fibre strain and pressure sensors for in-flight measurements,” Meas. Sci. Technol. 27(10), 104001 (2016).
[Crossref]

Jia, D. G.

D. G. Jia, Y. L. Zhang, Z. T. Chen, H. X. Zhang, T. G. Liu, and Y. M. Zhang, “Evaluation Parameter for Self-Healing FBG Sensor Networks After Multiple Fiber Failures,” IEEE Photonics J. 7(4), 1–8 (2015).

Jiang, J.

Jiang, M.

K. Li, M. Jiang, Z. Zhao, and Z. Wang, “Low coherence technique to interrogate optical sensors based on selectively filled double-core photonic crystal fiber for temperature measurement,” Opt. Commun. 389(15), 234–238 (2017).
[Crossref]

Jorge, P. A. S.

C. Gouveia, M. Zibaiic, H. Latific, M. J. B. Marques, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensors Actuat. Biol. Chem. 188, 1212–1217 (2013).

Karamata, B.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1), 67–74 (2002).
[Crossref]

Kino, G. S.

Kramer, J.

Lasser, T.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1), 67–74 (2002).
[Crossref]

Latific, H.

C. Gouveia, M. Zibaiic, H. Latific, M. J. B. Marques, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensors Actuat. Biol. Chem. 188, 1212–1217 (2013).

Lawson, N. J.

N. J. Lawson, R. Correia, S. W. James, M. Partridge, S. E. Staines, J. E. Gautrey, K. P. Garry, J. C. Holt, and R. P. Tatam, “Development and application of optical fibre strain and pressure sensors for in-flight measurements,” Meas. Sci. Technol. 27(10), 104001 (2016).
[Crossref]

Leduc, D.

V. Gaillard, D. Leduc, C. Lupi, and C. Boisrobert, “Polarized low-coherence interferometry applied to birefringent fiber characterization,” Meas. Sci. Technol. 22(3), 035301 (2011).
[Crossref]

Leonhardt, R.

Li, D.

Li, J. Q.

Li, K.

K. Li, M. Jiang, Z. Zhao, and Z. Wang, “Low coherence technique to interrogate optical sensors based on selectively filled double-core photonic crystal fiber for temperature measurement,” Opt. Commun. 389(15), 234–238 (2017).
[Crossref]

Lippok, N.

Liu, K.

Liu, T.

Liu, T. G.

D. G. Jia, Y. L. Zhang, Z. T. Chen, H. X. Zhang, T. G. Liu, and Y. M. Zhang, “Evaluation Parameter for Self-Healing FBG Sensor Networks After Multiple Fiber Failures,” IEEE Photonics J. 7(4), 1–8 (2015).

Liu, Y. M.

Lupi, C.

V. Gaillard, D. Leduc, C. Lupi, and C. Boisrobert, “Polarized low-coherence interferometry applied to birefringent fiber characterization,” Meas. Sci. Technol. 22(3), 035301 (2011).
[Crossref]

Marques, M. J. B.

C. Gouveia, M. Zibaiic, H. Latific, M. J. B. Marques, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensors Actuat. Biol. Chem. 188, 1212–1217 (2013).

McMurtry, S.

S. McMurtry, J. D. Wright, and D. A. Jackson, “A multiplexed low coherence interferometric system for humidity sensing,” Sensor. Actuat. Biol. Chem. 67(1–2), 52–56 (2000).

Meng, X.

Nielsen, P.

Partridge, M.

N. J. Lawson, R. Correia, S. W. James, M. Partridge, S. E. Staines, J. E. Gautrey, K. P. Garry, J. C. Holt, and R. P. Tatam, “Development and application of optical fibre strain and pressure sensors for in-flight measurements,” Meas. Sci. Technol. 27(10), 104001 (2016).
[Crossref]

Qin, Z.

Rao, Y.

Y. Rao and D. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
[Crossref]

Sandoz, P.

Shi, J.

T. Liu, J. Shi, J. Jiang, K. Liu, S. Wang, J. Yin, and S. Zou, “Nonperpendicular Incidence Induced Spatial Frequency Drift in Polarized Low-Coherence Interferometry and Its Compensation,” IEEE Photonics J. 7(6), 1–7 (2015).

Staines, S. E.

N. J. Lawson, R. Correia, S. W. James, M. Partridge, S. E. Staines, J. E. Gautrey, K. P. Garry, J. C. Holt, and R. P. Tatam, “Development and application of optical fibre strain and pressure sensors for in-flight measurements,” Meas. Sci. Technol. 27(10), 104001 (2016).
[Crossref]

Sticker, M.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1), 67–74 (2002).
[Crossref]

Sun, C. S.

