Abstract

A method to optimize the spectral performance of 193 nm antireflective (AR) coating with a broad range of angle of incidence (AOI) on strongly curved spherical substrates is described. In this method, the actual film thickness on test plates for single-layer LaF3 and MgF2 films are corrected by measuring the relationship between the film thickness on test plates and that on quartz crystal microbalance. Interface roughness in multi-layer AR coating is obtained from atomic force microscopy measurements and its effect on the spectrum of the multi-layer is taken into account in this method by being simulated as a homogeneous sublayer. Porosities of the sublayers in AR coatings are obtained by reversely engineering the residual reflectance of the coatings/substrate/coating stacks. The obtained refractive indices and thicknesses in the multilayer are then used for analysis and optimization of the spectrum of 193 nm AR coatings. For strongly curved spherical surfaces, spectrum uniformity of the AR coating is optimized by taking into consideration simultaneously the merit functions at different positions of spherical substrates. This work provides a general solution to the performance optimization of 193 nm AR coatings with broad AOI range and on strongly curved spherical substrates.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optimal design and fabrication method for antireflection coatings for P-polarized 193 nm laser beam at large angles of incidence (68°–74°)

Jingcheng Jin, Chunshui Jin, Chun Li, Wenyuan Deng, and Yanhe Chang
J. Opt. Soc. Am. A 30(9) 1768-1771 (2013)

Antireflection coatings for UV radiation obtained by molecular-beam deposition

S. Laux, K. Mann, B. Granitza, U. Kaiser, and W. Richter
Appl. Opt. 35(31) 6216-6218 (1996)

Angle-of-incidence performance of random anti-reflection structures on curved surfaces

