Abstract

Polarimetric passive millimeter-wave (PMMW) measurements can provide additional information about scenes. We report on the development of a 94GHz Multi-Polarization Scanning Imaging Radiometer (MPSIR) for outdoor imaging applications, and the polarization characteristic analysis of experimentally acquired images. The imager angular resolution is measured to be 0.37°, and the thermal sensitivity is about 0.46K. Multi-polarization measurements are realized by rotating the detector around the observation axis direction. Several outdoor complex scenes are selected to passive image, which include the outdoor parking lot and the dormitory buildings in the woods. Various polarization parameter images are generated to analyze the polarization characteristics. Based on the multi-polarization imaging, eight more polarization parameters are created and they are all have the special distribution properties. The experimental results indicate that the multi-polarization imaging and the modified polarization parameters have the great potential for three-dimensional reconstruction, edge detection and image segmentation.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simulation, acquisition and analysis of passive millimeter-wave images in remote sensing applications

M. R. Fetterman, J. Grata, G. Jubic, W. L. Kiser, and A. Visnansky
Opt. Express 16(25) 20503-20515 (2008)

Polarization-based material classification technique using passive millimeter-wave polarimetric imagery

Fei Hu, Yayun Cheng, Liangqi Gui, Liang Wu, Xinyi Zhang, Xiaohui Peng, and Jinlong Su
Appl. Opt. 55(31) 8690-8697 (2016)

C-curve feature of complex permittivity estimation based on multi-polarization measurements in passive millimeter-wave sensing

Yayun Cheng, Fei Hu, Yan Hu, Ziran Zhao, and Yingxin Wang
Opt. Lett. 44(15) 3765-3768 (2019)

References

  • View by:
  • |
  • |
  • |

  1. L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter-wave imaging,” IEEE Microw. Mag. 4(3), 39–50 (2003).
    [Crossref]
  2. N. A. Salmon, “Outdoor passive millimeter-wave imaging: Phenomenology and scene simulation,” IEEE Trans. Antennas Propag. 66(2) 897–908 (2018).
    [Crossref]
  3. G.-P. Hu, K. L. Chan, Y.-C. Zheng, K. T. Tsang, and A.-A. Xu, “Comparison and evaluation of the change microwave radiometer data based on theoretical computation of brightness temperatures at the apollo 15 and 17 sites,” Icarus 294, 72–80 (2017).
    [Crossref]
  4. R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 362, 379–393 (2004).
    [Crossref]
  5. J. R. Pardo, J. Cernicharo, and E. Serabyn, “Atmospheric transmission at microwaves (ATM): an improved model for millimeter/submillimeter applications,” IEEE Trans. Antennas Propag. 49(12), 1683–1694 (2001).
    [Crossref]
  6. D. G. Gleed, R. Appleby, N. A. Salmon, S. Price, G. N. Sinclair, R. N. Anderton, J. R. Borill, and M. R. M. Wasley, “Operational issues of passive millimeter wave imaging systems,” Proc. SPIE3064, 23–33 (1997).
    [Crossref]
  7. S. E. Clark, J. A. Lovberg, C. A. Martin, and V. Kolinko, “Passive millimeter-wave imaging for airborne and security applications,” Proc. SPIE5077, 16–21 (2003).
    [Crossref]
  8. T. Luthi and C. Matzler, “Stereoscopic passive millimeter-wave imaging and ranging,” IEEE Trans. Microw. Theory Tech. 53(8), 2594–2599 (2005).
    [Crossref]
  9. M. R. Fetterman, J. Grata, G. Jubic, W. L. Kiser, and A. Visnansky, “Simulation, acquisition and analysis of passive millimeter-wave images in remote sensing applications,” Opt. Express 16(25), 20503–20515 (2008).
    [Crossref] [PubMed]
  10. C. Zhang, H. Liu, J. Wu, S. Zhang, J. Yan, L. Niu, W. Sun, and H. Li, “Imaging Analysis and First Results of the Geostationary Interferometric Microwave Sounder Demonstrator,” IEEE Trans. Geosci. Remote Sensing 53(1), 207–218 (2015).
    [Crossref]
  11. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Optics 45(22), 5453–5469 (2006).
    [Crossref]
  12. F. A. Sadjadi, “Passive three-dimensional imaging using polarimetric diversity,” Opt. Lett. 32(3), 229–231 (2007).
    [Crossref] [PubMed]
  13. P. W. Gaiser, K. M. St Germain, E. M. Twarog, G. A. Poe, W. Purdy, D. Richardson, W. Grossman, W. L. Jones, D. Spencer, G. Golba, J. Cleveland, L. Choy, R. M. Bevilacqua, and P. S. Chang, “The windsat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance,” IEEE Trans. Geosci. Remote Sensing 42(11), 2347–2361 (2004).
    [Crossref]
  14. P. S. Narvekar, G. Heygster, T. J. Jackson, R. Bindlish, G. Macelloni, and J. Notholt, “Passive polarimetric microwave signatures observed over antarctica,” IEEE Trans. Geosci. Remote Sensing 48(3), 1059–1075 (2010).
    [Crossref]
  15. H. Suess and M. Soellner, “Fully polarimetric measurements of brightness temperature distributions with a quasi-optical radiometer system at 90 GHz,” IEEE Trans. Geosci. Remote Sensing 43(5), 1170–1179 (2005).
    [Crossref]
  16. A. Duric, A. Magun, A. Murk, C. Matzler, and N. Kampfer, “The fully polarimetric imaging radiometer SPIRA at 91 GHz,” IEEE Trans. Geosci. Remote Sensing 46(8), 2323–2336 (2008).
    [Crossref]
  17. M. Peichl, S. Dill, M. Jirousek, J. W. Anthony, and H. Süß, “Fully-polarimetric passive MMW imaging systems for security applications,” Proc. SPIE 7837, 78370C (2010).
    [Crossref]
  18. M. Peichl, S. Dill, and D. Rudolf, “Investigation of fully-polarimetric signatures from targets with some relevance to security applications,” Proc. SPIE 8022, 80220E (2011).
    [Crossref]
  19. J. P. Wilson, C. A. Schuetz, T. E. Dillon, P. Yao, C. E. Harrity, and D. W. Prather, “Passive 77 GHz millimeter-wave sensor based on optical upconversion,” Appl. Optics 51(18), 4157–4167 (2012).
    [Crossref]
  20. J. P. Wilson, C. A. Schuetz, C. E. Harrity, S. Kozacik, D. L. Eng, and D. W. Prather, “Measured comparison of contrast and crossover periods for passive millimeter-wave polarimetric imagery,” Opt. Express 21(10), 12899–12907 (2013).
    [Crossref] [PubMed]
  21. S. Liao, N. Gopalsami, T. W. Elmer, E. R. Koehl, A. Heifetz, K. Avers, and A. C. Raptis, “Passive millimeter-wave dual-polarization imagers,” IEEE Trans. Instrum. Meas. 61(7), 2042–2050 (2012).
    [Crossref]
  22. W.-G. Kim, N.-W. Moon, H.-K. Kim, and Y.-H. Kim, “Linear polarization sum imaging in passive millimeter-wave imaging system for target recognition,” Prog. Electromagn. Res. 136, 175–193 (2013).
    [Crossref]
  23. Y. Cheng, F. Hu, L. Gui, L. Wu, and L. Lang, “Polarization-based method for object surface orientation information in passive millimeter-wave imaging,” IEEE Photonics J.  8(1), 5500112 (2016).
    [Crossref]
  24. Y. Cheng, B. Qi, S. Liu, F. Hu, L. Gui, and X. Peng, “Polarization ratio property and material classification method in passive millimeter wave polarimetric imaging,” Proc. SPIE 9993, 9993K (2016).
  25. F. Hu, Y. Cheng, L. Gui, L. Wu, X. Zhang, X. Peng, and J. Su, “Polarization-based material classification technique using passive millimeter-wave polarimetric imagery,” Appl. Optics 55(31), 8690–8697 (2016).
    [Crossref]
  26. F. Hu, X. Zhang, Y. Cheng, Y. Xiao, and M. Song, “Influence of surface roughness on polarization property in passive millimeter-wave imaging,” IEICE Electron. Express 14(21), 20171005 (2017).
    [Crossref]
  27. Y. Cheng, F. Hu, L. Gui, J. Su, B. Qi, S. Liu, and M. Huang, “Linear polarisation property and fusion method for target recognition in passive millimetre-wave polarimetric imaging,” Electron. Lett. 52(14), 1221–1223 (2016).
    [Crossref]
  28. Y. Cheng, F. Hu, L. Gui, Y. Hu, and Z. Han, “Passive millimeter-wave polarization characteristics of several common structures,” Proc. SPIE 10407, 1040711 (2017).
  29. R. G. Driggers, C. M. Webb, S. J. Pruchnic, C. E. Halford, and E. Burroughs, “Laboratory measurement of sampled infrared imaging system performance,” Opt. Eng. 38(5), 852–862 (1999).
    [Crossref]
  30. F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Microwave remote sensing fundamentals and radiometry, (Addison-Wesley Publishing Company, 1981), Vol. 1.
  31. B. Qi, L. Lang, Y. Cheng, S. Liu, F. Hu, X. He, P. Deng, and L. Gui, “Passive millimeter-wave scene imaging simulation based on fast ray-tracing,” IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (2016), 2642–2645.
  32. N. A. Salmon, R. Appleby, and P. Coward, “Polarimetric passive millimetre wave imaging,” Proc. SPIE 4373, 82–85 (2001).
    [Crossref]
  33. N. A. Salmon, R. Appleby, and P. Coward, “Polarimetric passive millimetre wave imaging,” Proc. SPIE4373, 82–85 (2001).
  34. L. Tsang, “Polarimetric passive microwave remote sensing of random discrete scatterers and rough surfaces,” J. Electromagn. Waves Appl. 5(1), 41–57 (1991).
  35. L. Tsang, P. Xu, and K. S. Chen, “Third and fourth stokes parameters in polarimetric passive microwave remote sensing of rough surfaces over layered media,” Microw. Opt. Technol. Lett. 50(12), 3063–3069 (2008).
    [Crossref]