Q. Wang, L. Zhang, C. S. Sun, and Q. X. Yu, “Multiplexed Fiber-Optic Pressure and Temperature Sensor System for Down-Hole Measurement,” IEEE Sens. J. 8(11), 1879–1883 (2008).
[Crossref]

Tatam, R. P.

N. J. Lawson, R. Correia, S. W. James, M. Partridge, S. E. Staines, J. E. Gautrey, K. P. Garry, J. C. Holt, and R. P. Tatam, “Development and application of optical fibre strain and pressure sensors for in-flight measurements,” Meas. Sci. Technol. 27(10), 104001 (2016).
[Crossref]

Turzhitsky, M.

Vanholsbeeck, F.

Venzke, H.

Wang, D. N.

Wang, Q.

Q. Wang, L. Zhang, C. S. Sun, and Q. X. Yu, “Multiplexed Fiber-Optic Pressure and Temperature Sensor System for Down-Hole Measurement,” IEEE Sens. J. 8(11), 1879–1883 (2008).
[Crossref]

Wang, S.

Wang, Z.

K. Li, M. Jiang, Z. Zhao, and Z. Wang, “Low coherence technique to interrogate optical sensors based on selectively filled double-core photonic crystal fiber for temperature measurement,” Opt. Commun. 389(15), 234–238 (2017).
[Crossref]

Wright, J. D.

S. McMurtry, J. D. Wright, and D. A. Jackson, “A multiplexed low coherence interferometric system for humidity sensing,” Sensor. Actuat. Biol. Chem. 67(1–2), 52–56 (2000).

Wu, F.

Xu, B.

Yin, J.

Yu, Q. X.

Q. Wang, L. Zhang, C. S. Sun, and Q. X. Yu, “Multiplexed Fiber-Optic Pressure and Temperature Sensor System for Down-Hole Measurement,” IEEE Sens. J. 8(11), 1879–1883 (2008).
[Crossref]

Zawadzki, R.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1), 67–74 (2002).
[Crossref]

Zhang, H. X.

D. G. Jia, Y. L. Zhang, Z. T. Chen, H. X. Zhang, T. G. Liu, and Y. M. Zhang, “Evaluation Parameter for Self-Healing FBG Sensor Networks After Multiple Fiber Failures,” IEEE Photonics J. 7(4), 1–8 (2015).

Zhang, L.

Q. Wang, L. Zhang, C. S. Sun, and Q. X. Yu, “Multiplexed Fiber-Optic Pressure and Temperature Sensor System for Down-Hole Measurement,” IEEE Sens. J. 8(11), 1879–1883 (2008).
[Crossref]

Zhang, Y.

Zhang, Y. L.

D. G. Jia, Y. L. Zhang, Z. T. Chen, H. X. Zhang, T. G. Liu, and Y. M. Zhang, “Evaluation Parameter for Self-Healing FBG Sensor Networks After Multiple Fiber Failures,” IEEE Photonics J. 7(4), 1–8 (2015).

Zhang, Y. M.

D. G. Jia, Y. L. Zhang, Z. T. Chen, H. X. Zhang, T. G. Liu, and Y. M. Zhang, “Evaluation Parameter for Self-Healing FBG Sensor Networks After Multiple Fiber Failures,” IEEE Photonics J. 7(4), 1–8 (2015).

Zhao, Z.

K. Li, M. Jiang, Z. Zhao, and Z. Wang, “Low coherence technique to interrogate optical sensors based on selectively filled double-core photonic crystal fiber for temperature measurement,” Opt. Commun. 389(15), 234–238 (2017).
[Crossref]

Zibaiic, M.

C. Gouveia, M. Zibaiic, H. Latific, M. J. B. Marques, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensors Actuat. Biol. Chem. 188, 1212–1217 (2013).

Zou, S.

T. Liu, J. Shi, J. Jiang, K. Liu, S. Wang, J. Yin, and S. Zou, “Nonperpendicular Incidence Induced Spatial Frequency Drift in Polarized Low-Coherence Interferometry and Its Compensation,” IEEE Photonics J. 7(6), 1–7 (2015).

Appl. Opt. (4)

IEEE Photonics J. (2)

D. G. Jia, Y. L. Zhang, Z. T. Chen, H. X. Zhang, T. G. Liu, and Y. M. Zhang, “Evaluation Parameter for Self-Healing FBG Sensor Networks After Multiple Fiber Failures,” IEEE Photonics J. 7(4), 1–8 (2015).

T. Liu, J. Shi, J. Jiang, K. Liu, S. Wang, J. Yin, and S. Zou, “Nonperpendicular Incidence Induced Spatial Frequency Drift in Polarized Low-Coherence Interferometry and Its Compensation,” IEEE Photonics J. 7(6), 1–7 (2015).

