Abstract

In this paper, we introduce a method for improving the lens diopter of 2D/3D convertible devices using electro-wetting. For stable operation, an electro-wetting device requires high dioptric performance and this was achieved using bi-convex liquid-liquid-solid phases. 1-Chloronaphthalene with a refractive index of 1.633 was used as an oil phase to achieve high diopters. ETPTA (trimethylolpropane ethoxylate triacrylate), a UV-sensitive material with low chemical reactivity to the 1-Chloronaphthalene, was used as a chamber material. This resulted in a diopter of 3030D for high quality multi-view images without unstable oil movement or trembling. The ETPTA was molded on a 0.3mm thick glass substrate that was coated with UV adhesive (NOA 81). The maximum diopter capable of stable operation was 3425D. 2D and 3D conversion and parallax motion were demonstrated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Improving the performance of an electrowetting lenticular lens array by using a thin polycarbonate chamber

Junsik Lee, Junoh Kim, Cheoljoong Kim, Dooseub Shin, Gyohyun Koo, Jee Hoon Sim, and Yong Hyub Won
Opt. Express 24(26) 29972-29983 (2016)

Effect of oil on an electrowetting lenticular lens and related optical characteristics

Dooseub Shin, Junoh Kim, Cheoljoong Kim, Gyo Hyun Koo, Jee Hoon Sim, Junsik Lee, and Yong Hyub Won
Appl. Opt. 56(7) 1886-1892 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. A. Dodgson, J. R. Moore, and S. R. Lang, “Multi-view autostereoscopic 3D display,” in proceedings of International Broadcasting Convention, 2. (1999).
  2. G. J. Lv, F. Wu, R. Wu, B. C. Zhao, J. Fan, and J. J. Lv, “High resolution parallax barrier 3D display based on a sub display panel with transparent slits,” Optik (Stuttg.) 127(7), 3569–3571 (2016).
    [Crossref]
  3. D. H. Kang, B. S. Oh, J. H. Oh, M. K. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, K. H. Lee, and K. H. Park, “Auto-Stereoscopic TFT-LCD with LC Parallax Barrier on Wire Grid Polarizer,” In SID Symposium. Dig. Tech. Pap. 40(1), 344–347 (2009).
  4. T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14(3), 487–499 (2008).
    [Crossref] [PubMed]
  5. H. Isono, M. Yasuda, and H. Sasazawa, “Autostereoscopic 3D display using LCD-generated parallax barrier,” Electron. Commun. Jpn. 76(7), 77–84 (1993).
  6. M. Lambooij, K. Hinnen, and C. Varekamp, “Emulating Autostereoscopic Lenticular Designs,” IEEE J. Display Technol. 8(5), 283–290 (2012).
    [Crossref]
  7. Y. Takaki, K. Tanaka, and J. Nakamura, “Super multi-view display with a lower resolution flat-panel display,” Opt. Express 19(5), 4129–4139 (2011).
    [Crossref] [PubMed]
  8. W. X. Zhao, Q. H. Wang, A. H. Wang, and D. H. Li, “Autostereoscopic display based on two-layer lenticular lenses,” Opt. Lett. 35(24), 4127–4129 (2010).
    [Crossref] [PubMed]
  9. I. J. Kim and W. S. Park, “Optimal design of lenticular lens sheet for the 3D display on TFT-LCDs,” J. Korean Inst. Electr. Electron. Mater. Eng. 22(3), 257–261 (2009).
  10. H. K. Hong, S. M. Jung, B. J. Lee, H. J. Im, and H. H. Shin, “Autostereoscopic 2D/3D switching display using electric-field-driven LC lens (ELC lens),” in SID Int. Symp. Dig. Tech. Paper, 39(1), 348–351 (2008).
    [Crossref]
  11. K. C. Heo, S. H. Yu, J. H. Kwon, and J. S. Gwag, “Thermally tunable-focus lenticular lens using liquid crystal,” Appl. Opt. 52(35), 8460–8464 (2013).
    [Crossref] [PubMed]
  12. Y. Limura, T. Teshima, Y. J. Heo, Y. Morimoto, S. Yoshida, H. Onoe, and S. Takeuchi, “Microfluidically tunable lenticular lens,” in Proc. 17th Int. Conf. Solid-State Sens., Actuators Microsyst. (TRANSDUCERS EUROSENSORS), 1787–1790, (2013).
  13. H. Ren, S. Xu, Y. Liu, and S. T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express 21(7), 7916–7925 (2013).
    [Crossref] [PubMed]
  14. H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99(4), 540–555 (2011).
    [Crossref]
  15. H. Ren and S. T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14(23), 11292–11298 (2006).
    [Crossref] [PubMed]
  16. C. Kim, J. Kim, D. Shin, J. Lee, G. Koo, and Y. H. Won, “Electrowetting lenticular lens for a multi-view autostereoscopic 3D display,” IEEE Photonics Technol. Lett. 28(22), 2479–2482 (2016).
    [Crossref]
  17. J. Lee, J. Kim, C. Kim, D. Shin, G. Koo, J. H. Sim, and Y. H. Won, “Improving the performance of an electrowetting lenticular lens array by using a thin polycarbonate chamber,” Opt. Express 24(26), 29972–29983 (2016).
    [Crossref] [PubMed]
  18. D. Shin, J. Kim, C. Kim, G. H. Koo, J. H. Sim, J. Lee, and Y. H. Won, “Effect of oil on an electrowetting lenticular lens and related optical characteristics,” Appl. Opt. 56(7), 1886–1892 (2017).
    [Crossref] [PubMed]
  19. J. Lee, J. Kim, G. Koo, C. Kim, D. Shin, J. H. Sim, and Y. H. Won, “Analysis and reduction of crosstalk in the liquid lenticular lens array,” IEEE Photonics J. 9(39), 1943–2655 (2017).
  20. J. Kim, J. Lee, C. Kim, D. Shin, G. Koo, and Y. H. Won, “Optimization of a liquid lenticular system for 2D and 3D conversion,” IEEE Photonics Technol. Lett. 29(18), 1540–1543 (2017).
    [Crossref]
  21. Y. Y. Lin, E. R. F. Welch, and R. B. Fair, “Low voltage picoliter droplet manipulation utilizing electrowetting-on-dielectric platforms,” Sens. Actuators B Chem. 173, 338–345 (2012).
    [Crossref] [PubMed]
  22. J. H. Song, R. Evans, Y. Y. Lin, B. N. Hsu, and R. B. Fair, “A scaling model for electrowetting-on-dielectric microfluidic actuators,” Microfluid. Nanofluidics 7(1), 75–89 (2009).
    [Crossref]
  23. M. G. Pollack, R. B. Fair, and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett. 77(11), 1725–1726 (2000).
    [Crossref]
  24. A. Schultz, I. Papautsky, and J. Heikenfeld, “Investigation of laplace barriers for arrayed electrowetting lab-on-a-chip,” Langmuir 30(18), 5349–5356 (2014).
    [Crossref] [PubMed]
  25. S. W. Walker and B. Shapiro, “Modeling the fluid dynamics of electrowetting on dielectric (EWOD),” J. Micromech. Syst. 15(4), 986–1000 (2006).
    [Crossref]
  26. J. Zeng and T. Korsmeyer, “Principles of droplet electrohydrodynamics for lab-on-a-chip,” Lab Chip 4(4), 265–277 (2004).
    [Crossref] [PubMed]
  27. L. Li, C. Liu, H. Ren, and Q. H. Wang, “Optical switchable electrowetting lens,” IEEE Photonics Technol. Lett. 28(14), 1505–1508 (2016).
    [Crossref]
  28. S. Terrab, A. M. Watson, C. Roath, J. T. Gopinath, and V. M. Bright, “Adaptive electrowetting lens-prism element,” Opt. Express 23(20), 25838–25845 (2015).
    [Crossref] [PubMed]
  29. N. R. Smith, L. Hou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5(11), 411–413 (2009).
    [Crossref]
  30. B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
    [Crossref]
  31. Z. Zhuang, P. Surman, L. Zhang, R. Rawat, S. Wang, Y. Zheng, and X. W. Sun, “Moire-reduction method for slanted-lenticular-based quasi-three-dimensional displays,” Opt. Commun. 381, 314–322 (2016).
    [Crossref]
  32. A. Grisatya and Y. H. Won, “Multi-layer insulator for low voltage and breakdown voltage enhancement in electrowetting-on-dielectric,” Proc. SPIE 8987, 89871S (2014).
    [Crossref]

