Abstract

We demonstrate a free-space-based multiple-access frequency dissemination with an optical frequency comb by using a passive phase conjunction correction technique. Timing fluctuations and Allan Deviations are both measured to characterize the excess frequency instability incurred during the frequency transfer process. By reproducing a 2 GHz radio-frequency signal at a middle point over a 60-m long free-space link in 5000 s, the total root-mean-square (RMS) timing fluctuation was measured to be about 224 fs with a fractional frequency instability on the order of 8 × 10−14 at 1 s and 1 × 10−16 at 1000 s. This free-space-based multiple-access frequency transfer with passive phase conjunction correction can be used to disseminate a stable frequency signal at an arbitrary point in a free-space link.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond-level timing fluctuation suppression in atmospheric frequency transfer with passive phase conjunction correction

Fuyu Sun, Dong Hou, Danian Zhang, Jie Tian, Jianguo Hu, Xianhe Huang, and Shijun Chen
Opt. Express 25(18) 21312-21320 (2017)

Stable frequency dissemination over multi-access fiber loop link with optical comb

Jianming Shang, Tianwei Jiang, Chenxia Liu, Xing Chen, Yueming Lu, Song Yu, and Hong Guo
Opt. Express 26(26) 33888-33894 (2018)

WDM-based radio frequency dissemination in a tree-topology fiber optic network

Longqiang Yu, Rong Wang, Lin Lu, Yong Zhu, Jilin Zheng, Chuanxin Wu, Baofu Zhang, and Peizhang Wang
Opt. Express 23(15) 19783-19792 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Levine, “A review of time and frequency transfer methods,” Metrologia 45(6), 162–174 (2008).
    [Crossref]
  2. B. H. Li, C. Rizos, H. K. Lee, and H. K. Lee, “A GPS-slaved time synchronization system for hybrid navigation,” GPS Solut. 10(3), 207–217 (2006).
    [Crossref]
  3. W. Q. Wang, C. B. Ding, and X. D. Liang, “Time and phase synchronisation via direct-path signal for bistatic synthetic aperture radar systems,” IET Radar Sonar & Navigation 2(1), 1–11 (2008).
    [Crossref]
  4. L. S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19(21), 1777–1779 (1994).
    [Crossref] [PubMed]
  5. F. Yin, A. Zhang, Y. Dai, T. Ren, K. Xu, J. Li, J. Lin, and G. Tang, “Phase-conjugation-based fast RF phase stabilization for fiber delivery,” Opt. Express 22(1), 878–884 (2014).
    [Crossref] [PubMed]
  6. D. Li, D. Hou, E. Hu, and J. Zhao, “Phase conjugation frequency dissemination based on harmonics of optical comb at 10−17 instability level,” Opt. Lett. 39(17), 5058–5061 (2014).
    [Crossref] [PubMed]
  7. B. Sprenger, J. Zhang, Z. H. Lu, and L. J. Wang, “Atmospheric transfer of optical and radio frequency clock signals,” Opt. Lett. 34(7), 965–967 (2009).
    [Crossref] [PubMed]
  8. R. P. Gollapalli and L. Duan, “Atmospheric timing transfer using a femtosecond frequency comb,” IEEE Photonics J. 2(6), 904–910 (2010).
    [Crossref]
  9. R. P. Gollapalli and L. Duan, “Multiheterodyne characterization of excess phase noise in atmospheric transfer of a femtosecond-laser frequency comb,” J. Lightwave Technol. 29(22), 3401–3407 (2011).
    [Crossref]
  10. J. Nie, L. Yang, and L. Duan, “Atmospheric transfer of a radio-frequency clock signal with a diode laser,” Appl. Opt. 51(34), 8190–8194 (2012).
    [Crossref] [PubMed]