2018 (1)

N. A. Salmon, “Outdoor passive millimeter-wave imaging: Phenomenology and scene simulation,” IEEE Trans. Antennas Propag. 66(2) 897–908 (2018).
[Crossref]

2017 (3)

G.-P. Hu, K. L. Chan, Y.-C. Zheng, K. T. Tsang, and A.-A. Xu, “Comparison and evaluation of the change microwave radiometer data based on theoretical computation of brightness temperatures at the apollo 15 and 17 sites,” Icarus 294, 72–80 (2017).
[Crossref]

F. Hu, X. Zhang, Y. Cheng, Y. Xiao, and M. Song, “Influence of surface roughness on polarization property in passive millimeter-wave imaging,” IEICE Electron. Express 14(21), 20171005 (2017).
[Crossref]

Y. Cheng, F. Hu, L. Gui, Y. Hu, and Z. Han, “Passive millimeter-wave polarization characteristics of several common structures,” Proc. SPIE 10407, 1040711 (2017).

2016 (4)

Y. Cheng, F. Hu, L. Gui, J. Su, B. Qi, S. Liu, and M. Huang, “Linear polarisation property and fusion method for target recognition in passive millimetre-wave polarimetric imaging,” Electron. Lett. 52(14), 1221–1223 (2016).
[Crossref]

Y. Cheng, F. Hu, L. Gui, L. Wu, and L. Lang, “Polarization-based method for object surface orientation information in passive millimeter-wave imaging,” IEEE Photonics J.  8(1), 5500112 (2016).
[Crossref]

Y. Cheng, B. Qi, S. Liu, F. Hu, L. Gui, and X. Peng, “Polarization ratio property and material classification method in passive millimeter wave polarimetric imaging,” Proc. SPIE 9993, 9993K (2016).

F. Hu, Y. Cheng, L. Gui, L. Wu, X. Zhang, X. Peng, and J. Su, “Polarization-based material classification technique using passive millimeter-wave polarimetric imagery,” Appl. Optics 55(31), 8690–8697 (2016).
[Crossref]

2015 (1)

C. Zhang, H. Liu, J. Wu, S. Zhang, J. Yan, L. Niu, W. Sun, and H. Li, “Imaging Analysis and First Results of the Geostationary Interferometric Microwave Sounder Demonstrator,” IEEE Trans. Geosci. Remote Sensing 53(1), 207–218 (2015).
[Crossref]

2013 (2)

J. P. Wilson, C. A. Schuetz, C. E. Harrity, S. Kozacik, D. L. Eng, and D. W. Prather, “Measured comparison of contrast and crossover periods for passive millimeter-wave polarimetric imagery,” Opt. Express 21(10), 12899–12907 (2013).
[Crossref] [PubMed]

W.-G. Kim, N.-W. Moon, H.-K. Kim, and Y.-H. Kim, “Linear polarization sum imaging in passive millimeter-wave imaging system for target recognition,” Prog. Electromagn. Res. 136, 175–193 (2013).
[Crossref]

2012 (2)

J. P. Wilson, C. A. Schuetz, T. E. Dillon, P. Yao, C. E. Harrity, and D. W. Prather, “Passive 77 GHz millimeter-wave sensor based on optical upconversion,” Appl. Optics 51(18), 4157–4167 (2012).
[Crossref]

S. Liao, N. Gopalsami, T. W. Elmer, E. R. Koehl, A. Heifetz, K. Avers, and A. C. Raptis, “Passive millimeter-wave dual-polarization imagers,” IEEE Trans. Instrum. Meas. 61(7), 2042–2050 (2012).
[Crossref]

2011 (1)

M. Peichl, S. Dill, and D. Rudolf, “Investigation of fully-polarimetric signatures from targets with some relevance to security applications,” Proc. SPIE 8022, 80220E (2011).
[Crossref]

2010 (2)

M. Peichl, S. Dill, M. Jirousek, J. W. Anthony, and H. Süß, “Fully-polarimetric passive MMW imaging systems for security applications,” Proc. SPIE 7837, 78370C (2010).
[Crossref]