2017 (3)

D. Shin, J. Kim, C. Kim, G. H. Koo, J. H. Sim, J. Lee, and Y. H. Won, “Effect of oil on an electrowetting lenticular lens and related optical characteristics,” Appl. Opt. 56(7), 1886–1892 (2017).
[Crossref] [PubMed]

J. Lee, J. Kim, G. Koo, C. Kim, D. Shin, J. H. Sim, and Y. H. Won, “Analysis and reduction of crosstalk in the liquid lenticular lens array,” IEEE Photonics J. 9(39), 1943–2655 (2017).

J. Kim, J. Lee, C. Kim, D. Shin, G. Koo, and Y. H. Won, “Optimization of a liquid lenticular system for 2D and 3D conversion,” IEEE Photonics Technol. Lett. 29(18), 1540–1543 (2017).
[Crossref]

2016 (5)

G. J. Lv, F. Wu, R. Wu, B. C. Zhao, J. Fan, and J. J. Lv, “High resolution parallax barrier 3D display based on a sub display panel with transparent slits,” Optik (Stuttg.) 127(7), 3569–3571 (2016).
[Crossref]

C. Kim, J. Kim, D. Shin, J. Lee, G. Koo, and Y. H. Won, “Electrowetting lenticular lens for a multi-view autostereoscopic 3D display,” IEEE Photonics Technol. Lett. 28(22), 2479–2482 (2016).
[Crossref]

J. Lee, J. Kim, C. Kim, D. Shin, G. Koo, J. H. Sim, and Y. H. Won, “Improving the performance of an electrowetting lenticular lens array by using a thin polycarbonate chamber,” Opt. Express 24(26), 29972–29983 (2016).
[Crossref] [PubMed]

L. Li, C. Liu, H. Ren, and Q. H. Wang, “Optical switchable electrowetting lens,” IEEE Photonics Technol. Lett. 28(14), 1505–1508 (2016).
[Crossref]

Z. Zhuang, P. Surman, L. Zhang, R. Rawat, S. Wang, Y. Zheng, and X. W. Sun, “Moire-reduction method for slanted-lenticular-based quasi-three-dimensional displays,” Opt. Commun. 381, 314–322 (2016).
[Crossref]

2015 (1)

2014 (2)

A. Schultz, I. Papautsky, and J. Heikenfeld, “Investigation of laplace barriers for arrayed electrowetting lab-on-a-chip,” Langmuir 30(18), 5349–5356 (2014).
[Crossref] [PubMed]

A. Grisatya and Y. H. Won, “Multi-layer insulator for low voltage and breakdown voltage enhancement in electrowetting-on-dielectric,” Proc. SPIE 8987, 89871S (2014).
[Crossref]

2013 (2)

2012 (2)

Y. Y. Lin, E. R. F. Welch, and R. B. Fair, “Low voltage picoliter droplet manipulation utilizing electrowetting-on-dielectric platforms,” Sens. Actuators B Chem. 173, 338–345 (2012).
[Crossref] [PubMed]

M. Lambooij, K. Hinnen, and C. Varekamp, “Emulating Autostereoscopic Lenticular Designs,” IEEE J. Display Technol. 8(5), 283–290 (2012).
[Crossref]

2011 (2)

Y. Takaki, K. Tanaka, and J. Nakamura, “Super multi-view display with a lower resolution flat-panel display,” Opt. Express 19(5), 4129–4139 (2011).
[Crossref] [PubMed]

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99(4), 540–555 (2011).
[Crossref]

2010 (1)

2009 (4)

I. J. Kim and W. S. Park, “Optimal design of lenticular lens sheet for the 3D display on TFT-LCDs,” J. Korean Inst. Electr. Electron. Mater. Eng. 22(3), 257–261 (2009).