C. D. Taylor, L. E. Busse, J. Frantz, J. S. Sanghera, I. D. Aggarwal, and M. K. Poutous
Appl. Opt. 55(9) 2203-2213 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. K. Wong, “Microlithography: trend, challenges, solutions, and their impact on design,” Micro. IEEE 23(2), 12–21 (2003).
    [Crossref]
  2. P. Kelkar, B. Tirri, R. Wilklow, and D. Peterson, “Deposition and characterization of challenging DUV coatings,” Proc. SPIE 7606, 706708 (2008).
  3. H. H. Bauer, M. Heller, and N. Kaiser, “Optical coatings for UV photolithography systems,” Proc. SPIE 2776, 353–365 (1996).
    [Crossref]
  4. C. Liu, M. Kong, C. Guo, W. Gao, and B. Li, “Theoretical design of shadowing masks for uniform coatings on spherical substrates in planetary rotation systems,” Opt. Express 20(21), 23790–23797 (2012).
    [Crossref] [PubMed]
  5. J. Sun, W. Zhang, K. Yi, and J. Shao, “Optimization of thickness uniformity of coatings on spherical substrates using shadow masks in a planetary rotation system,” Chin. Opt. Lett. 12(5), 72–75 (2014).
  6. L. Zhang and X. Cai, “Uniformity masks design method based on the shadow matrix for coating materials with different condensation characteristics,” Sci. World J. 2013(10), 160792 (2013).
    [PubMed]
  7. C. Guo, M. Kong, C. Liu, and B. Li, “Optimization of thickness uniformity of optical coatings on a conical substrate in a planetary rotation system,” Appl. Opt. 52(4), B26–B32 (2013).
    [Crossref] [PubMed]
  8. N. Kaiser and H. K. Pulker, Optical interference coatings (Springer, 2003).
  9. F. Rainer, W. H. Lowdermilk, D. Milam, C. K. Carniglia, T. T. Hart, and T. L. Lichtenstein, “Materials for optical coatings in the ultraviolet,” Appl. Opt. 24(4), 496–500 (1985).
    [Crossref] [PubMed]
  10. C. Zaczek, S. Müllender, H. Enkisch, and F. Bijkerk, “Coatings for next generation lithography,” Proc. SPIE 7101, 71010X1 (2008).
  11. C. Zaczek, A. Pazidis, and H. Feldermann, “High-performance optical coating for VUV lithography application,” in Optical Interference Coatings Topic meeting 2007-OSA Technical Digest Series (Optical Society of America, 2007), paper FA1.
  12. R. Thielsch, J. Heber, S. Jakobs, N. Kaiser, A. Duparré, and J. Ullmann, “Optical, structural and mechanical properties of lanthanide trifluride thin film materials for use in the DUV-spectral region,” in Conference on Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), 116–118.
  13. Y. Taki and K. Muramatsu, “Hetero-epitaxial growth and optical properties of LaF3 on CaF2,” Thin Solid Films 420(11), 30–37 (2002).
    [Crossref]
  14. M. Bischoff, D. Gäbler, N. Kaiser, A. Chuvilin, U. Kaiser, and A. Tünnermann, “Optical and structural properties of LaF3 thin films,” Appl. Opt. 47(13), C157–C161 (2008).
    [Crossref] [PubMed]
  15. G. Liu, H. Yu, W. Zhang, Y. Jin, H. He, and Z. Fan, “Comparison study of microstructure, chemical composition and optical properties between resistive heating and electron beam evaporated LaF3 thin films,” Thin Solid Films 519(11), 3487–3491 (2011).
    [Crossref]
  16. C. Guo, M. Kong, D. Lin, C. Liu, and B. Li, “Microstructure-related properties of magnesium fluoride films at 193nm by oblique-angle deposition,” Opt. Express 21(1), 960–967 (2013).
    [Crossref] [PubMed]
  17. M. C. Liu, C. C. Lee, M. Kaneko, K. Nakahira, and Y. Takano, “Microstructure of magnesium fluoride films deposited by boat evaporation at 193 nm,” Appl. Opt. 45(28), 7319–7324 (2006).
    [Crossref] [PubMed]
  18. J. P. Borgogno, F. Flory, P. Roche, B. Schmitt, G. Albrand, E. Pelletier, and H. A. Macleod, “Refractive index and inhomogeneity of thin films,” Appl. Opt. 23(20), 3567–3570 (1984).
    [Crossref] [PubMed]
  19. G. P. Larivière, J. M. Frigerio, J. Rivory, and F. Abelès, “Estimate of the degree of inhomogeneity of the refractive index of dielectric films from spectroscopic ellipsometry,” Appl. Opt. 31(28), 6056–6061 (1992).
    [Crossref] [PubMed]
  20. E. Nichelatti, M. Montecchi, and R. M. Montereali, “Optical reflectance and transmittance of a multilayer coating affected by refractive-index inhomogeneity, interface roughness, and thickness wedge,” J. Non-crystal Solids 355(18), 1115–1118 (2009).
    [Crossref]
  21. C. Liu, M. Kong, and B. Li, “Characterization of single LaF3 and MgF2 films on spherical substrate by planetary deposition,” Thin Solid Films 612, 296–302 (2016).
    [Crossref]
  22. S. Dong, H. Jiao, G. Bao, J. Zhang, D. Tao, X. Chen, and Z, Wang,“Fabrication of broadband antireflective coating using quartz monitor,” in Optical Interference Coatings Conference of 2016 OSA Technical Digest Series (Optical Society of American, 2016), paper TA. 11.
  23. C. Guo, M. Kong, W. Gao, and B. Li, “Simultaneous determination of optical constants, thickness, and surface roughness of thin film from spectrophotometric measurements,” Opt. Lett. 38(1), 40–42 (2013).
    [Crossref] [PubMed]
  24. J. Wang, R. Maier, P. G. Dewa, H. Schreiber, R. A. Bellman, and D. D. Elli, “Nanoporous structure of a GdF(3) thin film evaluated by variable angle spectroscopic ellipsometry,” Appl. Opt. 46(16), 3221–3226 (2007).
    [Crossref] [PubMed]
  25. P. Chindaudom and K. Vedam, “Determination of the optical constants of an inhomogeneous transparent LaF3 thin film on a transparent substrate by spectroscopic ellipsometry,” Opt. Lett. 17(7), 538–540 (1992).
    [Crossref] [PubMed]
  26. A. V. Tikhonravov, M. K. Trubetskov, A. A. Tikhonravov, and A. Duparré, “Effects of interface roughness on the spectral properties of thin films and multilayers,” Appl. Opt. 42(25), 5140–5148 (2003).
    [Crossref] [PubMed]
  27. M. F. Al-Kuhaili, E. E. Khawaja, and S. M. A. Durrani, “Determination of the optical constants (n and k) of inhomogeneous thin films with linear index profiles,” Appl. Opt. 45(19), 4591–4597 (2006).
    [Crossref] [PubMed]
  28. It is shown that the porosity of the sixth sublayer (LaF3) is higher than porosity of the seventh sublayer (MgF2). This is induced by the higher refractive index inhomogeneity of LaF3 single films.
  29. It is important to note that the coating geometry for position P1 is the same as coating on small test plates except the utilization of shadowing masks. However, surface roughness of AR coating of P1 is over twice of AR coating on small test plates. The results clearly demonstrated the influence of shadowing masks on properties of single films.

