Abstract

Hafnium oxide thin films with varying oxygen content were investigated with the goal of finding the optical signature of oxygen vacancies in the film structure. It was found that a reduction of oxygen content in the film leads to changes in both, structural and optical characteristics. Optical absorption spectroscopy, using nanoKelvin calorimetry, revealed an enhanced absorption in the near-ultraviolet (near-UV) and visible wavelength ranges for films with reduced oxygen content, which was attributed to mid-gap electronic states of oxygen vacancies. Absorption in the near-infrared was found to originate from structural defects other than oxygen vacancy. Luminescence generated by continuous-wave 355-nm laser excitation in e-beam films showed significant changes in the spectral profile with oxygen reduction and new band formation linked to oxygen vacancies. The luminescence from oxygen-vacancy states was found to have microsecond-scale lifetimes when compared with nanosecond-scale lifetimes of luminescence attributed to other structural film defects. Laser-damage testing using ultraviolet nanosecond and infrared femtosecond pulses showed a reduction of the damage threshold with increasing number of oxygen vacancies in hafnium oxide films.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Influence of plasma treatment on laser-induced damage characters of HfO2 thin films at 355nm

Dongping Zhang, Congjuan Wang, Ping Fan, Xingmin Cai, Zhuanghao Zheng, Jianda Shao, and Zhengxiu Fan
Opt. Express 17(10) 8246-8252 (2009)

Optical properties and laser damage threshold of HfO2–SiO2 mixed composite thin films

Shuvendu Jena, Raj Bahadur Tokas, Nitin M. Kamble, Sudhakar Thakur, and Naba Kishore Sahoo
Appl. Opt. 53(5) 850-860 (2014)

Extended x-ray absorption fine structure measurements on radio frequency magnetron sputtered HfO2 thin films deposited with different oxygen partial pressures

S. Maidul Haque, C. Nayak, Dibyendu Bhattacharyya, S. N. Jha, and N. K. Sahoo
Appl. Opt. 55(9) 2175-2181 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351 nm,” Proc. SPIE 7132, 71320J (2008).
    [Crossref]
  2. G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo, “Review on high-k dielectrics reliability issues,” IEEE Trans. Device Mater. Reliab. 5(1), 5–19 (2005).
    [Crossref]
  3. E.-A. Choi and K. J. Chang, “Charge-transition levels of oxygen vacancy as the origin of device instability in HfO2 gate stacks through quasiparticle energy calculations,” Appl. Phys. Lett. 94(12), 122901 (2009).
    [Crossref]
  4. D. N. Nguyen, L. A. Emmert, D. Patel, C. S. Menoni, and W. Rudolph, “Transient phenomena in the dielectric breakdown of HfO2 optical films probed by ultrafast laser pulse pairs,” Appl. Phys. Lett. 97(19), 191909 (2010).
    [Crossref]
  5. L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
    [Crossref]
  6. S. Papernov, E. Shin, T. Murray, A. W. Schmid, and J. B. Oliver, “355-nm absorption in HfO2 and SiO2 monolayers with embedded Hf nanoclusters studied using photothermal heterodyne imaging,” Proc. SPIE 8530, 85301H (2012).
    [Crossref]
  7. A. S. Foster, F. Lopez Gejo, A. L. Shluger, and R. M. Nieminen, “Vacancy and interstitial defects in hafnia,” Phys. Rev. B 65(17), 174117 (2002).
    [Crossref]
  8. D. Muñoz Ramo, J. L. Gavartin, A. L. Shluger, and G. Bersuker, “Spectroscopic properties of oxygen vacancies in monoclinic HfO2 calculated with periodic and embedded cluster density functional theory,” Phys. Rev. B 75(20), 205336 (2007).
    [Crossref]
  9. T.-J. Chen and C.-L. Kuo, “First principles study of the structural, electronic, and dielectric properties of amorphous HfO2,” J. Appl. Phys. 110(6), 064105 (2011).
    [Crossref]
  10. H. Takeuchi, D. Ha, and T.-J. King, “Observation of bulk HfO2 defects by spectroscopic ellipsometry,” J. Vac. Sci. Technol. A 22(4), 1337–1341 (2004).
    [Crossref]
  11. J. Ni, Q. Zhou, Z. Li, and Z. Zhang, “Oxygen defect induced photoluminescence of HfO2 thin films,” Appl. Phys. Lett. 93(1), 011905 (2008).
    [Crossref]
  12. M. Kirm, J. Aarik, M. Jürgens, and I. Sildos, “Thin films of HfO2 and ZrO2 as potential scintillators,” Nucl. Instrum. Methods Phys. Res. A 537(1), 251–255 (2005).
    [Crossref]
  13. T. Ito, M. Maeda, K. Nakamura, H. Kato, and Y. Ohki, “Similarities in photoluminescence in hafnia and zirconia induced by ultraviolet photons,” J. Appl. Phys. 97(5), 054104 (2005).
    [Crossref]
  14. A. Ciapponi, F. R. Wagner, S. Palmier, J.-Y. Natoli, and L. Gallais, “Study of luminescent defects in hafnia thin films made with different deposition techniques,” J. Lumin. 129(12), 1786–1789 (2009).
    [Crossref]
  15. V. A. Gritsenko, D. R. Islamov, T. V. Perevalov, V. Sh. Aliev, A. P. Yelisseyev, E. E. Lomonova, V. A. Pustovarov, and A. Chin, “Oxygen vacancy in hafnia as a blue luminescence center and a trap of charge carriers,” J. Phys. Chem. C 120(36), 19,980–19,986 (2016).
    [Crossref]
  16. A. A. Rastorguev, V. I. Belyi, T. P. Smirnova, L. V. Yakovkina, M. V. Zamoryanskaya, V. A. Gritsenko, and H. Wong, “Luminescence of intrinsic and extrinsic defects in hafnium oxide films,” Phys. Rev. B 76(23), 235315 (2007).
    [Crossref]
  17. T. V. Perevalov, V. Sh. Aliev, V. A. Gritsenko, A. A. Saraev, V. V. Kaichev, E. V. Ivanova, and M. V. Zamoryanskaya, “The origin of 2.7 eV luminescence and 5.2 eV excitation band in hafnium oxide,” Appl. Phys. Lett. 104(7), 071904 (2014).
    [Crossref]
  18. C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289(Supplement C), 141–144 (2014).
    [Crossref]
  19. B. Roshanzadeh, S. T. P. Boyd, and W. Rudolph, University of New Mexico, (private communication, 2017).
  20. T. C. P. Chui, D. R. Swanson, M. J. Adriaans, J. A. Nissen, and J. A. Lipa, “Temperature fluctuations in the canonical ensemble,” Phys. Rev. Lett. 69(21), 3005–3008 (1992).
    [Crossref] [PubMed]
  21. S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
    [Crossref]
  22. S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
    [Crossref]
  23. Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77(12), 3277–3280 (1994).
    [Crossref]
  24. A. Guinier, X-Ray Diffraction: In Crystals, Imperfect Crystals, and Amorphous Bodies (W. H. Freeman, San Francisco, 1963).
  25. D. Muñoz Ramo, A. L. Shluger, J. L. Gavartin, and G. Bersuker, “Theoretical prediction of intrinsic self-trapping of electrons and holes in monoclinic HfO2.,” Phys. Rev. Lett. 99(15), 155504 (2007).
    [Crossref] [PubMed]
  26. S. Papernov, A. A. Kozlov, J. B. Oliver, T. J. Kessler, A. Shvydky, and B. Marozas, “Near-ultraviolet absorption annealing in hafnium oxide thin films subjected to continuous-wave laser radiation,” Opt. Eng. 53(12), 122504 (2014).
    [Crossref]
  27. H. K. Pulker, “Film deposition methods,” in Optical Interference Coatings, N. Kaiser and H. K. Pulker eds., Springer Series in Optical Sciences, A. Adibi, T. W. Hänsch, F. Krausz, B. R. Masters, H. Venghaus, H. Weber, H. Weinfurter, and K. Midorikawa eds. (Springer-Verlag, Berlin, 2003), pp. 131−154.
  28. D. M. Calistru, S. G. Demos, and R. R. Alfano, “Dynamics of local modes during nonradiative relaxation,” Phys. Rev. Lett. 78(2), 374–377 (1997).
    [Crossref]
  29. L. Skuja, “Optical properties of defects in silica,” in Defects in SiO2 and Related Dielectrics: Science and Technology, G. Pacchioni, L. Skuja, and D. L. Griscom eds., Nato Science Series II (Kluwer Academic Publishers, The Netherlands, 2000), pp. 73−116.
  30. M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, “Femtosecond dynamics of dielectric films in the pre-ablation regime,” Appl. Phys., A Mater. Sci. Process. 81(2), 317–324 (2005).
    [Crossref]
  31. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
    [Crossref] [PubMed]
  32. C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do defects play in the laser damage behavior of metal oxides?” Proc. SPIE 8530, 85300J (2012).
    [Crossref]