P. S. Narvekar, G. Heygster, T. J. Jackson, R. Bindlish, G. Macelloni, and J. Notholt, “Passive polarimetric microwave signatures observed over antarctica,” IEEE Trans. Geosci. Remote Sensing 48(3), 1059–1075 (2010).
[Crossref]

2008 (3)

M. R. Fetterman, J. Grata, G. Jubic, W. L. Kiser, and A. Visnansky, “Simulation, acquisition and analysis of passive millimeter-wave images in remote sensing applications,” Opt. Express 16(25), 20503–20515 (2008).
[Crossref] [PubMed]

A. Duric, A. Magun, A. Murk, C. Matzler, and N. Kampfer, “The fully polarimetric imaging radiometer SPIRA at 91 GHz,” IEEE Trans. Geosci. Remote Sensing 46(8), 2323–2336 (2008).
[Crossref]

L. Tsang, P. Xu, and K. S. Chen, “Third and fourth stokes parameters in polarimetric passive microwave remote sensing of rough surfaces over layered media,” Microw. Opt. Technol. Lett. 50(12), 3063–3069 (2008).
[Crossref]

2007 (1)

2006 (1)

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Optics 45(22), 5453–5469 (2006).
[Crossref]

2005 (2)

T. Luthi and C. Matzler, “Stereoscopic passive millimeter-wave imaging and ranging,” IEEE Trans. Microw. Theory Tech. 53(8), 2594–2599 (2005).
[Crossref]

H. Suess and M. Soellner, “Fully polarimetric measurements of brightness temperature distributions with a quasi-optical radiometer system at 90 GHz,” IEEE Trans. Geosci. Remote Sensing 43(5), 1170–1179 (2005).
[Crossref]

2004 (2)

P. W. Gaiser, K. M. St Germain, E. M. Twarog, G. A. Poe, W. Purdy, D. Richardson, W. Grossman, W. L. Jones, D. Spencer, G. Golba, J. Cleveland, L. Choy, R. M. Bevilacqua, and P. S. Chang, “The windsat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance,” IEEE Trans. Geosci. Remote Sensing 42(11), 2347–2361 (2004).
[Crossref]

R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 362, 379–393 (2004).
[Crossref]

2003 (1)

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter-wave imaging,” IEEE Microw. Mag. 4(3), 39–50 (2003).
[Crossref]

2001 (2)

J. R. Pardo, J. Cernicharo, and E. Serabyn, “Atmospheric transmission at microwaves (ATM): an improved model for millimeter/submillimeter applications,” IEEE Trans. Antennas Propag. 49(12), 1683–1694 (2001).
[Crossref]

N. A. Salmon, R. Appleby, and P. Coward, “Polarimetric passive millimetre wave imaging,” Proc. SPIE 4373, 82–85 (2001).
[Crossref]

1999 (1)

R. G. Driggers, C. M. Webb, S. J. Pruchnic, C. E. Halford, and E. Burroughs, “Laboratory measurement of sampled infrared imaging system performance,” Opt. Eng. 38(5), 852–862 (1999).
[Crossref]

1991 (1)

L. Tsang, “Polarimetric passive microwave remote sensing of random discrete scatterers and rough surfaces,” J. Electromagn. Waves Appl. 5(1), 41–57 (1991).

Anderton, R. N.

D. G. Gleed, R. Appleby, N. A. Salmon, S. Price, G. N. Sinclair, R. N. Anderton, J. R. Borill, and M. R. M. Wasley, “Operational issues of passive millimeter wave imaging systems,” Proc. SPIE3064, 23–33 (1997).
[Crossref]

Anthony, J. W.

M. Peichl, S. Dill, M. Jirousek, J. W. Anthony, and H. Süß, “Fully-polarimetric passive MMW imaging systems for security applications,” Proc. SPIE 7837, 78370C (2010).
[Crossref]

Appleby, R.

R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 362, 379–393 (2004).
[Crossref]

N. A. Salmon, R. Appleby, and P. Coward, “Polarimetric passive millimetre wave imaging,” Proc. SPIE 4373, 82–85 (2001).
[Crossref]

N. A. Salmon, R. Appleby, and P. Coward, “Polarimetric passive millimetre wave imaging,” Proc. SPIE4373, 82–85 (2001).

D. G. Gleed, R. Appleby, N. A. Salmon, S. Price, G. N. Sinclair, R. N. Anderton, J. R. Borill, and M. R. M. Wasley, “Operational issues of passive millimeter wave imaging systems,” Proc. SPIE3064, 23–33 (1997).
[Crossref]

Avers, K.

S. Liao, N. Gopalsami, T. W. Elmer, E. R. Koehl, A. Heifetz, K. Avers, and A. C. Raptis, “Passive millimeter-wave dual-polarization imagers,” IEEE Trans. Instrum. Meas. 61(7), 2042–2050 (2012).
[Crossref]

Bevilacqua, R. M.

P. W. Gaiser, K. M. St Germain, E. M. Twarog, G. A. Poe, W. Purdy, D. Richardson, W. Grossman, W. L. Jones, D. Spencer, G. Golba, J. Cleveland, L. Choy, R. M. Bevilacqua, and P. S. Chang, “The windsat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance,” IEEE Trans. Geosci. Remote Sensing 42(11), 2347–2361 (2004).
[Crossref]

Bindlish, R.

P. S. Narvekar, G. Heygster, T. J. Jackson, R. Bindlish, G. Macelloni, and J. Notholt, “Passive polarimetric microwave signatures observed over antarctica,” IEEE Trans. Geosci. Remote Sensing 48(3), 1059–1075 (2010).
[Crossref]

Borill, J. R.

D. G. Gleed, R. Appleby, N. A. Salmon, S. Price, G. N. Sinclair, R. N. Anderton, J. R. Borill, and M. R. M. Wasley, “Operational issues of passive millimeter wave imaging systems,” Proc. SPIE3064, 23–33 (1997).
[Crossref]

Burroughs, E.

R. G. Driggers, C. M. Webb, S. J. Pruchnic, C. E. Halford, and E. Burroughs, “Laboratory measurement of sampled infrared imaging system performance,” Opt. Eng. 38(5), 852–862 (1999).
[Crossref]

Cernicharo, J.

J. R. Pardo, J. Cernicharo, and E. Serabyn, “Atmospheric transmission at microwaves (ATM): an improved model for millimeter/submillimeter applications,” IEEE Trans. Antennas Propag. 49(12), 1683–1694 (2001).
[Crossref]

Chan, K. L.

G.-P. Hu, K. L. Chan, Y.-C. Zheng, K. T. Tsang, and A.-A. Xu, “Comparison and evaluation of the change microwave radiometer data based on theoretical computation of brightness temperatures at the apollo 15 and 17 sites,” Icarus 294, 72–80 (2017).
[Crossref]

Chang, P. S.

P. W. Gaiser, K. M. St Germain, E. M. Twarog, G. A. Poe, W. Purdy, D. Richardson, W. Grossman, W. L. Jones, D. Spencer, G. Golba, J. Cleveland, L. Choy, R. M. Bevilacqua, and P. S. Chang, “The windsat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance,” IEEE Trans. Geosci. Remote Sensing 42(11), 2347–2361 (2004).
[Crossref]

Chen, K. S.