  11. F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–439 (2013).
    [Crossref]
  12. H. Bergeron, L. C. Sinclair, W. C. Swann, C. W. Nelson, J. D. Deschênes, E. Baumann, F. R. Giorgetta, I. Coddington, and N. R. Newbury, “Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path,” Optica 3(4), 441–447 (2016).
    [Crossref] [PubMed]
  13. L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
    [Crossref] [PubMed]
  14. J. Kang, J. Shin, C. Kim, K. Jung, S. Park, and J. Kim, “Few-femtosecond-resolution characterization and suppression of excess timing jitter and drift in indoor atmospheric frequency comb transfer,” Opt. Express 22(21), 26023–26031 (2014).
    [Crossref] [PubMed]
  15. S. Chen, F. Sun, Q. Bai, D. Chen, Q. Chen, and D. Hou, “Sub-picosecond timing fluctuation suppression in laser-based atmospheric transfer of microwave signal using electronic phase compensation,” Opt. Commun. 401(15), 18–22 (2017).
    [Crossref]
  16. F. Sun, D. Hou, D. Zhang, J. Tian, J. Hu, X. Huang, and S. Chen, “Femtosecond-level timing fluctuation suppression in atmospheric frequency transfer with passive phase conjunction correction,” Opt. Express 25(18), 21312–21320 (2017).
    [Crossref] [PubMed]
  17. C. Gao, B. Wang, W. L. Chen, Y. Bai, J. Miao, X. Zhu, T. C. Li, and L. J. Wang, “Fiber-based multiple-access ultrastable frequency dissemination,” Opt. Lett. 37(22), 4690–4692 (2012).
    [Crossref] [PubMed]
  18. C. Liu, T. Jiang, M. Chen, S. Yu, R. Wu, J. Shang, J. Duan, and W. Gu, “GVD-insensitive stable radio frequency phase dissemination for arbitrary-access loop link,” Opt. Express 24(20), 23376–23382 (2016).
    [Crossref] [PubMed]
  19. H. Li, G. Wu, J. Zhang, J. Shen, and J. Chen, “Multi-access fiber-optic radio frequency transfer with passive phase noise compensation,” Opt. Lett. 41(24), 5672–5675 (2016).
    [Crossref] [PubMed]
  20. Y. Bai, B. Wang, X. Zhu, C. Gao, J. Miao, and L. J. Wang, “Fiber-based multiple-access optical frequency dissemination,” Opt. Lett. 38(17), 3333–3335 (2013).
    [Crossref] [PubMed]
  21. A. Bercy, S. Guellati-Khelifa, F. Stefani, G. Santarelli, C. Chardonnet, P. Pottie, O. Lopez, and A. Amy-Klein, “In-line extraction of an ultrastable frequency signal over an optical fiber link,” J. Opt. Soc. Am. B 31(4), 678–685 (2014).
    [Crossref]
  22. Ł. Śliwczyński and P. Krehlik, “Multipoint Joint Time and Frequency Dissemination in Delay-Stabilized Fiber Optic Links,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(3), 412–420 (2015).
    [Crossref] [PubMed]
  23. Y. Yuan, B. Wang, C. Gao, and L. Wang, “Fiber-based multiple access timing signal synchronization technique,” Chin. Phys. B 26(4), 040601 (2017).
    [Crossref]
  24. S. Zhang and J. Zhao, “Frequency comb-based multiple-access ultrastable frequency dissemination with 7 × 10(-17) instability,” Opt. Lett. 40(1), 37–40 (2015).
    [Crossref] [PubMed]
  25. L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
    [Crossref]
  26. C. Robert, J. M. Conan, and P. Wolf, “Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links,” Phys. Rev. A 93(3), 033860 (2016).
    [Crossref]
  27. Microsemi, “DS-5071a,” http://www.microsemi.com/products/timing-synchronizationsystems/time-frequency-references/cesium-frequency-standards/5071a , (2014).
  28. http://www.symmetricom.com/products/frequency-references/active-hydrogen-maser/MHM-2010/ , (2011).