2016 (1)

C. Liu, M. Kong, and B. Li, “Characterization of single LaF3 and MgF2 films on spherical substrate by planetary deposition,” Thin Solid Films 612, 296–302 (2016).
[Crossref]

2014 (1)

J. Sun, W. Zhang, K. Yi, and J. Shao, “Optimization of thickness uniformity of coatings on spherical substrates using shadow masks in a planetary rotation system,” Chin. Opt. Lett. 12(5), 72–75 (2014).

2013 (4)

2012 (1)

2011 (1)

G. Liu, H. Yu, W. Zhang, Y. Jin, H. He, and Z. Fan, “Comparison study of microstructure, chemical composition and optical properties between resistive heating and electron beam evaporated LaF3 thin films,” Thin Solid Films 519(11), 3487–3491 (2011).
[Crossref]

2009 (1)

E. Nichelatti, M. Montecchi, and R. M. Montereali, “Optical reflectance and transmittance of a multilayer coating affected by refractive-index inhomogeneity, interface roughness, and thickness wedge,” J. Non-crystal Solids 355(18), 1115–1118 (2009).
[Crossref]

2008 (3)

M. Bischoff, D. Gäbler, N. Kaiser, A. Chuvilin, U. Kaiser, and A. Tünnermann, “Optical and structural properties of LaF3 thin films,” Appl. Opt. 47(13), C157–C161 (2008).
[Crossref] [PubMed]

C. Zaczek, S. Müllender, H. Enkisch, and F. Bijkerk, “Coatings for next generation lithography,” Proc. SPIE 7101, 71010X1 (2008).

P. Kelkar, B. Tirri, R. Wilklow, and D. Peterson, “Deposition and characterization of challenging DUV coatings,” Proc. SPIE 7606, 706708 (2008).

2007 (1)

2006 (2)

2003 (2)

2002 (1)

Y. Taki and K. Muramatsu, “Hetero-epitaxial growth and optical properties of LaF3 on CaF2,” Thin Solid Films 420(11), 30–37 (2002).
[Crossref]

1996 (1)

H. H. Bauer, M. Heller, and N. Kaiser, “Optical coatings for UV photolithography systems,” Proc. SPIE 2776, 353–365 (1996).
[Crossref]

1992 (2)

1985 (1)

1984 (1)

Abelès, F.

Albrand, G.

Al-Kuhaili, M. F.

Bauer, H. H.

H. H. Bauer, M. Heller, and N. Kaiser, “Optical coatings for UV photolithography systems,” Proc. SPIE 2776, 353–365 (1996).
[Crossref]

Bellman, R. A.

Bijkerk, F.

C. Zaczek, S. Müllender, H. Enkisch, and F. Bijkerk, “Coatings for next generation lithography,” Proc. SPIE 7101, 71010X1 (2008).

Bischoff, M.