L. Tsang, P. Xu, and K. S. Chen, “Third and fourth stokes parameters in polarimetric passive microwave remote sensing of rough surfaces over layered media,” Microw. Opt. Technol. Lett. 50(12), 3063–3069 (2008).
[Crossref]

Chenault, D. B.

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Optics 45(22), 5453–5469 (2006).
[Crossref]

Cheng, Y.

Y. Cheng, F. Hu, L. Gui, Y. Hu, and Z. Han, “Passive millimeter-wave polarization characteristics of several common structures,” Proc. SPIE 10407, 1040711 (2017).

F. Hu, X. Zhang, Y. Cheng, Y. Xiao, and M. Song, “Influence of surface roughness on polarization property in passive millimeter-wave imaging,” IEICE Electron. Express 14(21), 20171005 (2017).
[Crossref]

Y. Cheng, F. Hu, L. Gui, J. Su, B. Qi, S. Liu, and M. Huang, “Linear polarisation property and fusion method for target recognition in passive millimetre-wave polarimetric imaging,” Electron. Lett. 52(14), 1221–1223 (2016).
[Crossref]

F. Hu, Y. Cheng, L. Gui, L. Wu, X. Zhang, X. Peng, and J. Su, “Polarization-based material classification technique using passive millimeter-wave polarimetric imagery,” Appl. Optics 55(31), 8690–8697 (2016).
[Crossref]

Y. Cheng, F. Hu, L. Gui, L. Wu, and L. Lang, “Polarization-based method for object surface orientation information in passive millimeter-wave imaging,” IEEE Photonics J.  8(1), 5500112 (2016).
[Crossref]

Y. Cheng, B. Qi, S. Liu, F. Hu, L. Gui, and X. Peng, “Polarization ratio property and material classification method in passive millimeter wave polarimetric imaging,” Proc. SPIE 9993, 9993K (2016).

B. Qi, L. Lang, Y. Cheng, S. Liu, F. Hu, X. He, P. Deng, and L. Gui, “Passive millimeter-wave scene imaging simulation based on fast ray-tracing,” IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (2016), 2642–2645.

Choy, L.

P. W. Gaiser, K. M. St Germain, E. M. Twarog, G. A. Poe, W. Purdy, D. Richardson, W. Grossman, W. L. Jones, D. Spencer, G. Golba, J. Cleveland, L. Choy, R. M. Bevilacqua, and P. S. Chang, “The windsat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance,” IEEE Trans. Geosci. Remote Sensing 42(11), 2347–2361 (2004).
[Crossref]

Clark, S. E.

S. E. Clark, J. A. Lovberg, C. A. Martin, and V. Kolinko, “Passive millimeter-wave imaging for airborne and security applications,” Proc. SPIE5077, 16–21 (2003).
[Crossref]

Cleveland, J.

P. W. Gaiser, K. M. St Germain, E. M. Twarog, G. A. Poe, W. Purdy, D. Richardson, W. Grossman, W. L. Jones, D. Spencer, G. Golba, J. Cleveland, L. Choy, R. M. Bevilacqua, and P. S. Chang, “The windsat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance,” IEEE Trans. Geosci. Remote Sensing 42(11), 2347–2361 (2004).
[Crossref]

Coward, P.

N. A. Salmon, R. Appleby, and P. Coward, “Polarimetric passive millimetre wave imaging,” Proc. SPIE 4373, 82–85 (2001).
[Crossref]

N. A. Salmon, R. Appleby, and P. Coward, “Polarimetric passive millimetre wave imaging,” Proc. SPIE4373, 82–85 (2001).

Deng, P.

B. Qi, L. Lang, Y. Cheng, S. Liu, F. Hu, X. He, P. Deng, and L. Gui, “Passive millimeter-wave scene imaging simulation based on fast ray-tracing,” IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (2016), 2642–2645.

Dill, S.

M. Peichl, S. Dill, and D. Rudolf, “Investigation of fully-polarimetric signatures from targets with some relevance to security applications,” Proc. SPIE 8022, 80220E (2011).
[Crossref]

M. Peichl, S. Dill, M. Jirousek, J. W. Anthony, and H. Süß, “Fully-polarimetric passive MMW imaging systems for security applications,” Proc. SPIE 7837, 78370C (2010).
[Crossref]

Dillon, T. E.

J. P. Wilson, C. A. Schuetz, T. E. Dillon, P. Yao, C. E. Harrity, and D. W. Prather, “Passive 77 GHz millimeter-wave sensor based on optical upconversion,” Appl. Optics 51(18), 4157–4167 (2012).
[Crossref]

Driggers, R. G.

R. G. Driggers, C. M. Webb, S. J. Pruchnic, C. E. Halford, and E. Burroughs, “Laboratory measurement of sampled infrared imaging system performance,” Opt. Eng. 38(5), 852–862 (1999).
[Crossref]

Duric, A.

A. Duric, A. Magun, A. Murk, C. Matzler, and N. Kampfer, “The fully polarimetric imaging radiometer SPIRA at 91 GHz,” IEEE Trans. Geosci. Remote Sensing 46(8), 2323–2336 (2008).
[Crossref]

Elmer, T. W.

S. Liao, N. Gopalsami, T. W. Elmer, E. R. Koehl, A. Heifetz, K. Avers, and A. C. Raptis, “Passive millimeter-wave dual-polarization imagers,” IEEE Trans. Instrum. Meas. 61(7), 2042–2050 (2012).
[Crossref]

Eng, D. L.

Fetterman, M. R.

Fung, A. K.

F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Microwave remote sensing fundamentals and radiometry, (Addison-Wesley Publishing Company, 1981), Vol. 1.

Gaiser, P. W.

P. W. Gaiser, K. M. St Germain, E. M. Twarog, G. A. Poe, W. Purdy, D. Richardson, W. Grossman, W. L. Jones, D. Spencer, G. Golba, J. Cleveland, L. Choy, R. M. Bevilacqua, and P. S. Chang, “The windsat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance,” IEEE Trans. Geosci. Remote Sensing 42(11), 2347–2361 (2004).
[Crossref]

Germain, K. M. St

P. W. Gaiser, K. M. St Germain, E. M. Twarog, G. A. Poe, W. Purdy, D. Richardson, W. Grossman, W. L. Jones, D. Spencer, G. Golba, J. Cleveland, L. Choy, R. M. Bevilacqua, and P. S. Chang, “The windsat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance,” IEEE Trans. Geosci. Remote Sensing 42(11), 2347–2361 (2004).
[Crossref]

Gleed, D. G.

D. G. Gleed, R. Appleby, N. A. Salmon, S. Price, G. N. Sinclair, R. N. Anderton, J. R. Borill, and M. R. M. Wasley, “Operational issues of passive millimeter wave imaging systems,” Proc. SPIE3064, 23–33 (1997).
[Crossref]

Golba, G.