D. H. Kang, B. S. Oh, J. H. Oh, M. K. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, K. H. Lee, and K. H. Park, “Auto-Stereoscopic TFT-LCD with LC Parallax Barrier on Wire Grid Polarizer,” In SID Symposium. Dig. Tech. Pap. 40(1), 344–347 (2009).

J. H. Song, R. Evans, Y. Y. Lin, B. N. Hsu, and R. B. Fair, “A scaling model for electrowetting-on-dielectric microfluidic actuators,” Microfluid. Nanofluidics 7(1), 75–89 (2009).
[Crossref]

N. R. Smith, L. Hou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5(11), 411–413 (2009).
[Crossref]

2008 (1)

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14(3), 487–499 (2008).
[Crossref] [PubMed]

2006 (2)

H. Ren and S. T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14(23), 11292–11298 (2006).
[Crossref] [PubMed]

S. W. Walker and B. Shapiro, “Modeling the fluid dynamics of electrowetting on dielectric (EWOD),” J. Micromech. Syst. 15(4), 986–1000 (2006).
[Crossref]

2005 (1)

B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
[Crossref]

2004 (1)

J. Zeng and T. Korsmeyer, “Principles of droplet electrohydrodynamics for lab-on-a-chip,” Lab Chip 4(4), 265–277 (2004).
[Crossref] [PubMed]

2000 (1)

M. G. Pollack, R. B. Fair, and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett. 77(11), 1725–1726 (2000).
[Crossref]

1993 (1)

H. Isono, M. Yasuda, and H. Sasazawa, “Autostereoscopic 3D display using LCD-generated parallax barrier,” Electron. Commun. Jpn. 76(7), 77–84 (1993).

Bright, V. M.

Chellappan, K. V.

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99(4), 540–555 (2011).
[Crossref]

DeFanti, T. A.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14(3), 487–499 (2008).
[Crossref] [PubMed]

Dodgson, N. A.

N. A. Dodgson, J. R. Moore, and S. R. Lang, “Multi-view autostereoscopic 3D display,” in proceedings of International Broadcasting Convention, 2. (1999).

Erden, E.

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99(4), 540–555 (2011).
[Crossref]

Evans, R.

J. H. Song, R. Evans, Y. Y. Lin, B. N. Hsu, and R. B. Fair, “A scaling model for electrowetting-on-dielectric microfluidic actuators,” Microfluid. Nanofluidics 7(1), 75–89 (2009).
[Crossref]

Fair, R. B.

Y. Y. Lin, E. R. F. Welch, and R. B. Fair, “Low voltage picoliter droplet manipulation utilizing electrowetting-on-dielectric platforms,” Sens. Actuators B Chem. 173, 338–345 (2012).
[Crossref] [PubMed]

J. H. Song, R. Evans, Y. Y. Lin, B. N. Hsu, and R. B. Fair, “A scaling model for electrowetting-on-dielectric microfluidic actuators,” Microfluid. Nanofluidics 7(1), 75–89 (2009).
[Crossref]

M. G. Pollack, R. B. Fair, and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett. 77(11), 1725–1726 (2000).
[Crossref]

Fan, J.

G. J. Lv, F. Wu, R. Wu, B. C. Zhao, J. Fan, and J. J. Lv, “High resolution parallax barrier 3D display based on a sub display panel with transparent slits,” Optik (Stuttg.) 127(7), 3569–3571 (2016).
[Crossref]

Gopinath, J. T.

Grisatya, A.

A. Grisatya and Y. H. Won, “Multi-layer insulator for low voltage and breakdown voltage enhancement in electrowetting-on-dielectric,” Proc. SPIE 8987, 89871S (2014).
[Crossref]

Gwag, J. S.

Heikenfeld, J.

A. Schultz, I. Papautsky, and J. Heikenfeld, “Investigation of laplace barriers for arrayed electrowetting lab-on-a-chip,” Langmuir 30(18), 5349–5356 (2014).
[Crossref] [PubMed]

N. R. Smith, L. Hou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5(11), 411–413 (2009).
[Crossref]

Hendriks, B. H. W.

B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
[Crossref]

Heo, K. C.

Hinnen, K.

M. Lambooij, K. Hinnen, and C. Varekamp, “Emulating Autostereoscopic Lenticular Designs,” IEEE J. Display Technol. 8(5), 283–290 (2012).
[Crossref]

Hong, S. M.

D. H. Kang, B. S. Oh, J. H. Oh, M. K. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, K. H. Lee, and K. H. Park, “Auto-Stereoscopic TFT-LCD with LC Parallax Barrier on Wire Grid Polarizer,” In SID Symposium. Dig. Tech. Pap. 40(1), 344–347 (2009).

Hou, L.

N. R. Smith, L. Hou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5(11), 411–413 (2009).
[Crossref]

Hsu, B. N.

J. H. Song, R. Evans, Y. Y. Lin, B. N. Hsu, and R. B. Fair, “A scaling model for electrowetting-on-dielectric microfluidic actuators,” Microfluid. Nanofluidics 7(1), 75–89 (2009).
[Crossref]

Hur, J. H.

D. H. Kang, B. S. Oh, J. H. Oh, M. K. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, K. H. Lee, and K. H. Park, “Auto-Stereoscopic TFT-LCD with LC Parallax Barrier on Wire Grid Polarizer,” In SID Symposium. Dig. Tech. Pap. 40(1), 344–347 (2009).

Isono, H.

H. Isono, M. Yasuda, and H. Sasazawa, “Autostereoscopic 3D display using LCD-generated parallax barrier,” Electron. Commun. Jpn. 76(7), 77–84 (1993).

Jang, J.

D. H. Kang, B. S. Oh, J. H. Oh, M. K. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, K. H. Lee, and K. H. Park, “Auto-Stereoscopic TFT-LCD with LC Parallax Barrier on Wire Grid Polarizer,” In SID Symposium. Dig. Tech. Pap. 40(1), 344–347 (2009).

Johnson, A.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14(3), 487–499 (2008).
[Crossref] [PubMed]

Kang, D. H.