2016 (1)

V. A. Gritsenko, D. R. Islamov, T. V. Perevalov, V. Sh. Aliev, A. P. Yelisseyev, E. E. Lomonova, V. A. Pustovarov, and A. Chin, “Oxygen vacancy in hafnia as a blue luminescence center and a trap of charge carriers,” J. Phys. Chem. C 120(36), 19,980–19,986 (2016).
[Crossref]

2014 (3)

T. V. Perevalov, V. Sh. Aliev, V. A. Gritsenko, A. A. Saraev, V. V. Kaichev, E. V. Ivanova, and M. V. Zamoryanskaya, “The origin of 2.7 eV luminescence and 5.2 eV excitation band in hafnium oxide,” Appl. Phys. Lett. 104(7), 071904 (2014).
[Crossref]

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289(Supplement C), 141–144 (2014).
[Crossref]

S. Papernov, A. A. Kozlov, J. B. Oliver, T. J. Kessler, A. Shvydky, and B. Marozas, “Near-ultraviolet absorption annealing in hafnium oxide thin films subjected to continuous-wave laser radiation,” Opt. Eng. 53(12), 122504 (2014).
[Crossref]

2012 (2)

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do defects play in the laser damage behavior of metal oxides?” Proc. SPIE 8530, 85300J (2012).
[Crossref]

S. Papernov, E. Shin, T. Murray, A. W. Schmid, and J. B. Oliver, “355-nm absorption in HfO2 and SiO2 monolayers with embedded Hf nanoclusters studied using photothermal heterodyne imaging,” Proc. SPIE 8530, 85301H (2012).
[Crossref]

2011 (2)

T.-J. Chen and C.-L. Kuo, “First principles study of the structural, electronic, and dielectric properties of amorphous HfO2,” J. Appl. Phys. 110(6), 064105 (2011).
[Crossref]

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

2010 (2)

D. N. Nguyen, L. A. Emmert, D. Patel, C. S. Menoni, and W. Rudolph, “Transient phenomena in the dielectric breakdown of HfO2 optical films probed by ultrafast laser pulse pairs,” Appl. Phys. Lett. 97(19), 191909 (2010).
[Crossref]

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
[Crossref]

2009 (2)

E.-A. Choi and K. J. Chang, “Charge-transition levels of oxygen vacancy as the origin of device instability in HfO2 gate stacks through quasiparticle energy calculations,” Appl. Phys. Lett. 94(12), 122901 (2009).
[Crossref]

A. Ciapponi, F. R. Wagner, S. Palmier, J.-Y. Natoli, and L. Gallais, “Study of luminescent defects in hafnia thin films made with different deposition techniques,” J. Lumin. 129(12), 1786–1789 (2009).
[Crossref]

2008 (2)

J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351 nm,” Proc. SPIE 7132, 71320J (2008).
[Crossref]

J. Ni, Q. Zhou, Z. Li, and Z. Zhang, “Oxygen defect induced photoluminescence of HfO2 thin films,” Appl. Phys. Lett. 93(1), 011905 (2008).
[Crossref]

2007 (3)

A. A. Rastorguev, V. I. Belyi, T. P. Smirnova, L. V. Yakovkina, M. V. Zamoryanskaya, V. A. Gritsenko, and H. Wong, “Luminescence of intrinsic and extrinsic defects in hafnium oxide films,” Phys. Rev. B 76(23), 235315 (2007).
[Crossref]

D. Muñoz Ramo, J. L. Gavartin, A. L. Shluger, and G. Bersuker, “Spectroscopic properties of oxygen vacancies in monoclinic HfO2 calculated with periodic and embedded cluster density functional theory,” Phys. Rev. B 75(20), 205336 (2007).
[Crossref]

D. Muñoz Ramo, A. L. Shluger, J. L. Gavartin, and G. Bersuker, “Theoretical prediction of intrinsic self-trapping of electrons and holes in monoclinic HfO2.,” Phys. Rev. Lett. 99(15), 155504 (2007).
[Crossref] [PubMed]

2006 (1)

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[Crossref]

2005 (4)

M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, “Femtosecond dynamics of dielectric films in the pre-ablation regime,” Appl. Phys., A Mater. Sci. Process. 81(2), 317–324 (2005).
[Crossref]

G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo, “Review on high-k dielectrics reliability issues,” IEEE Trans. Device Mater. Reliab. 5(1), 5–19 (2005).
[Crossref]

M. Kirm, J. Aarik, M. Jürgens, and I. Sildos, “Thin films of HfO2 and ZrO2 as potential scintillators,” Nucl. Instrum. Methods Phys. Res. A 537(1), 251–255 (2005).
[Crossref]

T. Ito, M. Maeda, K. Nakamura, H. Kato, and Y. Ohki, “Similarities in photoluminescence in hafnia and zirconia induced by ultraviolet photons,” J. Appl. Phys. 97(5), 054104 (2005).
[Crossref]

2004 (1)

H. Takeuchi, D. Ha, and T.-J. King, “Observation of bulk HfO2 defects by spectroscopic ellipsometry,” J. Vac. Sci. Technol. A 22(4), 1337–1341 (2004).
[Crossref]

2002 (1)

A. S. Foster, F. Lopez Gejo, A. L. Shluger, and R. M. Nieminen, “Vacancy and interstitial defects in hafnia,” Phys. Rev. B 65(17), 174117 (2002).
[Crossref]

1997 (1)

D. M. Calistru, S. G. Demos, and R. R. Alfano, “Dynamics of local modes during nonradiative relaxation,” Phys. Rev. Lett. 78(2), 374–377 (1997).
[Crossref]

1996 (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

1994 (1)

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77(12), 3277–3280 (1994).
[Crossref]

1992 (1)

T. C. P. Chui, D. R. Swanson, M. J. Adriaans, J. A. Nissen, and J. A. Lipa, “Temperature fluctuations in the canonical ensemble,” Phys. Rev. Lett. 69(21), 3005–3008 (1992).
[Crossref] [PubMed]

Aarik, J.