Borgogno, J. P.

Cai, X.

L. Zhang and X. Cai, “Uniformity masks design method based on the shadow matrix for coating materials with different condensation characteristics,” Sci. World J. 2013(10), 160792 (2013).
[PubMed]

Carniglia, C. K.

Chindaudom, P.

Chuvilin, A.

Dewa, P. G.

Duparré, A.

Durrani, S. M. A.

Elli, D. D.

Enkisch, H.

C. Zaczek, S. Müllender, H. Enkisch, and F. Bijkerk, “Coatings for next generation lithography,” Proc. SPIE 7101, 71010X1 (2008).

Fan, Z.

G. Liu, H. Yu, W. Zhang, Y. Jin, H. He, and Z. Fan, “Comparison study of microstructure, chemical composition and optical properties between resistive heating and electron beam evaporated LaF3 thin films,” Thin Solid Films 519(11), 3487–3491 (2011).
[Crossref]

Flory, F.

Frigerio, J. M.

Gäbler, D.

Gao, W.

Guo, C.

Hart, T. T.

He, H.

G. Liu, H. Yu, W. Zhang, Y. Jin, H. He, and Z. Fan, “Comparison study of microstructure, chemical composition and optical properties between resistive heating and electron beam evaporated LaF3 thin films,” Thin Solid Films 519(11), 3487–3491 (2011).
[Crossref]

Heller, M.

H. H. Bauer, M. Heller, and N. Kaiser, “Optical coatings for UV photolithography systems,” Proc. SPIE 2776, 353–365 (1996).
[Crossref]

Jin, Y.

G. Liu, H. Yu, W. Zhang, Y. Jin, H. He, and Z. Fan, “Comparison study of microstructure, chemical composition and optical properties between resistive heating and electron beam evaporated LaF3 thin films,” Thin Solid Films 519(11), 3487–3491 (2011).
[Crossref]

Kaiser, N.

Kaiser, U.

Kaneko, M.

Kelkar, P.

P. Kelkar, B. Tirri, R. Wilklow, and D. Peterson, “Deposition and characterization of challenging DUV coatings,” Proc. SPIE 7606, 706708 (2008).

Khawaja, E. E.

Kong, M.

Larivière, G. P.

Lee, C. C.

Li, B.

Lichtenstein, T. L.

Lin, D.

Liu, C.

Liu, G.

G. Liu, H. Yu, W. Zhang, Y. Jin, H. He, and Z. Fan, “Comparison study of microstructure, chemical composition and optical properties between resistive heating and electron beam evaporated LaF3 thin films,” Thin Solid Films 519(11), 3487–3491 (2011).
[Crossref]

Liu, M. C.

Lowdermilk, W. H.

Macleod, H. A.

Maier, R.

Milam, D.

Montecchi, M.

E. Nichelatti, M. Montecchi, and R. M. Montereali, “Optical reflectance and transmittance of a multilayer coating affected by refractive-index inhomogeneity, interface roughness, and thickness wedge,” J. Non-crystal Solids 355(18), 1115–1118 (2009).
[Crossref]

Montereali, R. M.

E. Nichelatti, M. Montecchi, and R. M. Montereali, “Optical reflectance and transmittance of a multilayer coating affected by refractive-index inhomogeneity, interface roughness, and thickness wedge,” J. Non-crystal Solids 355(18), 1115–1118 (2009).
[Crossref]

Müllender, S.

C. Zaczek, S. Müllender, H. Enkisch, and F. Bijkerk, “Coatings for next generation lithography,” Proc. SPIE 7101, 71010X1 (2008).

Muramatsu, K.

Y. Taki and K. Muramatsu, “Hetero-epitaxial growth and optical properties of LaF3 on CaF2,” Thin Solid Films 420(11), 30–37 (2002).
[Crossref]

Nakahira, K.

Nichelatti, E.

E. Nichelatti, M. Montecchi, and R. M. Montereali, “Optical reflectance and transmittance of a multilayer coating affected by refractive-index inhomogeneity, interface roughness, and thickness wedge,” J. Non-crystal Solids 355(18), 1115–1118 (2009).
[Crossref]

Pelletier, E.