IEEE Sens. J. (1)

Q. Wang, L. Zhang, C. S. Sun, and Q. X. Yu, “Multiplexed Fiber-Optic Pressure and Temperature Sensor System for Down-Hole Measurement,” IEEE Sens. J. 8(11), 1879–1883 (2008).
[Crossref]

J. Lightwave Technol. (1)

Meas. Sci. Technol. (3)

Y. Rao and D. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
[Crossref]

V. Gaillard, D. Leduc, C. Lupi, and C. Boisrobert, “Polarized low-coherence interferometry applied to birefringent fiber characterization,” Meas. Sci. Technol. 22(3), 035301 (2011).
[Crossref]

N. J. Lawson, R. Correia, S. W. James, M. Partridge, S. E. Staines, J. E. Gautrey, K. P. Garry, J. C. Holt, and R. P. Tatam, “Development and application of optical fibre strain and pressure sensors for in-flight measurements,” Meas. Sci. Technol. 27(10), 104001 (2016).
[Crossref]

Opt. Commun. (2)

K. Li, M. Jiang, Z. Zhao, and Z. Wang, “Low coherence technique to interrogate optical sensors based on selectively filled double-core photonic crystal fiber for temperature measurement,” Opt. Commun. 389(15), 234–238 (2017).
[Crossref]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1), 67–74 (2002).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Sensor. Actuat. Biol. Chem. (1)

S. McMurtry, J. D. Wright, and D. A. Jackson, “A multiplexed low coherence interferometric system for humidity sensing,” Sensor. Actuat. Biol. Chem. 67(1–2), 52–56 (2000).

Sensors Actuat. Biol. Chem. (1)

C. Gouveia, M. Zibaiic, H. Latific, M. J. B. Marques, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensors Actuat. Biol. Chem. 188, 1212–1217 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the beam propagation paths in polarized LCI demodulator.
Fig. 2
Fig. 2 (a) Characteristic curves of the K with Δ L as variable. (b) The partial enlarged image of Fig. 2(a). (c) characteristic curves of the Δ K between channel 4 and other channels with Δ L as variable.
Fig. 3
Fig. 3 A simplified sequence flow diagram of Step (2) and Step (3). The red arrows represent solving simultaneous equations.
Fig. 4
Fig. 4 Schematic of the multi-channel optical fiber F-P sensing demodulation system.
Fig. 5
Fig. 5 (a) The low-coherence interference fringes and its envelope when the air pressure is 155 kPa. (b) Characteristic curves of the primitive EPP and recovered EPP with increasing air pressure, respectively. (c) Characteristic curves of the estimated interference order and real interference order with increasing air pressure, respectively.
Fig. 6
Fig. 6 Conceptual illustration of the phase recovery process by using the primitive EPP K p and relative phase ϕ in theory.
Fig. 7
Fig. 7 (a) The primitive EPPs of different channels with increasing air pressure. (b) The recovered EPPs of different channels with increasing air pressure. (c) The compensative value Δ K of different channels. (d) The EPPs of different channels after position compensation.
Fig. 8
Fig. 8 (a) The pressure errors of channel 1-4 within air pressure measuring range. (b) The standard deviations of channel 1-4.

Tables (1)

Tables Icon

Table 1 Measurement Results of the Proposed Method

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P ( γ 1 , n x , m ) = l 1 cos γ 1 + n x h m cos γ 2 + l 2 h m cos ( γ 4 + θ ) m = 1 , 2 , ... , M ,
h m ( γ 1 , n x , m ) = [ W l 1 tan γ 1 ( m 1 ) d ] tan θ + l 3 1 + tan θ tan γ 2 m = 1 , 2 , ... , M ,
x ( γ 1 , n x , m ) = ( m 1 ) d + l 1 tan γ 1 + h m ( γ 1 , n x , m ) tan γ 2 + [ l 2 h m ( γ 1 , n x , m ) ] tan ( γ 4 + θ ) m = 1 , 2 , ... , M .
{ P ( i 1 , n e , m ) P ( j 1 , n o , m ) = Δ L x ( i 1 , n e , m ) = x ( j 1 , n o , m ) m = 1 , 2 , ... , M ,
I ( z ) = ρ exp { [ α ( z z 0 ) ] 2 } cos [ β ( z z 0 ) ] ,
K d = K r + Δ K ,
Φ = w q z 0 = φ 0 2 π N q K r ,
l = φ e s t ϕ 2 π ,
φ = ϕ + 2 n π .
K r = φ 2 π q N .

Metrics