M. Kirm, J. Aarik, M. Jürgens, and I. Sildos, “Thin films of HfO2 and ZrO2 as potential scintillators,” Nucl. Instrum. Methods Phys. Res. A 537(1), 251–255 (2005).
[Crossref]

Adriaans, M. J.

T. C. P. Chui, D. R. Swanson, M. J. Adriaans, J. A. Nissen, and J. A. Lipa, “Temperature fluctuations in the canonical ensemble,” Phys. Rev. Lett. 69(21), 3005–3008 (1992).
[Crossref] [PubMed]

Alfano, R. R.

D. M. Calistru, S. G. Demos, and R. R. Alfano, “Dynamics of local modes during nonradiative relaxation,” Phys. Rev. Lett. 78(2), 374–377 (1997).
[Crossref]

Aliev, V. Sh.

V. A. Gritsenko, D. R. Islamov, T. V. Perevalov, V. Sh. Aliev, A. P. Yelisseyev, E. E. Lomonova, V. A. Pustovarov, and A. Chin, “Oxygen vacancy in hafnia as a blue luminescence center and a trap of charge carriers,” J. Phys. Chem. C 120(36), 19,980–19,986 (2016).
[Crossref]

T. V. Perevalov, V. Sh. Aliev, V. A. Gritsenko, A. A. Saraev, V. V. Kaichev, E. V. Ivanova, and M. V. Zamoryanskaya, “The origin of 2.7 eV luminescence and 5.2 eV excitation band in hafnium oxide,” Appl. Phys. Lett. 104(7), 071904 (2014).
[Crossref]

Belyi, V. I.

A. A. Rastorguev, V. I. Belyi, T. P. Smirnova, L. V. Yakovkina, M. V. Zamoryanskaya, V. A. Gritsenko, and H. Wong, “Luminescence of intrinsic and extrinsic defects in hafnium oxide films,” Phys. Rev. B 76(23), 235315 (2007).
[Crossref]

Berciaud, S.

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[Crossref]

Bersuker, G.

D. Muñoz Ramo, A. L. Shluger, J. L. Gavartin, and G. Bersuker, “Theoretical prediction of intrinsic self-trapping of electrons and holes in monoclinic HfO2.,” Phys. Rev. Lett. 99(15), 155504 (2007).
[Crossref] [PubMed]

D. Muñoz Ramo, J. L. Gavartin, A. L. Shluger, and G. Bersuker, “Spectroscopic properties of oxygen vacancies in monoclinic HfO2 calculated with periodic and embedded cluster density functional theory,” Phys. Rev. B 75(20), 205336 (2007).
[Crossref]

Bittle, W.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

Blab, G. A.

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[Crossref]

Bruyere, S.

G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo, “Review on high-k dielectrics reliability issues,” IEEE Trans. Device Mater. Reliab. 5(1), 5–19 (2005).
[Crossref]

Calistru, D. M.

D. M. Calistru, S. G. Demos, and R. R. Alfano, “Dynamics of local modes during nonradiative relaxation,” Phys. Rev. Lett. 78(2), 374–377 (1997).
[Crossref]

Chang, K. J.

E.-A. Choi and K. J. Chang, “Charge-transition levels of oxygen vacancy as the origin of device instability in HfO2 gate stacks through quasiparticle energy calculations,” Appl. Phys. Lett. 94(12), 122901 (2009).
[Crossref]

Chen, T.-J.

T.-J. Chen and C.-L. Kuo, “First principles study of the structural, electronic, and dielectric properties of amorphous HfO2,” J. Appl. Phys. 110(6), 064105 (2011).
[Crossref]

Chin, A.

V. A. Gritsenko, D. R. Islamov, T. V. Perevalov, V. Sh. Aliev, A. P. Yelisseyev, E. E. Lomonova, V. A. Pustovarov, and A. Chin, “Oxygen vacancy in hafnia as a blue luminescence center and a trap of charge carriers,” J. Phys. Chem. C 120(36), 19,980–19,986 (2016).
[Crossref]

Choi, E.-A.

E.-A. Choi and K. J. Chang, “Charge-transition levels of oxygen vacancy as the origin of device instability in HfO2 gate stacks through quasiparticle energy calculations,” Appl. Phys. Lett. 94(12), 122901 (2009).
[Crossref]

Chui, T. C. P.

T. C. P. Chui, D. R. Swanson, M. J. Adriaans, J. A. Nissen, and J. A. Lipa, “Temperature fluctuations in the canonical ensemble,” Phys. Rev. Lett. 69(21), 3005–3008 (1992).
[Crossref] [PubMed]

Ciapponi, A.

A. Ciapponi, F. R. Wagner, S. Palmier, J.-Y. Natoli, and L. Gallais, “Study of luminescent defects in hafnia thin films made with different deposition techniques,” J. Lumin. 129(12), 1786–1789 (2009).
[Crossref]

Cognet, L.

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[Crossref]

Demos, S. G.

D. M. Calistru, S. G. Demos, and R. R. Alfano, “Dynamics of local modes during nonradiative relaxation,” Phys. Rev. Lett. 78(2), 374–377 (1997).
[Crossref]

Denais, M.

G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo, “Review on high-k dielectrics reliability issues,” IEEE Trans. Device Mater. Reliab. 5(1), 5–19 (2005).
[Crossref]

Emmert, L.

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do defects play in the laser damage behavior of metal oxides?” Proc. SPIE 8530, 85300J (2012).
[Crossref]

Emmert, L. A.

D. N. Nguyen, L. A. Emmert, D. Patel, C. S. Menoni, and W. Rudolph, “Transient phenomena in the dielectric breakdown of HfO2 optical films probed by ultrafast laser pulse pairs,” Appl. Phys. Lett. 97(19), 191909 (2010).
[Crossref]

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
[Crossref]

Fan, H.

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289(Supplement C), 141–144 (2014).
[Crossref]

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Fejer, M. M.

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do defects play in the laser damage behavior of metal oxides?” Proc. SPIE 8530, 85300J (2012).
[Crossref]

Foster, A. S.

A. S. Foster, F. Lopez Gejo, A. L. Shluger, and R. M. Nieminen, “Vacancy and interstitial defects in hafnia,” Phys. Rev. B 65(17), 174117 (2002).
[Crossref]

Funkenbusch, P. D.

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77(12), 3277–3280 (1994).
[Crossref]

Gallais, L.

A. Ciapponi, F. R. Wagner, S. Palmier, J.-Y. Natoli, and L. Gallais, “Study of luminescent defects in hafnia thin films made with different deposition techniques,” J. Lumin. 129(12), 1786–1789 (2009).
[Crossref]

Gavartin, J. L.