D. H. Kang, B. S. Oh, J. H. Oh, M. K. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, K. H. Lee, and K. H. Park, “Auto-Stereoscopic TFT-LCD with LC Parallax Barrier on Wire Grid Polarizer,” In SID Symposium. Dig. Tech. Pap. 40(1), 344–347 (2009).

Kim, C.

J. Lee, J. Kim, G. Koo, C. Kim, D. Shin, J. H. Sim, and Y. H. Won, “Analysis and reduction of crosstalk in the liquid lenticular lens array,” IEEE Photonics J. 9(39), 1943–2655 (2017).

J. Kim, J. Lee, C. Kim, D. Shin, G. Koo, and Y. H. Won, “Optimization of a liquid lenticular system for 2D and 3D conversion,” IEEE Photonics Technol. Lett. 29(18), 1540–1543 (2017).
[Crossref]

D. Shin, J. Kim, C. Kim, G. H. Koo, J. H. Sim, J. Lee, and Y. H. Won, “Effect of oil on an electrowetting lenticular lens and related optical characteristics,” Appl. Opt. 56(7), 1886–1892 (2017).
[Crossref] [PubMed]

J. Lee, J. Kim, C. Kim, D. Shin, G. Koo, J. H. Sim, and Y. H. Won, “Improving the performance of an electrowetting lenticular lens array by using a thin polycarbonate chamber,” Opt. Express 24(26), 29972–29983 (2016).
[Crossref] [PubMed]

C. Kim, J. Kim, D. Shin, J. Lee, G. Koo, and Y. H. Won, “Electrowetting lenticular lens for a multi-view autostereoscopic 3D display,” IEEE Photonics Technol. Lett. 28(22), 2479–2482 (2016).
[Crossref]

Kim, H. J.

D. H. Kang, B. S. Oh, J. H. Oh, M. K. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, K. H. Lee, and K. H. Park, “Auto-Stereoscopic TFT-LCD with LC Parallax Barrier on Wire Grid Polarizer,” In SID Symposium. Dig. Tech. Pap. 40(1), 344–347 (2009).

Kim, I. J.

I. J. Kim and W. S. Park, “Optimal design of lenticular lens sheet for the 3D display on TFT-LCDs,” J. Korean Inst. Electr. Electron. Mater. Eng. 22(3), 257–261 (2009).

Kim, J.

D. Shin, J. Kim, C. Kim, G. H. Koo, J. H. Sim, J. Lee, and Y. H. Won, “Effect of oil on an electrowetting lenticular lens and related optical characteristics,” Appl. Opt. 56(7), 1886–1892 (2017).
[Crossref] [PubMed]

J. Lee, J. Kim, G. Koo, C. Kim, D. Shin, J. H. Sim, and Y. H. Won, “Analysis and reduction of crosstalk in the liquid lenticular lens array,” IEEE Photonics J. 9(39), 1943–2655 (2017).

J. Kim, J. Lee, C. Kim, D. Shin, G. Koo, and Y. H. Won, “Optimization of a liquid lenticular system for 2D and 3D conversion,” IEEE Photonics Technol. Lett. 29(18), 1540–1543 (2017).
[Crossref]

J. Lee, J. Kim, C. Kim, D. Shin, G. Koo, J. H. Sim, and Y. H. Won, “Improving the performance of an electrowetting lenticular lens array by using a thin polycarbonate chamber,” Opt. Express 24(26), 29972–29983 (2016).
[Crossref] [PubMed]

C. Kim, J. Kim, D. Shin, J. Lee, G. Koo, and Y. H. Won, “Electrowetting lenticular lens for a multi-view autostereoscopic 3D display,” IEEE Photonics Technol. Lett. 28(22), 2479–2482 (2016).
[Crossref]

Koo, G.

J. Kim, J. Lee, C. Kim, D. Shin, G. Koo, and Y. H. Won, “Optimization of a liquid lenticular system for 2D and 3D conversion,” IEEE Photonics Technol. Lett. 29(18), 1540–1543 (2017).
[Crossref]

J. Lee, J. Kim, G. Koo, C. Kim, D. Shin, J. H. Sim, and Y. H. Won, “Analysis and reduction of crosstalk in the liquid lenticular lens array,” IEEE Photonics J. 9(39), 1943–2655 (2017).

J. Lee, J. Kim, C. Kim, D. Shin, G. Koo, J. H. Sim, and Y. H. Won, “Improving the performance of an electrowetting lenticular lens array by using a thin polycarbonate chamber,” Opt. Express 24(26), 29972–29983 (2016).
[Crossref] [PubMed]

C. Kim, J. Kim, D. Shin, J. Lee, G. Koo, and Y. H. Won, “Electrowetting lenticular lens for a multi-view autostereoscopic 3D display,” IEEE Photonics Technol. Lett. 28(22), 2479–2482 (2016).
[Crossref]

Koo, G. H.

Kooima, R. L.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14(3), 487–499 (2008).
[Crossref] [PubMed]

Korsmeyer, T.

J. Zeng and T. Korsmeyer, “Principles of droplet electrohydrodynamics for lab-on-a-chip,” Lab Chip 4(4), 265–277 (2004).
[Crossref] [PubMed]

Kuiper, S.

B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
[Crossref]

Kwon, J. H.

Lambooij, M.

M. Lambooij, K. Hinnen, and C. Varekamp, “Emulating Autostereoscopic Lenticular Designs,” IEEE J. Display Technol. 8(5), 283–290 (2012).
[Crossref]

Lang, S. R.

N. A. Dodgson, J. R. Moore, and S. R. Lang, “Multi-view autostereoscopic 3D display,” in proceedings of International Broadcasting Convention, 2. (1999).

Lee, J.

D. Shin, J. Kim, C. Kim, G. H. Koo, J. H. Sim, J. Lee, and Y. H. Won, “Effect of oil on an electrowetting lenticular lens and related optical characteristics,” Appl. Opt. 56(7), 1886–1892 (2017).
[Crossref] [PubMed]

J. Lee, J. Kim, G. Koo, C. Kim, D. Shin, J. H. Sim, and Y. H. Won, “Analysis and reduction of crosstalk in the liquid lenticular lens array,” IEEE Photonics J. 9(39), 1943–2655 (2017).