2017 (3)

S. Chen, F. Sun, Q. Bai, D. Chen, Q. Chen, and D. Hou, “Sub-picosecond timing fluctuation suppression in laser-based atmospheric transfer of microwave signal using electronic phase compensation,” Opt. Commun. 401(15), 18–22 (2017).
[Crossref]

F. Sun, D. Hou, D. Zhang, J. Tian, J. Hu, X. Huang, and S. Chen, “Femtosecond-level timing fluctuation suppression in atmospheric frequency transfer with passive phase conjunction correction,” Opt. Express 25(18), 21312–21320 (2017).
[Crossref] [PubMed]

Y. Yuan, B. Wang, C. Gao, and L. Wang, “Fiber-based multiple access timing signal synchronization technique,” Chin. Phys. B 26(4), 040601 (2017).
[Crossref]

2016 (5)

C. Robert, J. M. Conan, and P. Wolf, “Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links,” Phys. Rev. A 93(3), 033860 (2016).
[Crossref]

C. Liu, T. Jiang, M. Chen, S. Yu, R. Wu, J. Shang, J. Duan, and W. Gu, “GVD-insensitive stable radio frequency phase dissemination for arbitrary-access loop link,” Opt. Express 24(20), 23376–23382 (2016).
[Crossref] [PubMed]

H. Li, G. Wu, J. Zhang, J. Shen, and J. Chen, “Multi-access fiber-optic radio frequency transfer with passive phase noise compensation,” Opt. Lett. 41(24), 5672–5675 (2016).
[Crossref] [PubMed]

H. Bergeron, L. C. Sinclair, W. C. Swann, C. W. Nelson, J. D. Deschênes, E. Baumann, F. R. Giorgetta, I. Coddington, and N. R. Newbury, “Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path,” Optica 3(4), 441–447 (2016).
[Crossref] [PubMed]

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref] [PubMed]

2015 (2)

S. Zhang and J. Zhao, “Frequency comb-based multiple-access ultrastable frequency dissemination with 7 × 10(-17) instability,” Opt. Lett. 40(1), 37–40 (2015).
[Crossref] [PubMed]

Ł. Śliwczyński and P. Krehlik, “Multipoint Joint Time and Frequency Dissemination in Delay-Stabilized Fiber Optic Links,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(3), 412–420 (2015).
[Crossref] [PubMed]

2014 (5)

2013 (2)

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–439 (2013).
[Crossref]

Y. Bai, B. Wang, X. Zhu, C. Gao, J. Miao, and L. J. Wang, “Fiber-based multiple-access optical frequency dissemination,” Opt. Lett. 38(17), 3333–3335 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (1)

2010 (1)

R. P. Gollapalli and L. Duan, “Atmospheric timing transfer using a femtosecond frequency comb,” IEEE Photonics J. 2(6), 904–910 (2010).
[Crossref]

2009 (1)

2008 (2)

J. Levine, “A review of time and frequency transfer methods,” Metrologia 45(6), 162–174 (2008).
[Crossref]

W. Q. Wang, C. B. Ding, and X. D. Liang, “Time and phase synchronisation via direct-path signal for bistatic synthetic aperture radar systems,” IET Radar Sonar & Navigation 2(1), 1–11 (2008).
[Crossref]

2006 (1)

B. H. Li, C. Rizos, H. K. Lee, and H. K. Lee, “A GPS-slaved time synchronization system for hybrid navigation,” GPS Solut. 10(3), 207–217 (2006).
[Crossref]

1994 (1)

Amy-Klein, A.

Bai, Q.

S. Chen, F. Sun, Q. Bai, D. Chen, Q. Chen, and D. Hou, “Sub-picosecond timing fluctuation suppression in laser-based atmospheric transfer of microwave signal using electronic phase compensation,” Opt. Commun. 401(15), 18–22 (2017).
[Crossref]

Bai, Y.

Baumann, E.

H. Bergeron, L. C. Sinclair, W. C. Swann, C. W. Nelson, J. D. Deschênes, E. Baumann, F. R. Giorgetta, I. Coddington, and N. R. Newbury, “Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path,” Optica 3(4), 441–447 (2016).
[Crossref] [PubMed]

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref] [PubMed]

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–439 (2013).
[Crossref]

Bercy, A.

Bergeron, H.

H. Bergeron, L. C. Sinclair, W. C. Swann, C. W. Nelson, J. D. Deschênes, E. Baumann, F. R. Giorgetta, I. Coddington, and N. R. Newbury, “Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path,” Optica 3(4), 441–447 (2016).
[Crossref] [PubMed]

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref] [PubMed]

Cermak, M.