Peterson, D.

P. Kelkar, B. Tirri, R. Wilklow, and D. Peterson, “Deposition and characterization of challenging DUV coatings,” Proc. SPIE 7606, 706708 (2008).

Rainer, F.

Rivory, J.

Roche, P.

Schmitt, B.

Schreiber, H.

Shao, J.

J. Sun, W. Zhang, K. Yi, and J. Shao, “Optimization of thickness uniformity of coatings on spherical substrates using shadow masks in a planetary rotation system,” Chin. Opt. Lett. 12(5), 72–75 (2014).

Sun, J.

J. Sun, W. Zhang, K. Yi, and J. Shao, “Optimization of thickness uniformity of coatings on spherical substrates using shadow masks in a planetary rotation system,” Chin. Opt. Lett. 12(5), 72–75 (2014).

Takano, Y.

Taki, Y.

Y. Taki and K. Muramatsu, “Hetero-epitaxial growth and optical properties of LaF3 on CaF2,” Thin Solid Films 420(11), 30–37 (2002).
[Crossref]

Tikhonravov, A. A.

Tikhonravov, A. V.

Tirri, B.

P. Kelkar, B. Tirri, R. Wilklow, and D. Peterson, “Deposition and characterization of challenging DUV coatings,” Proc. SPIE 7606, 706708 (2008).

Trubetskov, M. K.

Tünnermann, A.

Vedam, K.

Wang, J.

Wilklow, R.

P. Kelkar, B. Tirri, R. Wilklow, and D. Peterson, “Deposition and characterization of challenging DUV coatings,” Proc. SPIE 7606, 706708 (2008).

Wong, A. K.

A. K. Wong, “Microlithography: trend, challenges, solutions, and their impact on design,” Micro. IEEE 23(2), 12–21 (2003).
[Crossref]

Yi, K.

J. Sun, W. Zhang, K. Yi, and J. Shao, “Optimization of thickness uniformity of coatings on spherical substrates using shadow masks in a planetary rotation system,” Chin. Opt. Lett. 12(5), 72–75 (2014).

Yu, H.

G. Liu, H. Yu, W. Zhang, Y. Jin, H. He, and Z. Fan, “Comparison study of microstructure, chemical composition and optical properties between resistive heating and electron beam evaporated LaF3 thin films,” Thin Solid Films 519(11), 3487–3491 (2011).
[Crossref]

Zaczek, C.

C. Zaczek, S. Müllender, H. Enkisch, and F. Bijkerk, “Coatings for next generation lithography,” Proc. SPIE 7101, 71010X1 (2008).

Zhang, L.

L. Zhang and X. Cai, “Uniformity masks design method based on the shadow matrix for coating materials with different condensation characteristics,” Sci. World J. 2013(10), 160792 (2013).
[PubMed]

Zhang, W.

J. Sun, W. Zhang, K. Yi, and J. Shao, “Optimization of thickness uniformity of coatings on spherical substrates using shadow masks in a planetary rotation system,” Chin. Opt. Lett. 12(5), 72–75 (2014).

G. Liu, H. Yu, W. Zhang, Y. Jin, H. He, and Z. Fan, “Comparison study of microstructure, chemical composition and optical properties between resistive heating and electron beam evaporated LaF3 thin films,” Thin Solid Films 519(11), 3487–3491 (2011).
[Crossref]

Appl. Opt. (9)

F. Rainer, W. H. Lowdermilk, D. Milam, C. K. Carniglia, T. T. Hart, and T. L. Lichtenstein, “Materials for optical coatings in the ultraviolet,” Appl. Opt. 24(4), 496–500 (1985).
[Crossref] [PubMed]

C. Guo, M. Kong, C. Liu, and B. Li, “Optimization of thickness uniformity of optical coatings on a conical substrate in a planetary rotation system,” Appl. Opt. 52(4), B26–B32 (2013).
[Crossref] [PubMed]