J. Kim, J. Lee, C. Kim, D. Shin, G. Koo, and Y. H. Won, “Optimization of a liquid lenticular system for 2D and 3D conversion,” IEEE Photonics Technol. Lett. 29(18), 1540–1543 (2017).
[Crossref]

J. Lee, J. Kim, C. Kim, D. Shin, G. Koo, J. H. Sim, and Y. H. Won, “Improving the performance of an electrowetting lenticular lens array by using a thin polycarbonate chamber,” Opt. Express 24(26), 29972–29983 (2016).
[Crossref] [PubMed]

C. Kim, J. Kim, D. Shin, J. Lee, G. Koo, and Y. H. Won, “Electrowetting lenticular lens for a multi-view autostereoscopic 3D display,” IEEE Photonics Technol. Lett. 28(22), 2479–2482 (2016).
[Crossref]

Lee, K. H.

D. H. Kang, B. S. Oh, J. H. Oh, M. K. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, K. H. Lee, and K. H. Park, “Auto-Stereoscopic TFT-LCD with LC Parallax Barrier on Wire Grid Polarizer,” In SID Symposium. Dig. Tech. Pap. 40(1), 344–347 (2009).

Lee, S. J.

D. H. Kang, B. S. Oh, J. H. Oh, M. K. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, K. H. Lee, and K. H. Park, “Auto-Stereoscopic TFT-LCD with LC Parallax Barrier on Wire Grid Polarizer,” In SID Symposium. Dig. Tech. Pap. 40(1), 344–347 (2009).

Leigh, J.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14(3), 487–499 (2008).
[Crossref] [PubMed]

Li, D. H.

Li, L.

L. Li, C. Liu, H. Ren, and Q. H. Wang, “Optical switchable electrowetting lens,” IEEE Photonics Technol. Lett. 28(14), 1505–1508 (2016).
[Crossref]

Lin, Y. Y.

Y. Y. Lin, E. R. F. Welch, and R. B. Fair, “Low voltage picoliter droplet manipulation utilizing electrowetting-on-dielectric platforms,” Sens. Actuators B Chem. 173, 338–345 (2012).
[Crossref] [PubMed]

J. H. Song, R. Evans, Y. Y. Lin, B. N. Hsu, and R. B. Fair, “A scaling model for electrowetting-on-dielectric microfluidic actuators,” Microfluid. Nanofluidics 7(1), 75–89 (2009).
[Crossref]

Liu, C.

L. Li, C. Liu, H. Ren, and Q. H. Wang, “Optical switchable electrowetting lens,” IEEE Photonics Technol. Lett. 28(14), 1505–1508 (2016).
[Crossref]

Liu, Y.

Lv, G. J.

G. J. Lv, F. Wu, R. Wu, B. C. Zhao, J. Fan, and J. J. Lv, “High resolution parallax barrier 3D display based on a sub display panel with transparent slits,” Optik (Stuttg.) 127(7), 3569–3571 (2016).
[Crossref]

Lv, J. J.

G. J. Lv, F. Wu, R. Wu, B. C. Zhao, J. Fan, and J. J. Lv, “High resolution parallax barrier 3D display based on a sub display panel with transparent slits,” Optik (Stuttg.) 127(7), 3569–3571 (2016).
[Crossref]

Moore, J. R.

N. A. Dodgson, J. R. Moore, and S. R. Lang, “Multi-view autostereoscopic 3D display,” in proceedings of International Broadcasting Convention, 2. (1999).

Nakamura, J.

Oh, B. S.

D. H. Kang, B. S. Oh, J. H. Oh, M. K. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, K. H. Lee, and K. H. Park, “Auto-Stereoscopic TFT-LCD with LC Parallax Barrier on Wire Grid Polarizer,” In SID Symposium. Dig. Tech. Pap. 40(1), 344–347 (2009).

Oh, J. H.

D. H. Kang, B. S. Oh, J. H. Oh, M. K. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, K. H. Lee, and K. H. Park, “Auto-Stereoscopic TFT-LCD with LC Parallax Barrier on Wire Grid Polarizer,” In SID Symposium. Dig. Tech. Pap. 40(1), 344–347 (2009).

Papautsky, I.

A. Schultz, I. Papautsky, and J. Heikenfeld, “Investigation of laplace barriers for arrayed electrowetting lab-on-a-chip,” Langmuir 30(18), 5349–5356 (2014).
[Crossref] [PubMed]

Park, K. H.

D. H. Kang, B. S. Oh, J. H. Oh, M. K. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, K. H. Lee, and K. H. Park, “Auto-Stereoscopic TFT-LCD with LC Parallax Barrier on Wire Grid Polarizer,” In SID Symposium. Dig. Tech. Pap. 40(1), 344–347 (2009).

Park, M. K.

D. H. Kang, B. S. Oh, J. H. Oh, M. K. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, K. H. Lee, and K. H. Park, “Auto-Stereoscopic TFT-LCD with LC Parallax Barrier on Wire Grid Polarizer,” In SID Symposium. Dig. Tech. Pap. 40(1), 344–347 (2009).

Park, W. S.

I. J. Kim and W. S. Park, “Optimal design of lenticular lens sheet for the 3D display on TFT-LCDs,” J. Korean Inst. Electr. Electron. Mater. Eng. 22(3), 257–261 (2009).

Peterka, T.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14(3), 487–499 (2008).
[Crossref] [PubMed]

Pollack, M. G.

M. G. Pollack, R. B. Fair, and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett. 77(11), 1725–1726 (2000).
[Crossref]

Rawat, R.

Z. Zhuang, P. Surman, L. Zhang, R. Rawat, S. Wang, Y. Zheng, and X. W. Sun, “Moire-reduction method for slanted-lenticular-based quasi-three-dimensional displays,” Opt. Commun. 381, 314–322 (2016).
[Crossref]

Ren, H.

Renders, C. A.

B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
[Crossref]

Roath, C.

Sandin, D. J.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14(3), 487–499 (2008).
[Crossref] [PubMed]

Sasazawa, H.