D. Muñoz Ramo, J. L. Gavartin, A. L. Shluger, and G. Bersuker, “Spectroscopic properties of oxygen vacancies in monoclinic HfO2 calculated with periodic and embedded cluster density functional theory,” Phys. Rev. B 75(20), 205336 (2007).
[Crossref]

D. Muñoz Ramo, A. L. Shluger, J. L. Gavartin, and G. Bersuker, “Theoretical prediction of intrinsic self-trapping of electrons and holes in monoclinic HfO2.,” Phys. Rev. Lett. 99(15), 155504 (2007).
[Crossref] [PubMed]

Ghibaudo, G.

G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo, “Review on high-k dielectrics reliability issues,” IEEE Trans. Device Mater. Reliab. 5(1), 5–19 (2005).
[Crossref]

Golini, D.

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77(12), 3277–3280 (1994).
[Crossref]

Gritsenko, V. A.

V. A. Gritsenko, D. R. Islamov, T. V. Perevalov, V. Sh. Aliev, A. P. Yelisseyev, E. E. Lomonova, V. A. Pustovarov, and A. Chin, “Oxygen vacancy in hafnia as a blue luminescence center and a trap of charge carriers,” J. Phys. Chem. C 120(36), 19,980–19,986 (2016).
[Crossref]

T. V. Perevalov, V. Sh. Aliev, V. A. Gritsenko, A. A. Saraev, V. V. Kaichev, E. V. Ivanova, and M. V. Zamoryanskaya, “The origin of 2.7 eV luminescence and 5.2 eV excitation band in hafnium oxide,” Appl. Phys. Lett. 104(7), 071904 (2014).
[Crossref]

A. A. Rastorguev, V. I. Belyi, T. P. Smirnova, L. V. Yakovkina, M. V. Zamoryanskaya, V. A. Gritsenko, and H. Wong, “Luminescence of intrinsic and extrinsic defects in hafnium oxide films,” Phys. Rev. B 76(23), 235315 (2007).
[Crossref]

Ha, D.

H. Takeuchi, D. Ha, and T.-J. King, “Observation of bulk HfO2 defects by spectroscopic ellipsometry,” J. Vac. Sci. Technol. A 22(4), 1337–1341 (2004).
[Crossref]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Islamov, D. R.

V. A. Gritsenko, D. R. Islamov, T. V. Perevalov, V. Sh. Aliev, A. P. Yelisseyev, E. E. Lomonova, V. A. Pustovarov, and A. Chin, “Oxygen vacancy in hafnia as a blue luminescence center and a trap of charge carriers,” J. Phys. Chem. C 120(36), 19,980–19,986 (2016).
[Crossref]

Ito, T.

T. Ito, M. Maeda, K. Nakamura, H. Kato, and Y. Ohki, “Similarities in photoluminescence in hafnia and zirconia induced by ultraviolet photons,” J. Appl. Phys. 97(5), 054104 (2005).
[Crossref]

Ivanova, E. V.

T. V. Perevalov, V. Sh. Aliev, V. A. Gritsenko, A. A. Saraev, V. V. Kaichev, E. V. Ivanova, and M. V. Zamoryanskaya, “The origin of 2.7 eV luminescence and 5.2 eV excitation band in hafnium oxide,” Appl. Phys. Lett. 104(7), 071904 (2014).
[Crossref]

Jürgens, M.

M. Kirm, J. Aarik, M. Jürgens, and I. Sildos, “Thin films of HfO2 and ZrO2 as potential scintillators,” Nucl. Instrum. Methods Phys. Res. A 537(1), 251–255 (2005).
[Crossref]

Kaichev, V. V.

T. V. Perevalov, V. Sh. Aliev, V. A. Gritsenko, A. A. Saraev, V. V. Kaichev, E. V. Ivanova, and M. V. Zamoryanskaya, “The origin of 2.7 eV luminescence and 5.2 eV excitation band in hafnium oxide,” Appl. Phys. Lett. 104(7), 071904 (2014).
[Crossref]

Kato, H.

T. Ito, M. Maeda, K. Nakamura, H. Kato, and Y. Ohki, “Similarities in photoluminescence in hafnia and zirconia induced by ultraviolet photons,” J. Appl. Phys. 97(5), 054104 (2005).
[Crossref]

Kessler, T. J.

S. Papernov, A. A. Kozlov, J. B. Oliver, T. J. Kessler, A. Shvydky, and B. Marozas, “Near-ultraviolet absorption annealing in hafnium oxide thin films subjected to continuous-wave laser radiation,” Opt. Eng. 53(12), 122504 (2014).
[Crossref]

King, T.-J.

H. Takeuchi, D. Ha, and T.-J. King, “Observation of bulk HfO2 defects by spectroscopic ellipsometry,” J. Vac. Sci. Technol. A 22(4), 1337–1341 (2004).
[Crossref]

Kirm, M.

M. Kirm, J. Aarik, M. Jürgens, and I. Sildos, “Thin films of HfO2 and ZrO2 as potential scintillators,” Nucl. Instrum. Methods Phys. Res. A 537(1), 251–255 (2005).
[Crossref]

Kozlov, A. A.

S. Papernov, A. A. Kozlov, J. B. Oliver, T. J. Kessler, A. Shvydky, and B. Marozas, “Near-ultraviolet absorption annealing in hafnium oxide thin films subjected to continuous-wave laser radiation,” Opt. Eng. 53(12), 122504 (2014).
[Crossref]

Krous, E.

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do defects play in the laser damage behavior of metal oxides?” Proc. SPIE 8530, 85300J (2012).
[Crossref]

Kuo, C.-L.

T.-J. Chen and C.-L. Kuo, “First principles study of the structural, electronic, and dielectric properties of amorphous HfO2,” J. Appl. Phys. 110(6), 064105 (2011).
[Crossref]

Kupinski, P.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

Lambropoulos, J. C.

J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351 nm,” Proc. SPIE 7132, 71320J (2008).
[Crossref]

Langston, P. F.

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do defects play in the laser damage behavior of metal oxides?” Proc. SPIE 8530, 85300J (2012).
[Crossref]

Lasne, D.

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[Crossref]

Li, D.

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289(Supplement C), 141–144 (2014).
[Crossref]

Li, Z.

J. Ni, Q. Zhou, Z. Li, and Z. Zhang, “Oxygen defect induced photoluminescence of HfO2 thin films,” Appl. Phys. Lett. 93(1), 011905 (2008).
[Crossref]

Lindquist, A.

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77(12), 3277–3280 (1994).
[Crossref]

Lipa, J. A.

T. C. P. Chui, D. R. Swanson, M. J. Adriaans, J. A. Nissen, and J. A. Lipa, “Temperature fluctuations in the canonical ensemble,” Phys. Rev. Lett. 69(21), 3005–3008 (1992).
[Crossref] [PubMed]

Liu, J.

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289(Supplement C), 141–144 (2014).
[Crossref]

Lomonova, E. E.

V. A. Gritsenko, D. R. Islamov, T. V. Perevalov, V. Sh. Aliev, A. P. Yelisseyev, E. E. Lomonova, V. A. Pustovarov, and A. Chin, “Oxygen vacancy in hafnia as a blue luminescence center and a trap of charge carriers,” J. Phys. Chem. C 120(36), 19,980–19,986 (2016).
[Crossref]

Lopez Gejo, F.

A. S. Foster, F. Lopez Gejo, A. L. Shluger, and R. M. Nieminen, “Vacancy and interstitial defects in hafnia,” Phys. Rev. B 65(17), 174117 (2002).
[Crossref]

Lounis, B.