M. C. Liu, C. C. Lee, M. Kaneko, K. Nakahira, and Y. Takano, “Microstructure of magnesium fluoride films deposited by boat evaporation at 193 nm,” Appl. Opt. 45(28), 7319–7324 (2006).
[Crossref] [PubMed]

J. P. Borgogno, F. Flory, P. Roche, B. Schmitt, G. Albrand, E. Pelletier, and H. A. Macleod, “Refractive index and inhomogeneity of thin films,” Appl. Opt. 23(20), 3567–3570 (1984).
[Crossref] [PubMed]

G. P. Larivière, J. M. Frigerio, J. Rivory, and F. Abelès, “Estimate of the degree of inhomogeneity of the refractive index of dielectric films from spectroscopic ellipsometry,” Appl. Opt. 31(28), 6056–6061 (1992).
[Crossref] [PubMed]

M. Bischoff, D. Gäbler, N. Kaiser, A. Chuvilin, U. Kaiser, and A. Tünnermann, “Optical and structural properties of LaF3 thin films,” Appl. Opt. 47(13), C157–C161 (2008).
[Crossref] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, A. A. Tikhonravov, and A. Duparré, “Effects of interface roughness on the spectral properties of thin films and multilayers,” Appl. Opt. 42(25), 5140–5148 (2003).
[Crossref] [PubMed]

M. F. Al-Kuhaili, E. E. Khawaja, and S. M. A. Durrani, “Determination of the optical constants (n and k) of inhomogeneous thin films with linear index profiles,” Appl. Opt. 45(19), 4591–4597 (2006).
[Crossref] [PubMed]

J. Wang, R. Maier, P. G. Dewa, H. Schreiber, R. A. Bellman, and D. D. Elli, “Nanoporous structure of a GdF(3) thin film evaluated by variable angle spectroscopic ellipsometry,” Appl. Opt. 46(16), 3221–3226 (2007).
[Crossref] [PubMed]

Chin. Opt. Lett. (1)

J. Sun, W. Zhang, K. Yi, and J. Shao, “Optimization of thickness uniformity of coatings on spherical substrates using shadow masks in a planetary rotation system,” Chin. Opt. Lett. 12(5), 72–75 (2014).

J. Non-crystal Solids (1)

E. Nichelatti, M. Montecchi, and R. M. Montereali, “Optical reflectance and transmittance of a multilayer coating affected by refractive-index inhomogeneity, interface roughness, and thickness wedge,” J. Non-crystal Solids 355(18), 1115–1118 (2009).
[Crossref]

Micro. IEEE (1)

A. K. Wong, “Microlithography: trend, challenges, solutions, and their impact on design,” Micro. IEEE 23(2), 12–21 (2003).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (3)

P. Kelkar, B. Tirri, R. Wilklow, and D. Peterson, “Deposition and characterization of challenging DUV coatings,” Proc. SPIE 7606, 706708 (2008).

H. H. Bauer, M. Heller, and N. Kaiser, “Optical coatings for UV photolithography systems,” Proc. SPIE 2776, 353–365 (1996).
[Crossref]

C. Zaczek, S. Müllender, H. Enkisch, and F. Bijkerk, “Coatings for next generation lithography,” Proc. SPIE 7101, 71010X1 (2008).

Sci. World J. (1)

L. Zhang and X. Cai, “Uniformity masks design method based on the shadow matrix for coating materials with different condensation characteristics,” Sci. World J. 2013(10), 160792 (2013).
[PubMed]

Thin Solid Films (3)

Y. Taki and K. Muramatsu, “Hetero-epitaxial growth and optical properties of LaF3 on CaF2,” Thin Solid Films 420(11), 30–37 (2002).
[Crossref]

C. Liu, M. Kong, and B. Li, “Characterization of single LaF3 and MgF2 films on spherical substrate by planetary deposition,” Thin Solid Films 612, 296–302 (2016).
[Crossref]

G. Liu, H. Yu, W. Zhang, Y. Jin, H. He, and Z. Fan, “Comparison study of microstructure, chemical composition and optical properties between resistive heating and electron beam evaporated LaF3 thin films,” Thin Solid Films 519(11), 3487–3491 (2011).
[Crossref]

Other (6)

It is shown that the porosity of the sixth sublayer (LaF3) is higher than porosity of the seventh sublayer (MgF2). This is induced by the higher refractive index inhomogeneity of LaF3 single films.