H. Isono, M. Yasuda, and H. Sasazawa, “Autostereoscopic 3D display using LCD-generated parallax barrier,” Electron. Commun. Jpn. 76(7), 77–84 (1993).

Schultz, A.

A. Schultz, I. Papautsky, and J. Heikenfeld, “Investigation of laplace barriers for arrayed electrowetting lab-on-a-chip,” Langmuir 30(18), 5349–5356 (2014).
[Crossref] [PubMed]

Shapiro, B.

S. W. Walker and B. Shapiro, “Modeling the fluid dynamics of electrowetting on dielectric (EWOD),” J. Micromech. Syst. 15(4), 986–1000 (2006).
[Crossref]

Shenderov, A. D.

M. G. Pollack, R. B. Fair, and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett. 77(11), 1725–1726 (2000).
[Crossref]

Shin, D.

D. Shin, J. Kim, C. Kim, G. H. Koo, J. H. Sim, J. Lee, and Y. H. Won, “Effect of oil on an electrowetting lenticular lens and related optical characteristics,” Appl. Opt. 56(7), 1886–1892 (2017).
[Crossref] [PubMed]

J. Kim, J. Lee, C. Kim, D. Shin, G. Koo, and Y. H. Won, “Optimization of a liquid lenticular system for 2D and 3D conversion,” IEEE Photonics Technol. Lett. 29(18), 1540–1543 (2017).
[Crossref]

J. Lee, J. Kim, G. Koo, C. Kim, D. Shin, J. H. Sim, and Y. H. Won, “Analysis and reduction of crosstalk in the liquid lenticular lens array,” IEEE Photonics J. 9(39), 1943–2655 (2017).

J. Lee, J. Kim, C. Kim, D. Shin, G. Koo, J. H. Sim, and Y. H. Won, “Improving the performance of an electrowetting lenticular lens array by using a thin polycarbonate chamber,” Opt. Express 24(26), 29972–29983 (2016).
[Crossref] [PubMed]

C. Kim, J. Kim, D. Shin, J. Lee, G. Koo, and Y. H. Won, “Electrowetting lenticular lens for a multi-view autostereoscopic 3D display,” IEEE Photonics Technol. Lett. 28(22), 2479–2482 (2016).
[Crossref]

Sim, J. H.

Smith, N. R.

N. R. Smith, L. Hou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5(11), 411–413 (2009).
[Crossref]

Song, J. H.

J. H. Song, R. Evans, Y. Y. Lin, B. N. Hsu, and R. B. Fair, “A scaling model for electrowetting-on-dielectric microfluidic actuators,” Microfluid. Nanofluidics 7(1), 75–89 (2009).
[Crossref]

Sun, X. W.

Z. Zhuang, P. Surman, L. Zhang, R. Rawat, S. Wang, Y. Zheng, and X. W. Sun, “Moire-reduction method for slanted-lenticular-based quasi-three-dimensional displays,” Opt. Commun. 381, 314–322 (2016).
[Crossref]

Surman, P.

Z. Zhuang, P. Surman, L. Zhang, R. Rawat, S. Wang, Y. Zheng, and X. W. Sun, “Moire-reduction method for slanted-lenticular-based quasi-three-dimensional displays,” Opt. Commun. 381, 314–322 (2016).
[Crossref]

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99(4), 540–555 (2011).
[Crossref]

Takaki, Y.

Tanaka, K.

Terrab, S.

Tukker, T. W.

B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
[Crossref]

Urey, H.

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99(4), 540–555 (2011).
[Crossref]

Van As, M. A. J.

B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
[Crossref]

Varekamp, C.

M. Lambooij, K. Hinnen, and C. Varekamp, “Emulating Autostereoscopic Lenticular Designs,” IEEE J. Display Technol. 8(5), 283–290 (2012).
[Crossref]

Walker, S. W.

S. W. Walker and B. Shapiro, “Modeling the fluid dynamics of electrowetting on dielectric (EWOD),” J. Micromech. Syst. 15(4), 986–1000 (2006).
[Crossref]

Wang, A. H.

Wang, Q. H.

L. Li, C. Liu, H. Ren, and Q. H. Wang, “Optical switchable electrowetting lens,” IEEE Photonics Technol. Lett. 28(14), 1505–1508 (2016).
[Crossref]

W. X. Zhao, Q. H. Wang, A. H. Wang, and D. H. Li, “Autostereoscopic display based on two-layer lenticular lenses,” Opt. Lett. 35(24), 4127–4129 (2010).
[Crossref] [PubMed]

Wang, S.

Z. Zhuang, P. Surman, L. Zhang, R. Rawat, S. Wang, Y. Zheng, and X. W. Sun, “Moire-reduction method for slanted-lenticular-based quasi-three-dimensional displays,” Opt. Commun. 381, 314–322 (2016).
[Crossref]

Watson, A. M.

Welch, E. R. F.

Y. Y. Lin, E. R. F. Welch, and R. B. Fair, “Low voltage picoliter droplet manipulation utilizing electrowetting-on-dielectric platforms,” Sens. Actuators B Chem. 173, 338–345 (2012).
[Crossref] [PubMed]

Won, Y. H.

J. Kim, J. Lee, C. Kim, D. Shin, G. Koo, and Y. H. Won, “Optimization of a liquid lenticular system for 2D and 3D conversion,” IEEE Photonics Technol. Lett. 29(18), 1540–1543 (2017).
[Crossref]

J. Lee, J. Kim, G. Koo, C. Kim, D. Shin, J. H. Sim, and Y. H. Won, “Analysis and reduction of crosstalk in the liquid lenticular lens array,” IEEE Photonics J. 9(39), 1943–2655 (2017).