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref] [PubMed]

Chardonnet, C.

Chen, D.

S. Chen, F. Sun, Q. Bai, D. Chen, Q. Chen, and D. Hou, “Sub-picosecond timing fluctuation suppression in laser-based atmospheric transfer of microwave signal using electronic phase compensation,” Opt. Commun. 401(15), 18–22 (2017).
[Crossref]

Chen, J.

Chen, M.

Chen, Q.

S. Chen, F. Sun, Q. Bai, D. Chen, Q. Chen, and D. Hou, “Sub-picosecond timing fluctuation suppression in laser-based atmospheric transfer of microwave signal using electronic phase compensation,” Opt. Commun. 401(15), 18–22 (2017).
[Crossref]

Chen, S.

S. Chen, F. Sun, Q. Bai, D. Chen, Q. Chen, and D. Hou, “Sub-picosecond timing fluctuation suppression in laser-based atmospheric transfer of microwave signal using electronic phase compensation,” Opt. Commun. 401(15), 18–22 (2017).
[Crossref]

F. Sun, D. Hou, D. Zhang, J. Tian, J. Hu, X. Huang, and S. Chen, “Femtosecond-level timing fluctuation suppression in atmospheric frequency transfer with passive phase conjunction correction,” Opt. Express 25(18), 21312–21320 (2017).
[Crossref] [PubMed]

Chen, W. L.

Coddington, I.

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref] [PubMed]

H. Bergeron, L. C. Sinclair, W. C. Swann, C. W. Nelson, J. D. Deschênes, E. Baumann, F. R. Giorgetta, I. Coddington, and N. R. Newbury, “Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path,” Optica 3(4), 441–447 (2016).
[Crossref] [PubMed]

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–439 (2013).
[Crossref]

Conan, J. M.

C. Robert, J. M. Conan, and P. Wolf, “Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links,” Phys. Rev. A 93(3), 033860 (2016).
[Crossref]

Dai, Y.

Dennis, M. L.

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref] [PubMed]

Deschênes, J. D.

H. Bergeron, L. C. Sinclair, W. C. Swann, C. W. Nelson, J. D. Deschênes, E. Baumann, F. R. Giorgetta, I. Coddington, and N. R. Newbury, “Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path,” Optica 3(4), 441–447 (2016).
[Crossref] [PubMed]

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref] [PubMed]

Ding, C. B.

W. Q. Wang, C. B. Ding, and X. D. Liang, “Time and phase synchronisation via direct-path signal for bistatic synthetic aperture radar systems,” IET Radar Sonar & Navigation 2(1), 1–11 (2008).
[Crossref]

Duan, J.

Duan, L.

Gao, C.

Giorgetta, F. R.

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref] [PubMed]

H. Bergeron, L. C. Sinclair, W. C. Swann, C. W. Nelson, J. D. Deschênes, E. Baumann, F. R. Giorgetta, I. Coddington, and N. R. Newbury, “Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path,” Optica 3(4), 441–447 (2016).
[Crossref] [PubMed]

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–439 (2013).
[Crossref]

Gollapalli, R. P.

Gu, W.

Guellati-Khelifa, S.

Hall, J. L.

Hou, D.

Hu, E.

Hu, J.

Huang, X.

Jiang, T.

Juarez, J. C.

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref] [PubMed]

Jung, K.

Jungner, P.

Kang, J.

Khader, I.

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref] [PubMed]

Kim, C.

Kim, J.

Krehlik, P.

Ł. Śliwczyński and P. Krehlik, “Multipoint Joint Time and Frequency Dissemination in Delay-Stabilized Fiber Optic Links,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(3), 412–420 (2015).
[Crossref] [PubMed]

Lee, H. K.

B. H. Li, C. Rizos, H. K. Lee, and H. K. Lee, “A GPS-slaved time synchronization system for hybrid navigation,” GPS Solut. 10(3), 207–217 (2006).
[Crossref]

B. H. Li, C. Rizos, H. K. Lee, and H. K. Lee, “A GPS-slaved time synchronization system for hybrid navigation,” GPS Solut. 10(3), 207–217 (2006).
[Crossref]

Levine, J.