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[Crossref]

Maeda, M.

T. Ito, M. Maeda, K. Nakamura, H. Kato, and Y. Ohki, “Similarities in photoluminescence in hafnia and zirconia induced by ultraviolet photons,” J. Appl. Phys. 97(5), 054104 (2005).
[Crossref]

Markosyan, A.

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do defects play in the laser damage behavior of metal oxides?” Proc. SPIE 8530, 85300J (2012).
[Crossref]

Marozas, B.

S. Papernov, A. A. Kozlov, J. B. Oliver, T. J. Kessler, A. Shvydky, and B. Marozas, “Near-ultraviolet absorption annealing in hafnium oxide thin films subjected to continuous-wave laser radiation,” Opt. Eng. 53(12), 122504 (2014).
[Crossref]

Menoni, C. S.

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do defects play in the laser damage behavior of metal oxides?” Proc. SPIE 8530, 85300J (2012).
[Crossref]

D. N. Nguyen, L. A. Emmert, D. Patel, C. S. Menoni, and W. Rudolph, “Transient phenomena in the dielectric breakdown of HfO2 optical films probed by ultrafast laser pulse pairs,” Appl. Phys. Lett. 97(19), 191909 (2010).
[Crossref]

Mero, M.

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
[Crossref]

M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, “Femtosecond dynamics of dielectric films in the pre-ablation regime,” Appl. Phys., A Mater. Sci. Process. 81(2), 317–324 (2005).
[Crossref]

Mitard, J.

G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo, “Review on high-k dielectrics reliability issues,” IEEE Trans. Device Mater. Reliab. 5(1), 5–19 (2005).
[Crossref]

Monsieur, F.

G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo, “Review on high-k dielectrics reliability issues,” IEEE Trans. Device Mater. Reliab. 5(1), 5–19 (2005).
[Crossref]

Muñoz Ramo, D.

D. Muñoz Ramo, J. L. Gavartin, A. L. Shluger, and G. Bersuker, “Spectroscopic properties of oxygen vacancies in monoclinic HfO2 calculated with periodic and embedded cluster density functional theory,” Phys. Rev. B 75(20), 205336 (2007).
[Crossref]

D. Muñoz Ramo, A. L. Shluger, J. L. Gavartin, and G. Bersuker, “Theoretical prediction of intrinsic self-trapping of electrons and holes in monoclinic HfO2.,” Phys. Rev. Lett. 99(15), 155504 (2007).
[Crossref] [PubMed]

Murray, T.

S. Papernov, E. Shin, T. Murray, A. W. Schmid, and J. B. Oliver, “355-nm absorption in HfO2 and SiO2 monolayers with embedded Hf nanoclusters studied using photothermal heterodyne imaging,” Proc. SPIE 8530, 85301H (2012).
[Crossref]

Nakamura, K.

T. Ito, M. Maeda, K. Nakamura, H. Kato, and Y. Ohki, “Similarities in photoluminescence in hafnia and zirconia induced by ultraviolet photons,” J. Appl. Phys. 97(5), 054104 (2005).
[Crossref]

Natoli, J.-Y.

A. Ciapponi, F. R. Wagner, S. Palmier, J.-Y. Natoli, and L. Gallais, “Study of luminescent defects in hafnia thin films made with different deposition techniques,” J. Lumin. 129(12), 1786–1789 (2009).
[Crossref]

Nguyen, D. N.

D. N. Nguyen, L. A. Emmert, D. Patel, C. S. Menoni, and W. Rudolph, “Transient phenomena in the dielectric breakdown of HfO2 optical films probed by ultrafast laser pulse pairs,” Appl. Phys. Lett. 97(19), 191909 (2010).
[Crossref]

Ni, J.

J. Ni, Q. Zhou, Z. Li, and Z. Zhang, “Oxygen defect induced photoluminescence of HfO2 thin films,” Appl. Phys. Lett. 93(1), 011905 (2008).
[Crossref]

Nieminen, R. M.

A. S. Foster, F. Lopez Gejo, A. L. Shluger, and R. M. Nieminen, “Vacancy and interstitial defects in hafnia,” Phys. Rev. B 65(17), 174117 (2002).
[Crossref]

Nissen, J. A.

T. C. P. Chui, D. R. Swanson, M. J. Adriaans, J. A. Nissen, and J. A. Lipa, “Temperature fluctuations in the canonical ensemble,” Phys. Rev. Lett. 69(21), 3005–3008 (1992).
[Crossref] [PubMed]

Ohki, Y.

T. Ito, M. Maeda, K. Nakamura, H. Kato, and Y. Ohki, “Similarities in photoluminescence in hafnia and zirconia induced by ultraviolet photons,” J. Appl. Phys. 97(5), 054104 (2005).
[Crossref]

Oliver, J. B.

S. Papernov, A. A. Kozlov, J. B. Oliver, T. J. Kessler, A. Shvydky, and B. Marozas, “Near-ultraviolet absorption annealing in hafnium oxide thin films subjected to continuous-wave laser radiation,” Opt. Eng. 53(12), 122504 (2014).
[Crossref]

S. Papernov, E. Shin, T. Murray, A. W. Schmid, and J. B. Oliver, “355-nm absorption in HfO2 and SiO2 monolayers with embedded Hf nanoclusters studied using photothermal heterodyne imaging,” Proc. SPIE 8530, 85301H (2012).
[Crossref]

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351 nm,” Proc. SPIE 7132, 71320J (2008).
[Crossref]

Palmier, S.

A. Ciapponi, F. R. Wagner, S. Palmier, J.-Y. Natoli, and L. Gallais, “Study of luminescent defects in hafnia thin films made with different deposition techniques,” J. Lumin. 129(12), 1786–1789 (2009).
[Crossref]

Papernov, S.

S. Papernov, A. A. Kozlov, J. B. Oliver, T. J. Kessler, A. Shvydky, and B. Marozas, “Near-ultraviolet absorption annealing in hafnium oxide thin films subjected to continuous-wave laser radiation,” Opt. Eng. 53(12), 122504 (2014).
[Crossref]

S. Papernov, E. Shin, T. Murray, A. W. Schmid, and J. B. Oliver, “355-nm absorption in HfO2 and SiO2 monolayers with embedded Hf nanoclusters studied using photothermal heterodyne imaging,” Proc. SPIE 8530, 85301H (2012).
[Crossref]

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351 nm,” Proc. SPIE 7132, 71320J (2008).
[Crossref]

Parthasarathy, C.

G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo, “Review on high-k dielectrics reliability issues,” IEEE Trans. Device Mater. Reliab. 5(1), 5–19 (2005).
[Crossref]

Patel, D.

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do defects play in the laser damage behavior of metal oxides?” Proc. SPIE 8530, 85300J (2012).
[Crossref]

D. N. Nguyen, L. A. Emmert, D. Patel, C. S. Menoni, and W. Rudolph, “Transient phenomena in the dielectric breakdown of HfO2 optical films probed by ultrafast laser pulse pairs,” Appl. Phys. Lett. 97(19), 191909 (2010).
[Crossref]

Perevalov, T. V.