P. W. Gaiser, K. M. St Germain, E. M. Twarog, G. A. Poe, W. Purdy, D. Richardson, W. Grossman, W. L. Jones, D. Spencer, G. Golba, J. Cleveland, L. Choy, R. M. Bevilacqua, and P. S. Chang, “The windsat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance,” IEEE Trans. Geosci. Remote Sensing 42(11), 2347–2361 (2004).
[Crossref]

Goldstein, D. L.

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Optics 45(22), 5453–5469 (2006).
[Crossref]

Gopalsami, N.

S. Liao, N. Gopalsami, T. W. Elmer, E. R. Koehl, A. Heifetz, K. Avers, and A. C. Raptis, “Passive millimeter-wave dual-polarization imagers,” IEEE Trans. Instrum. Meas. 61(7), 2042–2050 (2012).
[Crossref]

Grata, J.

Grossman, W.

P. W. Gaiser, K. M. St Germain, E. M. Twarog, G. A. Poe, W. Purdy, D. Richardson, W. Grossman, W. L. Jones, D. Spencer, G. Golba, J. Cleveland, L. Choy, R. M. Bevilacqua, and P. S. Chang, “The windsat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance,” IEEE Trans. Geosci. Remote Sensing 42(11), 2347–2361 (2004).
[Crossref]

Gui, L.

Y. Cheng, F. Hu, L. Gui, Y. Hu, and Z. Han, “Passive millimeter-wave polarization characteristics of several common structures,” Proc. SPIE 10407, 1040711 (2017).

Y. Cheng, F. Hu, L. Gui, L. Wu, and L. Lang, “Polarization-based method for object surface orientation information in passive millimeter-wave imaging,” IEEE Photonics J.  8(1), 5500112 (2016).
[Crossref]

Y. Cheng, B. Qi, S. Liu, F. Hu, L. Gui, and X. Peng, “Polarization ratio property and material classification method in passive millimeter wave polarimetric imaging,” Proc. SPIE 9993, 9993K (2016).

F. Hu, Y. Cheng, L. Gui, L. Wu, X. Zhang, X. Peng, and J. Su, “Polarization-based material classification technique using passive millimeter-wave polarimetric imagery,” Appl. Optics 55(31), 8690–8697 (2016).
[Crossref]

Y. Cheng, F. Hu, L. Gui, J. Su, B. Qi, S. Liu, and M. Huang, “Linear polarisation property and fusion method for target recognition in passive millimetre-wave polarimetric imaging,” Electron. Lett. 52(14), 1221–1223 (2016).
[Crossref]

B. Qi, L. Lang, Y. Cheng, S. Liu, F. Hu, X. He, P. Deng, and L. Gui, “Passive millimeter-wave scene imaging simulation based on fast ray-tracing,” IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (2016), 2642–2645.

Halford, C. E.

R. G. Driggers, C. M. Webb, S. J. Pruchnic, C. E. Halford, and E. Burroughs, “Laboratory measurement of sampled infrared imaging system performance,” Opt. Eng. 38(5), 852–862 (1999).
[Crossref]

Han, Z.

Y. Cheng, F. Hu, L. Gui, Y. Hu, and Z. Han, “Passive millimeter-wave polarization characteristics of several common structures,” Proc. SPIE 10407, 1040711 (2017).

Harrity, C. E.

J. P. Wilson, C. A. Schuetz, C. E. Harrity, S. Kozacik, D. L. Eng, and D. W. Prather, “Measured comparison of contrast and crossover periods for passive millimeter-wave polarimetric imagery,” Opt. Express 21(10), 12899–12907 (2013).
[Crossref] [PubMed]

J. P. Wilson, C. A. Schuetz, T. E. Dillon, P. Yao, C. E. Harrity, and D. W. Prather, “Passive 77 GHz millimeter-wave sensor based on optical upconversion,” Appl. Optics 51(18), 4157–4167 (2012).
[Crossref]

He, X.

B. Qi, L. Lang, Y. Cheng, S. Liu, F. Hu, X. He, P. Deng, and L. Gui, “Passive millimeter-wave scene imaging simulation based on fast ray-tracing,” IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (2016), 2642–2645.

Heifetz, A.

S. Liao, N. Gopalsami, T. W. Elmer, E. R. Koehl, A. Heifetz, K. Avers, and A. C. Raptis, “Passive millimeter-wave dual-polarization imagers,” IEEE Trans. Instrum. Meas. 61(7), 2042–2050 (2012).
[Crossref]

Heygster, G.

P. S. Narvekar, G. Heygster, T. J. Jackson, R. Bindlish, G. Macelloni, and J. Notholt, “Passive polarimetric microwave signatures observed over antarctica,” IEEE Trans. Geosci. Remote Sensing 48(3), 1059–1075 (2010).
[Crossref]

Hu, F.

Y. Cheng, F. Hu, L. Gui, Y. Hu, and Z. Han, “Passive millimeter-wave polarization characteristics of several common structures,” Proc. SPIE 10407, 1040711 (2017).

F. Hu, X. Zhang, Y. Cheng, Y. Xiao, and M. Song, “Influence of surface roughness on polarization property in passive millimeter-wave imaging,” IEICE Electron. Express 14(21), 20171005 (2017).
[Crossref]

Y. Cheng, F. Hu, L. Gui, J. Su, B. Qi, S. Liu, and M. Huang, “Linear polarisation property and fusion method for target recognition in passive millimetre-wave polarimetric imaging,” Electron. Lett. 52(14), 1221–1223 (2016).
[Crossref]

Y. Cheng, B. Qi, S. Liu, F. Hu, L. Gui, and X. Peng, “Polarization ratio property and material classification method in passive millimeter wave polarimetric imaging,” Proc. SPIE 9993, 9993K (2016).

F. Hu, Y. Cheng, L. Gui, L. Wu, X. Zhang, X. Peng, and J. Su, “Polarization-based material classification technique using passive millimeter-wave polarimetric imagery,” Appl. Optics 55(31), 8690–8697 (2016).
[Crossref]

Y. Cheng, F. Hu, L. Gui, L. Wu, and L. Lang, “Polarization-based method for object surface orientation information in passive millimeter-wave imaging,” IEEE Photonics J.  8(1), 5500112 (2016).
[Crossref]

B. Qi, L. Lang, Y. Cheng, S. Liu, F. Hu, X. He, P. Deng, and L. Gui, “Passive millimeter-wave scene imaging simulation based on fast ray-tracing,” IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (2016), 2642–2645.

Hu, G.-P.

G.-P. Hu, K. L. Chan, Y.-C. Zheng, K. T. Tsang, and A.-A. Xu, “Comparison and evaluation of the change microwave radiometer data based on theoretical computation of brightness temperatures at the apollo 15 and 17 sites,” Icarus 294, 72–80 (2017).
[Crossref]

Hu, Y.

Y. Cheng, F. Hu, L. Gui, Y. Hu, and Z. Han, “Passive millimeter-wave polarization characteristics of several common structures,” Proc. SPIE 10407, 1040711 (2017).

Huang, M.