D. Shin, J. Kim, C. Kim, G. H. Koo, J. H. Sim, J. Lee, and Y. H. Won, “Effect of oil on an electrowetting lenticular lens and related optical characteristics,” Appl. Opt. 56(7), 1886–1892 (2017).
[Crossref] [PubMed]

J. Lee, J. Kim, C. Kim, D. Shin, G. Koo, J. H. Sim, and Y. H. Won, “Improving the performance of an electrowetting lenticular lens array by using a thin polycarbonate chamber,” Opt. Express 24(26), 29972–29983 (2016).
[Crossref] [PubMed]

C. Kim, J. Kim, D. Shin, J. Lee, G. Koo, and Y. H. Won, “Electrowetting lenticular lens for a multi-view autostereoscopic 3D display,” IEEE Photonics Technol. Lett. 28(22), 2479–2482 (2016).
[Crossref]

A. Grisatya and Y. H. Won, “Multi-layer insulator for low voltage and breakdown voltage enhancement in electrowetting-on-dielectric,” Proc. SPIE 8987, 89871S (2014).
[Crossref]

Wu, F.

G. J. Lv, F. Wu, R. Wu, B. C. Zhao, J. Fan, and J. J. Lv, “High resolution parallax barrier 3D display based on a sub display panel with transparent slits,” Optik (Stuttg.) 127(7), 3569–3571 (2016).
[Crossref]

Wu, R.

G. J. Lv, F. Wu, R. Wu, B. C. Zhao, J. Fan, and J. J. Lv, “High resolution parallax barrier 3D display based on a sub display panel with transparent slits,” Optik (Stuttg.) 127(7), 3569–3571 (2016).
[Crossref]

Wu, S. T.

Xu, S.

Yasuda, M.

H. Isono, M. Yasuda, and H. Sasazawa, “Autostereoscopic 3D display using LCD-generated parallax barrier,” Electron. Commun. Jpn. 76(7), 77–84 (1993).

Yu, S. H.

Zeng, J.

J. Zeng and T. Korsmeyer, “Principles of droplet electrohydrodynamics for lab-on-a-chip,” Lab Chip 4(4), 265–277 (2004).
[Crossref] [PubMed]

Zhang, J.

N. R. Smith, L. Hou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5(11), 411–413 (2009).
[Crossref]

Zhang, L.

Z. Zhuang, P. Surman, L. Zhang, R. Rawat, S. Wang, Y. Zheng, and X. W. Sun, “Moire-reduction method for slanted-lenticular-based quasi-three-dimensional displays,” Opt. Commun. 381, 314–322 (2016).
[Crossref]

Zhao, B. C.

G. J. Lv, F. Wu, R. Wu, B. C. Zhao, J. Fan, and J. J. Lv, “High resolution parallax barrier 3D display based on a sub display panel with transparent slits,” Optik (Stuttg.) 127(7), 3569–3571 (2016).
[Crossref]

Zhao, W. X.

Zheng, Y.

Z. Zhuang, P. Surman, L. Zhang, R. Rawat, S. Wang, Y. Zheng, and X. W. Sun, “Moire-reduction method for slanted-lenticular-based quasi-three-dimensional displays,” Opt. Commun. 381, 314–322 (2016).
[Crossref]

Zhuang, Z.

Z. Zhuang, P. Surman, L. Zhang, R. Rawat, S. Wang, Y. Zheng, and X. W. Sun, “Moire-reduction method for slanted-lenticular-based quasi-three-dimensional displays,” Opt. Commun. 381, 314–322 (2016).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. G. Pollack, R. B. Fair, and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett. 77(11), 1725–1726 (2000).
[Crossref]

Electron. Commun. Jpn. (1)

H. Isono, M. Yasuda, and H. Sasazawa, “Autostereoscopic 3D display using LCD-generated parallax barrier,” Electron. Commun. Jpn. 76(7), 77–84 (1993).

IEEE J. Display Technol. (1)

M. Lambooij, K. Hinnen, and C. Varekamp, “Emulating Autostereoscopic Lenticular Designs,” IEEE J. Display Technol. 8(5), 283–290 (2012).
[Crossref]

IEEE Photonics J. (1)

J. Lee, J. Kim, G. Koo, C. Kim, D. Shin, J. H. Sim, and Y. H. Won, “Analysis and reduction of crosstalk in the liquid lenticular lens array,” IEEE Photonics J. 9(39), 1943–2655 (2017).

IEEE Photonics Technol. Lett. (3)

J. Kim, J. Lee, C. Kim, D. Shin, G. Koo, and Y. H. Won, “Optimization of a liquid lenticular system for 2D and 3D conversion,” IEEE Photonics Technol. Lett. 29(18), 1540–1543 (2017).
[Crossref]

L. Li, C. Liu, H. Ren, and Q. H. Wang, “Optical switchable electrowetting lens,” IEEE Photonics Technol. Lett. 28(14), 1505–1508 (2016).
[Crossref]

C. Kim, J. Kim, D. Shin, J. Lee, G. Koo, and Y. H. Won, “Electrowetting lenticular lens for a multi-view autostereoscopic 3D display,” IEEE Photonics Technol. Lett. 28(22), 2479–2482 (2016).
[Crossref]

IEEE Trans. Vis. Comput. Graph. (1)

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14(3), 487–499 (2008).
[Crossref] [PubMed]

In SID Symposium. Dig. Tech. Pap. (1)

D. H. Kang, B. S. Oh, J. H. Oh, M. K. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, K. H. Lee, and K. H. Park, “Auto-Stereoscopic TFT-LCD with LC Parallax Barrier on Wire Grid Polarizer,” In SID Symposium. Dig. Tech. Pap. 40(1), 344–347 (2009).

J. Disp. Technol. (1)

N. R. Smith, L. Hou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5(11), 411–413 (2009).
[Crossref]

J. Korean Inst. Electr. Electron. Mater. Eng. (1)

I. J. Kim and W. S. Park, “Optimal design of lenticular lens sheet for the 3D display on TFT-LCDs,” J. Korean Inst. Electr. Electron. Mater. Eng. 22(3), 257–261 (2009).