J. Levine, “A review of time and frequency transfer methods,” Metrologia 45(6), 162–174 (2008).
[Crossref]

Li, B. H.

B. H. Li, C. Rizos, H. K. Lee, and H. K. Lee, “A GPS-slaved time synchronization system for hybrid navigation,” GPS Solut. 10(3), 207–217 (2006).
[Crossref]

Li, D.

Li, H.

Li, J.

Li, T. C.

Liang, X. D.

W. Q. Wang, C. B. Ding, and X. D. Liang, “Time and phase synchronisation via direct-path signal for bistatic synthetic aperture radar systems,” IET Radar Sonar & Navigation 2(1), 1–11 (2008).
[Crossref]

Lin, J.

Liu, C.

Lopez, O.

Lu, Z. H.

Ma, L. S.

Miao, J.

Nelson, C. W.

Newbury, N. R.

H. Bergeron, L. C. Sinclair, W. C. Swann, C. W. Nelson, J. D. Deschênes, E. Baumann, F. R. Giorgetta, I. Coddington, and N. R. Newbury, “Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path,” Optica 3(4), 441–447 (2016).
[Crossref] [PubMed]

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref] [PubMed]

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–439 (2013).
[Crossref]

Nie, J.

Park, S.

Petrillo, K. G.

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref] [PubMed]

Pottie, P.

Ren, T.

Rizos, C.

B. H. Li, C. Rizos, H. K. Lee, and H. K. Lee, “A GPS-slaved time synchronization system for hybrid navigation,” GPS Solut. 10(3), 207–217 (2006).
[Crossref]

Robert, C.

C. Robert, J. M. Conan, and P. Wolf, “Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links,” Phys. Rev. A 93(3), 033860 (2016).
[Crossref]

Santarelli, G.

Shang, J.

Shen, J.

Shin, J.

Sinclair, L. C.

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref] [PubMed]

H. Bergeron, L. C. Sinclair, W. C. Swann, C. W. Nelson, J. D. Deschênes, E. Baumann, F. R. Giorgetta, I. Coddington, and N. R. Newbury, “Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path,” Optica 3(4), 441–447 (2016).
[Crossref] [PubMed]

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–439 (2013).
[Crossref]

Sliwczynski, L.

Ł. Śliwczyński and P. Krehlik, “Multipoint Joint Time and Frequency Dissemination in Delay-Stabilized Fiber Optic Links,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(3), 412–420 (2015).
[Crossref] [PubMed]

Souza, K. T.

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref] [PubMed]

Sprenger, B.

Stefani, F.

Sun, F.

S. Chen, F. Sun, Q. Bai, D. Chen, Q. Chen, and D. Hou, “Sub-picosecond timing fluctuation suppression in laser-based atmospheric transfer of microwave signal using electronic phase compensation,” Opt. Commun. 401(15), 18–22 (2017).
[Crossref]

F. Sun, D. Hou, D. Zhang, J. Tian, J. Hu, X. Huang, and S. Chen, “Femtosecond-level timing fluctuation suppression in atmospheric frequency transfer with passive phase conjunction correction,” Opt. Express 25(18), 21312–21320 (2017).
[Crossref] [PubMed]

Swann, W. C.

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref] [PubMed]

H. Bergeron, L. C. Sinclair, W. C. Swann, C. W. Nelson, J. D. Deschênes, E. Baumann, F. R. Giorgetta, I. Coddington, and N. R. Newbury, “Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path,” Optica 3(4), 441–447 (2016).
[Crossref] [PubMed]

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–439 (2013).
[Crossref]

Tang, G.

Tian, J.

Wang, B.

Wang, L.

Y. Yuan, B. Wang, C. Gao, and L. Wang, “Fiber-based multiple access timing signal synchronization technique,” Chin. Phys. B 26(4), 040601 (2017).
[Crossref]

Wang, L. J.

Wang, W. Q.

W. Q. Wang, C. B. Ding, and X. D. Liang, “Time and phase synchronisation via direct-path signal for bistatic synthetic aperture radar systems,” IET Radar Sonar & Navigation 2(1), 1–11 (2008).
[Crossref]

Wolf, P.