Y. Cheng, F. Hu, L. Gui, J. Su, B. Qi, S. Liu, and M. Huang, “Linear polarisation property and fusion method for target recognition in passive millimetre-wave polarimetric imaging,” Electron. Lett. 52(14), 1221–1223 (2016).
[Crossref]

Jackson, T. J.

P. S. Narvekar, G. Heygster, T. J. Jackson, R. Bindlish, G. Macelloni, and J. Notholt, “Passive polarimetric microwave signatures observed over antarctica,” IEEE Trans. Geosci. Remote Sensing 48(3), 1059–1075 (2010).
[Crossref]

Jirousek, M.

M. Peichl, S. Dill, M. Jirousek, J. W. Anthony, and H. Süß, “Fully-polarimetric passive MMW imaging systems for security applications,” Proc. SPIE 7837, 78370C (2010).
[Crossref]

Jones, W. L.

P. W. Gaiser, K. M. St Germain, E. M. Twarog, G. A. Poe, W. Purdy, D. Richardson, W. Grossman, W. L. Jones, D. Spencer, G. Golba, J. Cleveland, L. Choy, R. M. Bevilacqua, and P. S. Chang, “The windsat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance,” IEEE Trans. Geosci. Remote Sensing 42(11), 2347–2361 (2004).
[Crossref]

Jubic, G.

Kampfer, N.

A. Duric, A. Magun, A. Murk, C. Matzler, and N. Kampfer, “The fully polarimetric imaging radiometer SPIRA at 91 GHz,” IEEE Trans. Geosci. Remote Sensing 46(8), 2323–2336 (2008).
[Crossref]

Kim, H.-K.

W.-G. Kim, N.-W. Moon, H.-K. Kim, and Y.-H. Kim, “Linear polarization sum imaging in passive millimeter-wave imaging system for target recognition,” Prog. Electromagn. Res. 136, 175–193 (2013).
[Crossref]

Kim, W.-G.

W.-G. Kim, N.-W. Moon, H.-K. Kim, and Y.-H. Kim, “Linear polarization sum imaging in passive millimeter-wave imaging system for target recognition,” Prog. Electromagn. Res. 136, 175–193 (2013).
[Crossref]

Kim, Y.-H.

W.-G. Kim, N.-W. Moon, H.-K. Kim, and Y.-H. Kim, “Linear polarization sum imaging in passive millimeter-wave imaging system for target recognition,” Prog. Electromagn. Res. 136, 175–193 (2013).
[Crossref]

Kiser, W. L.

Koehl, E. R.

S. Liao, N. Gopalsami, T. W. Elmer, E. R. Koehl, A. Heifetz, K. Avers, and A. C. Raptis, “Passive millimeter-wave dual-polarization imagers,” IEEE Trans. Instrum. Meas. 61(7), 2042–2050 (2012).
[Crossref]

Kolinko, V.

S. E. Clark, J. A. Lovberg, C. A. Martin, and V. Kolinko, “Passive millimeter-wave imaging for airborne and security applications,” Proc. SPIE5077, 16–21 (2003).
[Crossref]

Kozacik, S.

Lang, L.

Y. Cheng, F. Hu, L. Gui, L. Wu, and L. Lang, “Polarization-based method for object surface orientation information in passive millimeter-wave imaging,” IEEE Photonics J.  8(1), 5500112 (2016).
[Crossref]

B. Qi, L. Lang, Y. Cheng, S. Liu, F. Hu, X. He, P. Deng, and L. Gui, “Passive millimeter-wave scene imaging simulation based on fast ray-tracing,” IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (2016), 2642–2645.

Li, H.

C. Zhang, H. Liu, J. Wu, S. Zhang, J. Yan, L. Niu, W. Sun, and H. Li, “Imaging Analysis and First Results of the Geostationary Interferometric Microwave Sounder Demonstrator,” IEEE Trans. Geosci. Remote Sensing 53(1), 207–218 (2015).
[Crossref]

Liao, S.

S. Liao, N. Gopalsami, T. W. Elmer, E. R. Koehl, A. Heifetz, K. Avers, and A. C. Raptis, “Passive millimeter-wave dual-polarization imagers,” IEEE Trans. Instrum. Meas. 61(7), 2042–2050 (2012).
[Crossref]

Liu, H.

C. Zhang, H. Liu, J. Wu, S. Zhang, J. Yan, L. Niu, W. Sun, and H. Li, “Imaging Analysis and First Results of the Geostationary Interferometric Microwave Sounder Demonstrator,” IEEE Trans. Geosci. Remote Sensing 53(1), 207–218 (2015).
[Crossref]

Liu, S.

Y. Cheng, F. Hu, L. Gui, J. Su, B. Qi, S. Liu, and M. Huang, “Linear polarisation property and fusion method for target recognition in passive millimetre-wave polarimetric imaging,” Electron. Lett. 52(14), 1221–1223 (2016).
[Crossref]

Y. Cheng, B. Qi, S. Liu, F. Hu, L. Gui, and X. Peng, “Polarization ratio property and material classification method in passive millimeter wave polarimetric imaging,” Proc. SPIE 9993, 9993K (2016).

B. Qi, L. Lang, Y. Cheng, S. Liu, F. Hu, X. He, P. Deng, and L. Gui, “Passive millimeter-wave scene imaging simulation based on fast ray-tracing,” IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (2016), 2642–2645.

Lovberg, J. A.

S. E. Clark, J. A. Lovberg, C. A. Martin, and V. Kolinko, “Passive millimeter-wave imaging for airborne and security applications,” Proc. SPIE5077, 16–21 (2003).
[Crossref]

Luthi, T.

T. Luthi and C. Matzler, “Stereoscopic passive millimeter-wave imaging and ranging,” IEEE Trans. Microw. Theory Tech. 53(8), 2594–2599 (2005).
[Crossref]

Macelloni, G.

P. S. Narvekar, G. Heygster, T. J. Jackson, R. Bindlish, G. Macelloni, and J. Notholt, “Passive polarimetric microwave signatures observed over antarctica,” IEEE Trans. Geosci. Remote Sensing 48(3), 1059–1075 (2010).
[Crossref]

Magun, A.

A. Duric, A. Magun, A. Murk, C. Matzler, and N. Kampfer, “The fully polarimetric imaging radiometer SPIRA at 91 GHz,” IEEE Trans. Geosci. Remote Sensing 46(8), 2323–2336 (2008).
[Crossref]

Martin, C. A.

S. E. Clark, J. A. Lovberg, C. A. Martin, and V. Kolinko, “Passive millimeter-wave imaging for airborne and security applications,” Proc. SPIE5077, 16–21 (2003).
[Crossref]

Matzler, C.

A. Duric, A. Magun, A. Murk, C. Matzler, and N. Kampfer, “The fully polarimetric imaging radiometer SPIRA at 91 GHz,” IEEE Trans. Geosci. Remote Sensing 46(8), 2323–2336 (2008).
[Crossref]

T. Luthi and C. Matzler, “Stereoscopic passive millimeter-wave imaging and ranging,” IEEE Trans. Microw. Theory Tech. 53(8), 2594–2599 (2005).
[Crossref]

Moffa, P.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter-wave imaging,” IEEE Microw. Mag. 4(3), 39–50 (2003).
[Crossref]

Moon, N.-W.