V. A. Gritsenko, D. R. Islamov, T. V. Perevalov, V. Sh. Aliev, A. P. Yelisseyev, E. E. Lomonova, V. A. Pustovarov, and A. Chin, “Oxygen vacancy in hafnia as a blue luminescence center and a trap of charge carriers,” J. Phys. Chem. C 120(36), 19,980–19,986 (2016).
[Crossref]

T. V. Perevalov, V. Sh. Aliev, V. A. Gritsenko, A. A. Saraev, V. V. Kaichev, E. V. Ivanova, and M. V. Zamoryanskaya, “The origin of 2.7 eV luminescence and 5.2 eV excitation band in hafnium oxide,” Appl. Phys. Lett. 104(7), 071904 (2014).
[Crossref]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Pustovarov, V. A.

V. A. Gritsenko, D. R. Islamov, T. V. Perevalov, V. Sh. Aliev, A. P. Yelisseyev, E. E. Lomonova, V. A. Pustovarov, and A. Chin, “Oxygen vacancy in hafnia as a blue luminescence center and a trap of charge carriers,” J. Phys. Chem. C 120(36), 19,980–19,986 (2016).
[Crossref]

Qi, J.

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289(Supplement C), 141–144 (2014).
[Crossref]

Qiang, Y.

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289(Supplement C), 141–144 (2014).
[Crossref]

Quesnel, D. J.

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77(12), 3277–3280 (1994).
[Crossref]

Rastorguev, A. A.

A. A. Rastorguev, V. I. Belyi, T. P. Smirnova, L. V. Yakovkina, M. V. Zamoryanskaya, V. A. Gritsenko, and H. Wong, “Luminescence of intrinsic and extrinsic defects in hafnium oxide films,” Phys. Rev. B 76(23), 235315 (2007).
[Crossref]

Reagan, B.

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do defects play in the laser damage behavior of metal oxides?” Proc. SPIE 8530, 85300J (2012).
[Crossref]

Ribes, G.

G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo, “Review on high-k dielectrics reliability issues,” IEEE Trans. Device Mater. Reliab. 5(1), 5–19 (2005).
[Crossref]

Rocca, J. J.

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do defects play in the laser damage behavior of metal oxides?” Proc. SPIE 8530, 85300J (2012).
[Crossref]

Route, R.

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do defects play in the laser damage behavior of metal oxides?” Proc. SPIE 8530, 85300J (2012).
[Crossref]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Rudolph, W.

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do defects play in the laser damage behavior of metal oxides?” Proc. SPIE 8530, 85300J (2012).
[Crossref]

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
[Crossref]

D. N. Nguyen, L. A. Emmert, D. Patel, C. S. Menoni, and W. Rudolph, “Transient phenomena in the dielectric breakdown of HfO2 optical films probed by ultrafast laser pulse pairs,” Appl. Phys. Lett. 97(19), 191909 (2010).
[Crossref]

M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, “Femtosecond dynamics of dielectric films in the pre-ablation regime,” Appl. Phys., A Mater. Sci. Process. 81(2), 317–324 (2005).
[Crossref]

Sabbah, A. J.

M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, “Femtosecond dynamics of dielectric films in the pre-ablation regime,” Appl. Phys., A Mater. Sci. Process. 81(2), 317–324 (2005).
[Crossref]

Saraev, A. A.

T. V. Perevalov, V. Sh. Aliev, V. A. Gritsenko, A. A. Saraev, V. V. Kaichev, E. V. Ivanova, and M. V. Zamoryanskaya, “The origin of 2.7 eV luminescence and 5.2 eV excitation band in hafnium oxide,” Appl. Phys. Lett. 104(7), 071904 (2014).
[Crossref]

Schmid, A. W.

S. Papernov, E. Shin, T. Murray, A. W. Schmid, and J. B. Oliver, “355-nm absorption in HfO2 and SiO2 monolayers with embedded Hf nanoclusters studied using photothermal heterodyne imaging,” Proc. SPIE 8530, 85301H (2012).
[Crossref]

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351 nm,” Proc. SPIE 7132, 71320J (2008).
[Crossref]

Shin, E.

S. Papernov, E. Shin, T. Murray, A. W. Schmid, and J. B. Oliver, “355-nm absorption in HfO2 and SiO2 monolayers with embedded Hf nanoclusters studied using photothermal heterodyne imaging,” Proc. SPIE 8530, 85301H (2012).
[Crossref]

Shluger, A. L.

D. Muñoz Ramo, J. L. Gavartin, A. L. Shluger, and G. Bersuker, “Spectroscopic properties of oxygen vacancies in monoclinic HfO2 calculated with periodic and embedded cluster density functional theory,” Phys. Rev. B 75(20), 205336 (2007).
[Crossref]

D. Muñoz Ramo, A. L. Shluger, J. L. Gavartin, and G. Bersuker, “Theoretical prediction of intrinsic self-trapping of electrons and holes in monoclinic HfO2.,” Phys. Rev. Lett. 99(15), 155504 (2007).
[Crossref] [PubMed]

A. S. Foster, F. Lopez Gejo, A. L. Shluger, and R. M. Nieminen, “Vacancy and interstitial defects in hafnia,” Phys. Rev. B 65(17), 174117 (2002).
[Crossref]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Shvydky, A.

S. Papernov, A. A. Kozlov, J. B. Oliver, T. J. Kessler, A. Shvydky, and B. Marozas, “Near-ultraviolet absorption annealing in hafnium oxide thin films subjected to continuous-wave laser radiation,” Opt. Eng. 53(12), 122504 (2014).
[Crossref]

Sildos, I.

M. Kirm, J. Aarik, M. Jürgens, and I. Sildos, “Thin films of HfO2 and ZrO2 as potential scintillators,” Nucl. Instrum. Methods Phys. Res. A 537(1), 251–255 (2005).
[Crossref]

Smirnova, T. P.

A. A. Rastorguev, V. I. Belyi, T. P. Smirnova, L. V. Yakovkina, M. V. Zamoryanskaya, V. A. Gritsenko, and H. Wong, “Luminescence of intrinsic and extrinsic defects in hafnium oxide films,” Phys. Rev. B 76(23), 235315 (2007).
[Crossref]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Sun, Z.

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do defects play in the laser damage behavior of metal oxides?” Proc. SPIE 8530, 85300J (2012).
[Crossref]

Swanson, D. R.

T. C. P. Chui, D. R. Swanson, M. J. Adriaans, J. A. Nissen, and J. A. Lipa, “Temperature fluctuations in the canonical ensemble,” Phys. Rev. Lett. 69(21), 3005–3008 (1992).
[Crossref] [PubMed]

Tait, A.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

Takeuchi, H.

H. Takeuchi, D. Ha, and T.-J. King, “Observation of bulk HfO2 defects by spectroscopic ellipsometry,” J. Vac. Sci. Technol. A 22(4), 1337–1341 (2004).
[Crossref]

Tao, C.

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289(Supplement C), 141–144 (2014).
[Crossref]

Vincent, E.

G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo, “Review on high-k dielectrics reliability issues,” IEEE Trans. Device Mater. Reliab. 5(1), 5–19 (2005).
[Crossref]

Wagner, F. R.

A. Ciapponi, F. R. Wagner, S. Palmier, J.-Y. Natoli, and L. Gallais, “Study of luminescent defects in hafnia thin films made with different deposition techniques,” J. Lumin. 129(12), 1786–1789 (2009).
[Crossref]

Wernsing, K.