J. Micromech. Syst. (1)

S. W. Walker and B. Shapiro, “Modeling the fluid dynamics of electrowetting on dielectric (EWOD),” J. Micromech. Syst. 15(4), 986–1000 (2006).
[Crossref]

Lab Chip (1)

J. Zeng and T. Korsmeyer, “Principles of droplet electrohydrodynamics for lab-on-a-chip,” Lab Chip 4(4), 265–277 (2004).
[Crossref] [PubMed]

Langmuir (1)

A. Schultz, I. Papautsky, and J. Heikenfeld, “Investigation of laplace barriers for arrayed electrowetting lab-on-a-chip,” Langmuir 30(18), 5349–5356 (2014).
[Crossref] [PubMed]

Microfluid. Nanofluidics (1)

J. H. Song, R. Evans, Y. Y. Lin, B. N. Hsu, and R. B. Fair, “A scaling model for electrowetting-on-dielectric microfluidic actuators,” Microfluid. Nanofluidics 7(1), 75–89 (2009).
[Crossref]

Opt. Commun. (1)

Z. Zhuang, P. Surman, L. Zhang, R. Rawat, S. Wang, Y. Zheng, and X. W. Sun, “Moire-reduction method for slanted-lenticular-based quasi-three-dimensional displays,” Opt. Commun. 381, 314–322 (2016).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Rev. (1)

B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
[Crossref]

Optik (Stuttg.) (1)

G. J. Lv, F. Wu, R. Wu, B. C. Zhao, J. Fan, and J. J. Lv, “High resolution parallax barrier 3D display based on a sub display panel with transparent slits,” Optik (Stuttg.) 127(7), 3569–3571 (2016).
[Crossref]

Proc. IEEE (1)

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99(4), 540–555 (2011).
[Crossref]

Proc. SPIE (1)

A. Grisatya and Y. H. Won, “Multi-layer insulator for low voltage and breakdown voltage enhancement in electrowetting-on-dielectric,” Proc. SPIE 8987, 89871S (2014).
[Crossref]

Sens. Actuators B Chem. (1)

Y. Y. Lin, E. R. F. Welch, and R. B. Fair, “Low voltage picoliter droplet manipulation utilizing electrowetting-on-dielectric platforms,” Sens. Actuators B Chem. 173, 338–345 (2012).
[Crossref] [PubMed]

Other (3)

N. A. Dodgson, J. R. Moore, and S. R. Lang, “Multi-view autostereoscopic 3D display,” in proceedings of International Broadcasting Convention, 2. (1999).

H. K. Hong, S. M. Jung, B. J. Lee, H. J. Im, and H. H. Shin, “Autostereoscopic 2D/3D switching display using electric-field-driven LC lens (ELC lens),” in SID Int. Symp. Dig. Tech. Paper, 39(1), 348–351 (2008).
[Crossref]

Y. Limura, T. Teshima, Y. J. Heo, Y. Morimoto, S. Yoshida, H. Onoe, and S. Takeuchi, “Microfluidically tunable lenticular lens,” in Proc. 17th Int. Conf. Solid-State Sens., Actuators Microsyst. (TRANSDUCERS EUROSENSORS), 1787–1790, (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 (a) A layout structure between a lens and pixels and (b) in the horizontal configuration with 18 times magnification and (c) the vertical configuration with no magnification.
Fig. 2
Fig. 2 (a) 60 LPI lenticular configuration requiring diopter near 1500 and (b) 100 LPI lenticular configuration requiring diopter higher than 1500.
Fig. 3
Fig. 3 The structure of the liquid-liquid-solid phases bi-convex structure consists of electrolyte (water), nonelectrolyte (oil) and the lens shaped chamber.
Fig. 4
Fig. 4 (a) Hydrophobic state when no voltage is applied, for infinite focal length and (b) the 2D state when the focal length is infinite. (c) Hydrophilic state when the voltage is applied between electrolyte and metal and (d) the 3D state when the focal length matches the distance to the display.
Fig. 5
Fig. 5 1-chloronaphthalene chemical reaction tests with (d) a NOA 85 chamber, (e) a NOA 142 chamber and (f) an ETPTA chamber and their individual microscopic views (a), (b), (c).
Fig. 6
Fig. 6 (a) A commercial PMMA lenticular lens, (b) NOA 63 concave lenticular lens molded by PMMA and (c) a convex electro-plated nickel mold from the NOA 63 concave lens.
Fig. 7
Fig. 7 (a-d) Fabrication process of the nickel mold. (e-h) An ETPTA chamber. (a) A commercial PMMA lenticular lens. (b) NOA 63 was poured onto the PMMA and pressed by glass followed by UV curing. (c) A NOA 63 slave mold was detached. (d) Nickel was electro-plated. (e) NOA 81 was spin coated onto a glass plate and UV curing was done. (f) ETPTA was poured. (g) The nickel mold was pressed and UV curing was done for ETPTA. (h) The ETPTA chamber was detached from the nickel mold.
Fig. 8
Fig. 8 (a) The state when the oil is fully filled, maintaining the contact angle (b) The plano-convex state formed by a smaller amount of injected oil.
Fig. 9
Fig. 9 Liquid flow through the opened area for uniform dosing.
Fig. 10
Fig. 10 (a) System setting of the diopter measurement (b) A concave state (c) A flat state (d) A convex state satisfying an optimal focal length.
Fig. 11
Fig. 11 (a)-(c) An arbitrary three region views for uniformity measurement in 3D mode.
Fig. 12
Fig. 12 (a)-(e) 0.833ms interval motion pictures taken with 1200FPS camera.
Fig. 13
Fig. 13 Diopter and focal length variation by applied voltage.
Fig. 14
Fig. 14 A 2-view images of blue and red at (a) −14 and (b) 14 and (c) the normalized light intensity. (d) The color distribution of blue and red by the viewing angle.
Fig. 15
Fig. 15 (a) Multi-view images projected through a 2D state liquid lenticular sheet (b) and 3D state liquid lenticular sheet.
Fig. 16
Fig. 16 Parallax motion of the 3D images viewed at (a) −18 (b) 0 (c) 18 from the display.

Tables (1)

Tables Icon

Table 1 Measurement of diopters in Fig. 11 and uniformity calculations

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ROC= ( ROC+sag ) 2 + R L 2
θ WALL =90atan( (ROCsag)/ R L )
RO C WO = R L /cos( θ CA 90+ θ WALL )
D WO =( n 2 n 1 )/ n 1 RO C WO
D synthetic = D WO + D OC d D WO D OC
Uniformity=( 1( D MAX D MIN )/2/ D AVE )×100

Metrics