W.-G. Kim, N.-W. Moon, H.-K. Kim, and Y.-H. Kim, “Linear polarization sum imaging in passive millimeter-wave imaging system for target recognition,” Prog. Electromagn. Res. 136, 175–193 (2013).
[Crossref]

Moore, R. K.

F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Microwave remote sensing fundamentals and radiometry, (Addison-Wesley Publishing Company, 1981), Vol. 1.

Murk, A.

A. Duric, A. Magun, A. Murk, C. Matzler, and N. Kampfer, “The fully polarimetric imaging radiometer SPIRA at 91 GHz,” IEEE Trans. Geosci. Remote Sensing 46(8), 2323–2336 (2008).
[Crossref]

Narvekar, P. S.

P. S. Narvekar, G. Heygster, T. J. Jackson, R. Bindlish, G. Macelloni, and J. Notholt, “Passive polarimetric microwave signatures observed over antarctica,” IEEE Trans. Geosci. Remote Sensing 48(3), 1059–1075 (2010).
[Crossref]

Niu, L.

C. Zhang, H. Liu, J. Wu, S. Zhang, J. Yan, L. Niu, W. Sun, and H. Li, “Imaging Analysis and First Results of the Geostationary Interferometric Microwave Sounder Demonstrator,” IEEE Trans. Geosci. Remote Sensing 53(1), 207–218 (2015).
[Crossref]

Notholt, J.

P. S. Narvekar, G. Heygster, T. J. Jackson, R. Bindlish, G. Macelloni, and J. Notholt, “Passive polarimetric microwave signatures observed over antarctica,” IEEE Trans. Geosci. Remote Sensing 48(3), 1059–1075 (2010).
[Crossref]

Pardo, J. R.

J. R. Pardo, J. Cernicharo, and E. Serabyn, “Atmospheric transmission at microwaves (ATM): an improved model for millimeter/submillimeter applications,” IEEE Trans. Antennas Propag. 49(12), 1683–1694 (2001).
[Crossref]

Peichl, M.

M. Peichl, S. Dill, and D. Rudolf, “Investigation of fully-polarimetric signatures from targets with some relevance to security applications,” Proc. SPIE 8022, 80220E (2011).
[Crossref]

M. Peichl, S. Dill, M. Jirousek, J. W. Anthony, and H. Süß, “Fully-polarimetric passive MMW imaging systems for security applications,” Proc. SPIE 7837, 78370C (2010).
[Crossref]

Peng, X.

Y. Cheng, B. Qi, S. Liu, F. Hu, L. Gui, and X. Peng, “Polarization ratio property and material classification method in passive millimeter wave polarimetric imaging,” Proc. SPIE 9993, 9993K (2016).

F. Hu, Y. Cheng, L. Gui, L. Wu, X. Zhang, X. Peng, and J. Su, “Polarization-based material classification technique using passive millimeter-wave polarimetric imagery,” Appl. Optics 55(31), 8690–8697 (2016).
[Crossref]

Poe, G. A.

P. W. Gaiser, K. M. St Germain, E. M. Twarog, G. A. Poe, W. Purdy, D. Richardson, W. Grossman, W. L. Jones, D. Spencer, G. Golba, J. Cleveland, L. Choy, R. M. Bevilacqua, and P. S. Chang, “The windsat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance,” IEEE Trans. Geosci. Remote Sensing 42(11), 2347–2361 (2004).
[Crossref]

Prather, D. W.

J. P. Wilson, C. A. Schuetz, C. E. Harrity, S. Kozacik, D. L. Eng, and D. W. Prather, “Measured comparison of contrast and crossover periods for passive millimeter-wave polarimetric imagery,” Opt. Express 21(10), 12899–12907 (2013).
[Crossref] [PubMed]

J. P. Wilson, C. A. Schuetz, T. E. Dillon, P. Yao, C. E. Harrity, and D. W. Prather, “Passive 77 GHz millimeter-wave sensor based on optical upconversion,” Appl. Optics 51(18), 4157–4167 (2012).
[Crossref]

Price, S.

D. G. Gleed, R. Appleby, N. A. Salmon, S. Price, G. N. Sinclair, R. N. Anderton, J. R. Borill, and M. R. M. Wasley, “Operational issues of passive millimeter wave imaging systems,” Proc. SPIE3064, 23–33 (1997).
[Crossref]

Pruchnic, S. J.

R. G. Driggers, C. M. Webb, S. J. Pruchnic, C. E. Halford, and E. Burroughs, “Laboratory measurement of sampled infrared imaging system performance,” Opt. Eng. 38(5), 852–862 (1999).
[Crossref]

Purdy, W.

P. W. Gaiser, K. M. St Germain, E. M. Twarog, G. A. Poe, W. Purdy, D. Richardson, W. Grossman, W. L. Jones, D. Spencer, G. Golba, J. Cleveland, L. Choy, R. M. Bevilacqua, and P. S. Chang, “The windsat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance,” IEEE Trans. Geosci. Remote Sensing 42(11), 2347–2361 (2004).
[Crossref]

Qi, B.

Y. Cheng, F. Hu, L. Gui, J. Su, B. Qi, S. Liu, and M. Huang, “Linear polarisation property and fusion method for target recognition in passive millimetre-wave polarimetric imaging,” Electron. Lett. 52(14), 1221–1223 (2016).
[Crossref]

Y. Cheng, B. Qi, S. Liu, F. Hu, L. Gui, and X. Peng, “Polarization ratio property and material classification method in passive millimeter wave polarimetric imaging,” Proc. SPIE 9993, 9993K (2016).

B. Qi, L. Lang, Y. Cheng, S. Liu, F. Hu, X. He, P. Deng, and L. Gui, “Passive millimeter-wave scene imaging simulation based on fast ray-tracing,” IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (2016), 2642–2645.

Raptis, A. C.

S. Liao, N. Gopalsami, T. W. Elmer, E. R. Koehl, A. Heifetz, K. Avers, and A. C. Raptis, “Passive millimeter-wave dual-polarization imagers,” IEEE Trans. Instrum. Meas. 61(7), 2042–2050 (2012).
[Crossref]

Richardson, D.

P. W. Gaiser, K. M. St Germain, E. M. Twarog, G. A. Poe, W. Purdy, D. Richardson, W. Grossman, W. L. Jones, D. Spencer, G. Golba, J. Cleveland, L. Choy, R. M. Bevilacqua, and P. S. Chang, “The windsat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance,” IEEE Trans. Geosci. Remote Sensing 42(11), 2347–2361 (2004).
[Crossref]

Rudolf, D.

M. Peichl, S. Dill, and D. Rudolf, “Investigation of fully-polarimetric signatures from targets with some relevance to security applications,” Proc. SPIE 8022, 80220E (2011).
[Crossref]

Sadjadi, F. A.

Salmon, N. A.