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do defects play in the laser damage behavior of metal oxides?” Proc. SPIE 8530, 85300J (2012).
[Crossref]

Wong, H.

A. A. Rastorguev, V. I. Belyi, T. P. Smirnova, L. V. Yakovkina, M. V. Zamoryanskaya, V. A. Gritsenko, and H. Wong, “Luminescence of intrinsic and extrinsic defects in hafnium oxide films,” Phys. Rev. B 76(23), 235315 (2007).
[Crossref]

Xu, C.

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289(Supplement C), 141–144 (2014).
[Crossref]

Xu, Y.

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do defects play in the laser damage behavior of metal oxides?” Proc. SPIE 8530, 85300J (2012).
[Crossref]

Yakovkina, L. V.

A. A. Rastorguev, V. I. Belyi, T. P. Smirnova, L. V. Yakovkina, M. V. Zamoryanskaya, V. A. Gritsenko, and H. Wong, “Luminescence of intrinsic and extrinsic defects in hafnium oxide films,” Phys. Rev. B 76(23), 235315 (2007).
[Crossref]

Yelisseyev, A. P.

V. A. Gritsenko, D. R. Islamov, T. V. Perevalov, V. Sh. Aliev, A. P. Yelisseyev, E. E. Lomonova, V. A. Pustovarov, and A. Chin, “Oxygen vacancy in hafnia as a blue luminescence center and a trap of charge carriers,” J. Phys. Chem. C 120(36), 19,980–19,986 (2016).
[Crossref]

Yi, P.

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289(Supplement C), 141–144 (2014).
[Crossref]

Zamoryanskaya, M. V.

T. V. Perevalov, V. Sh. Aliev, V. A. Gritsenko, A. A. Saraev, V. V. Kaichev, E. V. Ivanova, and M. V. Zamoryanskaya, “The origin of 2.7 eV luminescence and 5.2 eV excitation band in hafnium oxide,” Appl. Phys. Lett. 104(7), 071904 (2014).
[Crossref]

A. A. Rastorguev, V. I. Belyi, T. P. Smirnova, L. V. Yakovkina, M. V. Zamoryanskaya, V. A. Gritsenko, and H. Wong, “Luminescence of intrinsic and extrinsic defects in hafnium oxide films,” Phys. Rev. B 76(23), 235315 (2007).
[Crossref]

Zeller, J.

M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, “Femtosecond dynamics of dielectric films in the pre-ablation regime,” Appl. Phys., A Mater. Sci. Process. 81(2), 317–324 (2005).
[Crossref]

Zhang, Z.

J. Ni, Q. Zhou, Z. Li, and Z. Zhang, “Oxygen defect induced photoluminescence of HfO2 thin films,” Appl. Phys. Lett. 93(1), 011905 (2008).
[Crossref]

Zhou, Q.

J. Ni, Q. Zhou, Z. Li, and Z. Zhang, “Oxygen defect induced photoluminescence of HfO2 thin films,” Appl. Phys. Lett. 93(1), 011905 (2008).
[Crossref]

Zhou, Y.

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77(12), 3277–3280 (1994).
[Crossref]

Appl. Phys. Lett. (4)

E.-A. Choi and K. J. Chang, “Charge-transition levels of oxygen vacancy as the origin of device instability in HfO2 gate stacks through quasiparticle energy calculations,” Appl. Phys. Lett. 94(12), 122901 (2009).
[Crossref]

D. N. Nguyen, L. A. Emmert, D. Patel, C. S. Menoni, and W. Rudolph, “Transient phenomena in the dielectric breakdown of HfO2 optical films probed by ultrafast laser pulse pairs,” Appl. Phys. Lett. 97(19), 191909 (2010).
[Crossref]

J. Ni, Q. Zhou, Z. Li, and Z. Zhang, “Oxygen defect induced photoluminescence of HfO2 thin films,” Appl. Phys. Lett. 93(1), 011905 (2008).
[Crossref]

T. V. Perevalov, V. Sh. Aliev, V. A. Gritsenko, A. A. Saraev, V. V. Kaichev, E. V. Ivanova, and M. V. Zamoryanskaya, “The origin of 2.7 eV luminescence and 5.2 eV excitation band in hafnium oxide,” Appl. Phys. Lett. 104(7), 071904 (2014).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, “Femtosecond dynamics of dielectric films in the pre-ablation regime,” Appl. Phys., A Mater. Sci. Process. 81(2), 317–324 (2005).
[Crossref]

Appl. Surf. Sci. (1)

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289(Supplement C), 141–144 (2014).
[Crossref]

IEEE Trans. Device Mater. Reliab. (1)

G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo, “Review on high-k dielectrics reliability issues,” IEEE Trans. Device Mater. Reliab. 5(1), 5–19 (2005).
[Crossref]

J. Am. Ceram. Soc. (1)

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77(12), 3277–3280 (1994).
[Crossref]

J. Appl. Phys. (4)

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
[Crossref]

T.-J. Chen and C.-L. Kuo, “First principles study of the structural, electronic, and dielectric properties of amorphous HfO2,” J. Appl. Phys. 110(6), 064105 (2011).
[Crossref]

T. Ito, M. Maeda, K. Nakamura, H. Kato, and Y. Ohki, “Similarities in photoluminescence in hafnia and zirconia induced by ultraviolet photons,” J. Appl. Phys. 97(5), 054104 (2005).
[Crossref]

J. Lumin. (1)

A. Ciapponi, F. R. Wagner, S. Palmier, J.-Y. Natoli, and L. Gallais, “Study of luminescent defects in hafnia thin films made with different deposition techniques,” J. Lumin. 129(12), 1786–1789 (2009).
[Crossref]

J. Phys. Chem. C (1)

V. A. Gritsenko, D. R. Islamov, T. V. Perevalov, V. Sh. Aliev, A. P. Yelisseyev, E. E. Lomonova, V. A. Pustovarov, and A. Chin, “Oxygen vacancy in hafnia as a blue luminescence center and a trap of charge carriers,” J. Phys. Chem. C 120(36), 19,980–19,986 (2016).
[Crossref]

J. Vac. Sci. Technol. A (1)

H. Takeuchi, D. Ha, and T.-J. King, “Observation of bulk HfO2 defects by spectroscopic ellipsometry,” J. Vac. Sci. Technol. A 22(4), 1337–1341 (2004).
[Crossref]

Nucl. Instrum. Methods Phys. Res. A (1)

M. Kirm, J. Aarik, M. Jürgens, and I. Sildos, “Thin films of HfO2 and ZrO2 as potential scintillators,” Nucl. Instrum. Methods Phys. Res. A 537(1), 251–255 (2005).
[Crossref]

Opt. Eng. (1)

S. Papernov, A. A. Kozlov, J. B. Oliver, T. J. Kessler, A. Shvydky, and B. Marozas, “Near-ultraviolet absorption annealing in hafnium oxide thin films subjected to continuous-wave laser radiation,” Opt. Eng. 53(12), 122504 (2014).
[Crossref]

Phys. Rev. B (4)

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[Crossref]

A. A. Rastorguev, V. I. Belyi, T. P. Smirnova, L. V. Yakovkina, M. V. Zamoryanskaya, V. A. Gritsenko, and H. Wong, “Luminescence of intrinsic and extrinsic defects in hafnium oxide films,” Phys. Rev. B 76(23), 235315 (2007).
[Crossref]