It is important to note that the coating geometry for position P1 is the same as coating on small test plates except the utilization of shadowing masks. However, surface roughness of AR coating of P1 is over twice of AR coating on small test plates. The results clearly demonstrated the influence of shadowing masks on properties of single films.

S. Dong, H. Jiao, G. Bao, J. Zhang, D. Tao, X. Chen, and Z, Wang,“Fabrication of broadband antireflective coating using quartz monitor,” in Optical Interference Coatings Conference of 2016 OSA Technical Digest Series (Optical Society of American, 2016), paper TA. 11.

N. Kaiser and H. K. Pulker, Optical interference coatings (Springer, 2003).

C. Zaczek, A. Pazidis, and H. Feldermann, “High-performance optical coating for VUV lithography application,” in Optical Interference Coatings Topic meeting 2007-OSA Technical Digest Series (Optical Society of America, 2007), paper FA1.

R. Thielsch, J. Heber, S. Jakobs, N. Kaiser, A. Duparré, and J. Ullmann, “Optical, structural and mechanical properties of lanthanide trifluride thin film materials for use in the DUV-spectral region,” in Conference on Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), 116–118.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Residual reflectance of (a) single-layer LaF3 and (b) single-layer MgF2 films. The dots are from experimental measurements and the solid lines are from theoretical calculations. The red, blue, black, and green lines are for single-layer films with monitored thicknesses of 20 nm, 25 nm, 30 nm and 35 nm, respectively. (c) Refractive index dispersions of LaF3 (red cycles) and MgF2 (black square) from reversely engineering the experimental reflectance spectra. (d) The film thicknesses deposited on the test plate for single-layer LaF3 (square) and single-layer MgF2 (cycle) with respect to the monitored thickness. The lines are linear fits.
Fig. 2
Fig. 2 Reflectance spectra and angle-resolved reflectance (inset) of 193 nm AR coatings in coating/ substrate/ coating stacks. The black (dashed) line in Fig. 2(a) is from theoretical design with Macleod software. The red dots are reflectance from the measurement and the solid (green) lines depict the reversely engineered spectra taking the interface roughness and varying porosity of the sublayers into account. The solid (green) lines and red dots in Fig. 2(b) are reflectance of the stack designed with the optimized model and from experimental measurements, respectively.
Fig. 3
Fig. 3 (a) Uniformity of thickness and refractive index of single LaF3 and MgF2 film on the spherical substrate. (b) Reflectance spectrum of double-side AR coated samples from experiments (symbol) and reversely engineering (solid line) on four positions of the spherical substrate. (c) and (d) present the position-dependent interface roughness and porosity for each sublayer, respectively.
Fig. 4
Fig. 4 Reflectance spectra for double-side AR coated fused silica substrates from the optimized design (solid line) and experiments (symbol) on the four positions of the spherical substrate. The dashed cyan line denotes the reflectance of 0.2%.

Tables (1)

Tables Icon

Table 1 Parameters for Each Sublayer of the 193 nm AR Coating

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

t d =tooling× t m +I,
d i =2 σ i
n i '= n s,i 2 + n s,i+1 2 2 ,
t i0 = t di σ i1 σ i .
p i 1 n i 2 1+2 n i 2 +(1 p i ) n s,i 2 n i 2 n s,i 2 +2 n i 2 =0,
t i = t i0 (1 p i ) .
MF= i=1 num w i ( T i A i ) 2 / num ,
t d i = tooling f t m i + I f ,
MF'= j=1 N M F j /N ,

Metrics