C. Robert, J. M. Conan, and P. Wolf, “Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links,” Phys. Rev. A 93(3), 033860 (2016).
[Crossref]

Wu, G.

Wu, R.

Xu, K.

Yang, L.

Ye, J.

Yin, F.

Yu, S.

Yuan, Y.

Y. Yuan, B. Wang, C. Gao, and L. Wang, “Fiber-based multiple access timing signal synchronization technique,” Chin. Phys. B 26(4), 040601 (2017).
[Crossref]

Zhang, A.

Zhang, D.

Zhang, J.

Zhang, S.

Zhao, J.

Zhu, X.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

L. C. Sinclair, W. C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J. D. Deschênes, F. R. Giorgetta, J. C. Juarez, I. Khader, K. G. Petrillo, K. T. Souza, M. L. Dennis, and N. R. Newbury, “Synchronization of clocks through 12 km of strongly turbulent air over a city,” Appl. Phys. Lett. 109(15), 151104 (2016).
[Crossref] [PubMed]

Chin. Phys. B (1)

Y. Yuan, B. Wang, C. Gao, and L. Wang, “Fiber-based multiple access timing signal synchronization technique,” Chin. Phys. B 26(4), 040601 (2017).
[Crossref]

GPS Solut. (1)

B. H. Li, C. Rizos, H. K. Lee, and H. K. Lee, “A GPS-slaved time synchronization system for hybrid navigation,” GPS Solut. 10(3), 207–217 (2006).
[Crossref]

IEEE Photonics J. (1)

R. P. Gollapalli and L. Duan, “Atmospheric timing transfer using a femtosecond frequency comb,” IEEE Photonics J. 2(6), 904–910 (2010).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

Ł. Śliwczyński and P. Krehlik, “Multipoint Joint Time and Frequency Dissemination in Delay-Stabilized Fiber Optic Links,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(3), 412–420 (2015).
[Crossref] [PubMed]

IET Radar Sonar & Navigation (1)

W. Q. Wang, C. B. Ding, and X. D. Liang, “Time and phase synchronisation via direct-path signal for bistatic synthetic aperture radar systems,” IET Radar Sonar & Navigation 2(1), 1–11 (2008).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Metrologia (1)

J. Levine, “A review of time and frequency transfer methods,” Metrologia 45(6), 162–174 (2008).
[Crossref]

Nat. Photonics (1)

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–439 (2013).
[Crossref]

Opt. Commun. (1)

S. Chen, F. Sun, Q. Bai, D. Chen, Q. Chen, and D. Hou, “Sub-picosecond timing fluctuation suppression in laser-based atmospheric transfer of microwave signal using electronic phase compensation,” Opt. Commun. 401(15), 18–22 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (7)

Optica (1)

Phys. Rev. A (2)

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

C. Robert, J. M. Conan, and P. Wolf, “Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links,” Phys. Rev. A 93(3), 033860 (2016).
[Crossref]

Other (2)

Microsemi, “DS-5071a,” http://www.microsemi.com/products/timing-synchronizationsystems/time-frequency-references/cesium-frequency-standards/5071a , (2014).

http://www.symmetricom.com/products/frequency-references/active-hydrogen-maser/MHM-2010/ , (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Experimental setup of free-space-based multiple-access frequency transfer with OFC by using passive phase conjunction correction. PD: photodiode, HM: half-reflecting mirror, PI: proportional-integral controller, BPF: band-pass filter. V1… Vn, are harmonics of the OFC.
Fig. 2
Fig. 2 Timing fluctuation results for free-space-based multiple-access frequency transfer. Curve (i): Without timing fluctuation suppression. (ii): With timing fluctuation suppression. Curve (iii): The result for the 30-m long short fiber link as a measurement floor. Sample rate is 1 point/second for all curves.
Fig. 3
Fig. 3 Instability results for free-space-based multiple-access frequency transfer, (i) Relative Allan deviation between transferred microwave and reference signal without timing fluctuation suppression; (ii) Relative Allan deviation with timing fluctuation suppression; (iii) Allan deviation for a short link as measurement floor.

Metrics