A. S. Foster, F. Lopez Gejo, A. L. Shluger, and R. M. Nieminen, “Vacancy and interstitial defects in hafnia,” Phys. Rev. B 65(17), 174117 (2002).
[Crossref]

D. Muñoz Ramo, J. L. Gavartin, A. L. Shluger, and G. Bersuker, “Spectroscopic properties of oxygen vacancies in monoclinic HfO2 calculated with periodic and embedded cluster density functional theory,” Phys. Rev. B 75(20), 205336 (2007).
[Crossref]

Phys. Rev. B Condens. Matter (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

D. M. Calistru, S. G. Demos, and R. R. Alfano, “Dynamics of local modes during nonradiative relaxation,” Phys. Rev. Lett. 78(2), 374–377 (1997).
[Crossref]

T. C. P. Chui, D. R. Swanson, M. J. Adriaans, J. A. Nissen, and J. A. Lipa, “Temperature fluctuations in the canonical ensemble,” Phys. Rev. Lett. 69(21), 3005–3008 (1992).
[Crossref] [PubMed]

D. Muñoz Ramo, A. L. Shluger, J. L. Gavartin, and G. Bersuker, “Theoretical prediction of intrinsic self-trapping of electrons and holes in monoclinic HfO2.,” Phys. Rev. Lett. 99(15), 155504 (2007).
[Crossref] [PubMed]

Proc. SPIE (3)

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do defects play in the laser damage behavior of metal oxides?” Proc. SPIE 8530, 85300J (2012).
[Crossref]

J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351 nm,” Proc. SPIE 7132, 71320J (2008).
[Crossref]

S. Papernov, E. Shin, T. Murray, A. W. Schmid, and J. B. Oliver, “355-nm absorption in HfO2 and SiO2 monolayers with embedded Hf nanoclusters studied using photothermal heterodyne imaging,” Proc. SPIE 8530, 85301H (2012).
[Crossref]

Other (4)

L. Skuja, “Optical properties of defects in silica,” in Defects in SiO2 and Related Dielectrics: Science and Technology, G. Pacchioni, L. Skuja, and D. L. Griscom eds., Nato Science Series II (Kluwer Academic Publishers, The Netherlands, 2000), pp. 73−116.

H. K. Pulker, “Film deposition methods,” in Optical Interference Coatings, N. Kaiser and H. K. Pulker eds., Springer Series in Optical Sciences, A. Adibi, T. W. Hänsch, F. Krausz, B. R. Masters, H. Venghaus, H. Weber, H. Weinfurter, and K. Midorikawa eds. (Springer-Verlag, Berlin, 2003), pp. 131−154.

A. Guinier, X-Ray Diffraction: In Crystals, Imperfect Crystals, and Amorphous Bodies (W. H. Freeman, San Francisco, 1963).

B. Roshanzadeh, S. T. P. Boyd, and W. Rudolph, University of New Mexico, (private communication, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic of the nanoKelvin calorimeter setup. SQUID: superconducting quantum interference device.
Fig. 2
Fig. 2 Schematic of the photothermal heterodyne imaging and luminescence setup. For luminescence measurements, the high-numerical-aperture (N.A.) objective is replaced by a 6-mm fused-silica focus lens.
Fig. 3
Fig. 3 X-Ray diffraction spectra of (a) e-beam films; standard EB1 film and EB2 film with reduced oxygen content show predominantly monoclinic crystalline structure. (b) Ion-beam sputtered films; standard (middle trace), with excessive oxygen (upper trace), and reduced oxygen content (lower trace) showed pure amorphous structure. The shift in the broad peak position reflects a change in the average interatomic distance.
Fig. 4
Fig. 4 Absorption spectra of e-beam films, EB1 and EB2, and a substrate recorded in the range 325 nm to 1400 nm by the nanoKelvin calorimeter. A bare substrate was measured as a reference. The absorption spectra of the films were obtained after subtracting the substrate absorption and taking into account film interference effects.
Fig. 5
Fig. 5 Energy diagram based on results of theoretical ab initio calculations [8] illustrating possible optical excitation and relaxation (nonradiative and radiative) processes.
Fig. 6
Fig. 6 Photothermal maps and corresponding cross sections for e-beam and ion-beam−sputtered (IBS) films exposed for 5 min at the map center by 355-nm, few-mW laser radiation focused into a 0.5-μm spot. (a) EB2 film showing strong absorption annealing effect, (b) IBS1 film with no absorption annealing, and (c) IBS2 film with ~25% reduction in photothermal signal.
Fig. 7
Fig. 7 Example of luminescence annealing kinetics for EB2 film and 440-nm wavelength.
Fig. 8
Fig. 8 Corrected for sensitivity luminescence spectra of (a) stoichiometric EB1 film and (b) EB3 film with reduced oxygen content. Spectra can be well approximated by convolution of the four Gaussian bands (dashed lines) shown on the graphs as L1, L2, L3, and L4. Dots represent experimental points. The solid line is a sum of Gaussian components.
Fig. 9
Fig. 9 Comparison of luminescence spectra for stoichiometric film (EB1) and film with reduced oxygen content (EB3). Oxygen reduction leads to lower luminescence intensities at shorter wavelengths (reduction of oxygen interstitials) and enhanced luminescence at wavelengths >500 nm attributed to oxygen-vacancy formation.
Fig. 10
Fig. 10 Luminescence annealing kinetics for EB2 film sample at four selected wavelength positions. The difference in kinetics suggests contributions to luminescence from several different defect states.
Fig. 11
Fig. 11 Luminescence peak signal for e-beam films EB1, EB2, and EB3 at four selected wavelength positions. [(a)–(d)] Small laser beam spot (high-intensity regime). Notable is the absence of luminescence signal correlation with oxygen content at 440 nm, modest correlation at 510 nm, and strong correlation at longer wavelength, 565 nm and 660 nm. [(e)–(g)] Large laser beam spot (low-intensity regime). No correlation with oxygen content at 440 nm and 510 nm and strong correlation at 565 nm.
Fig. 12
Fig. 12 Example of 660-nm wavelength luminescence kinetics with ~1.1-μs lifetime for film EB3 with reduced oxygen content.
Fig. 13
Fig. 13 Schematic presentation of the luminescence band L1, L2, L3, and L4 formation resulting from electron excitation from defect states to the conduction band by a 355-nm photon.

Tables (4)

Tables Icon

Table 1 HfOx film deposition conditions and x-ray photoelectron spectroscopy (XPS) measurement results. Column xnorm shows XPS data normalized to perfectly stoichiometric O/Hf atomic ratios for standard samples EB1 and IBS1.

Tables Icon

Table 2 Photothermal measurements show enhanced absorption at 355 nm for films with reduced oxygen content. Enhanced absorption for ion-beam–sputtering (IBS) film with extra oxygen is attributed to structural defects other than oxygen vacancy

Tables Icon

Table 3 Luminescence lifetimes (in μs) measured for e-beam films at four selected wavelengths. Only nanosecond-scale lifetimes were recorded for standard (EB1) film. Films with reduced oxygen showed both nanosecond- and microsecond-scale luminescence. The latter is attributed to oxygen vacancies.

Tables Icon

Table 4 Single-shot nanosecond and femtosecond damage thresholds.

Metrics