N. A. Salmon, “Outdoor passive millimeter-wave imaging: Phenomenology and scene simulation,” IEEE Trans. Antennas Propag. 66(2) 897–908 (2018).
[Crossref]

N. A. Salmon, R. Appleby, and P. Coward, “Polarimetric passive millimetre wave imaging,” Proc. SPIE 4373, 82–85 (2001).
[Crossref]

N. A. Salmon, R. Appleby, and P. Coward, “Polarimetric passive millimetre wave imaging,” Proc. SPIE4373, 82–85 (2001).

D. G. Gleed, R. Appleby, N. A. Salmon, S. Price, G. N. Sinclair, R. N. Anderton, J. R. Borill, and M. R. M. Wasley, “Operational issues of passive millimeter wave imaging systems,” Proc. SPIE3064, 23–33 (1997).
[Crossref]

Schuetz, C. A.

J. P. Wilson, C. A. Schuetz, C. E. Harrity, S. Kozacik, D. L. Eng, and D. W. Prather, “Measured comparison of contrast and crossover periods for passive millimeter-wave polarimetric imagery,” Opt. Express 21(10), 12899–12907 (2013).
[Crossref] [PubMed]

J. P. Wilson, C. A. Schuetz, T. E. Dillon, P. Yao, C. E. Harrity, and D. W. Prather, “Passive 77 GHz millimeter-wave sensor based on optical upconversion,” Appl. Optics 51(18), 4157–4167 (2012).
[Crossref]

Serabyn, E.

J. R. Pardo, J. Cernicharo, and E. Serabyn, “Atmospheric transmission at microwaves (ATM): an improved model for millimeter/submillimeter applications,” IEEE Trans. Antennas Propag. 49(12), 1683–1694 (2001).
[Crossref]

Shaw, J. A.

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Optics 45(22), 5453–5469 (2006).
[Crossref]

Shoucri, M.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter-wave imaging,” IEEE Microw. Mag. 4(3), 39–50 (2003).
[Crossref]

Sinclair, G. N.

D. G. Gleed, R. Appleby, N. A. Salmon, S. Price, G. N. Sinclair, R. N. Anderton, J. R. Borill, and M. R. M. Wasley, “Operational issues of passive millimeter wave imaging systems,” Proc. SPIE3064, 23–33 (1997).
[Crossref]

Soellner, M.

H. Suess and M. Soellner, “Fully polarimetric measurements of brightness temperature distributions with a quasi-optical radiometer system at 90 GHz,” IEEE Trans. Geosci. Remote Sensing 43(5), 1170–1179 (2005).
[Crossref]

Song, M.

F. Hu, X. Zhang, Y. Cheng, Y. Xiao, and M. Song, “Influence of surface roughness on polarization property in passive millimeter-wave imaging,” IEICE Electron. Express 14(21), 20171005 (2017).
[Crossref]

Spencer, D.

P. W. Gaiser, K. M. St Germain, E. M. Twarog, G. A. Poe, W. Purdy, D. Richardson, W. Grossman, W. L. Jones, D. Spencer, G. Golba, J. Cleveland, L. Choy, R. M. Bevilacqua, and P. S. Chang, “The windsat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance,” IEEE Trans. Geosci. Remote Sensing 42(11), 2347–2361 (2004).
[Crossref]

Su, J.

F. Hu, Y. Cheng, L. Gui, L. Wu, X. Zhang, X. Peng, and J. Su, “Polarization-based material classification technique using passive millimeter-wave polarimetric imagery,” Appl. Optics 55(31), 8690–8697 (2016).
[Crossref]

Y. Cheng, F. Hu, L. Gui, J. Su, B. Qi, S. Liu, and M. Huang, “Linear polarisation property and fusion method for target recognition in passive millimetre-wave polarimetric imaging,” Electron. Lett. 52(14), 1221–1223 (2016).
[Crossref]

Suess, H.

H. Suess and M. Soellner, “Fully polarimetric measurements of brightness temperature distributions with a quasi-optical radiometer system at 90 GHz,” IEEE Trans. Geosci. Remote Sensing 43(5), 1170–1179 (2005).
[Crossref]

Sun, W.

C. Zhang, H. Liu, J. Wu, S. Zhang, J. Yan, L. Niu, W. Sun, and H. Li, “Imaging Analysis and First Results of the Geostationary Interferometric Microwave Sounder Demonstrator,” IEEE Trans. Geosci. Remote Sensing 53(1), 207–218 (2015).
[Crossref]

Süß, H.

M. Peichl, S. Dill, M. Jirousek, J. W. Anthony, and H. Süß, “Fully-polarimetric passive MMW imaging systems for security applications,” Proc. SPIE 7837, 78370C (2010).
[Crossref]

Tsang, K. T.

G.-P. Hu, K. L. Chan, Y.-C. Zheng, K. T. Tsang, and A.-A. Xu, “Comparison and evaluation of the change microwave radiometer data based on theoretical computation of brightness temperatures at the apollo 15 and 17 sites,” Icarus 294, 72–80 (2017).
[Crossref]

Tsang, L.

L. Tsang, P. Xu, and K. S. Chen, “Third and fourth stokes parameters in polarimetric passive microwave remote sensing of rough surfaces over layered media,” Microw. Opt. Technol. Lett. 50(12), 3063–3069 (2008).
[Crossref]

L. Tsang, “Polarimetric passive microwave remote sensing of random discrete scatterers and rough surfaces,” J. Electromagn. Waves Appl. 5(1), 41–57 (1991).

Twarog, E. M.

P. W. Gaiser, K. M. St Germain, E. M. Twarog, G. A. Poe, W. Purdy, D. Richardson, W. Grossman, W. L. Jones, D. Spencer, G. Golba, J. Cleveland, L. Choy, R. M. Bevilacqua, and P. S. Chang, “The windsat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance,” IEEE Trans. Geosci. Remote Sensing 42(11), 2347–2361 (2004).
[Crossref]

Tyo, J. S.

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Optics 45(22), 5453–5469 (2006).
[Crossref]

Ulaby, F. T.

F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Microwave remote sensing fundamentals and radiometry, (Addison-Wesley Publishing Company, 1981), Vol. 1.

Visnansky, A.

Wasley, M. R. M.

D. G. Gleed, R. Appleby, N. A. Salmon, S. Price, G. N. Sinclair, R. N. Anderton, J. R. Borill, and M. R. M. Wasley, “Operational issues of passive millimeter wave imaging systems,” Proc. SPIE3064, 23–33 (1997).
[Crossref]

Webb, C. M.

R. G. Driggers, C. M. Webb, S. J. Pruchnic, C. E. Halford, and E. Burroughs, “Laboratory measurement of sampled infrared imaging system performance,” Opt. Eng. 38(5), 852–862 (1999).
[Crossref]

Wilson, J. P.

J. P. Wilson, C. A. Schuetz, C. E. Harrity, S. Kozacik, D. L. Eng, and D. W. Prather, “Measured comparison of contrast and crossover periods for passive millimeter-wave polarimetric imagery,” Opt. Express 21(10), 12899–12907 (2013).
[Crossref] [PubMed]

J. P. Wilson, C. A. Schuetz, T. E. Dillon, P. Yao, C. E. Harrity, and D. W. Prather, “Passive 77 GHz millimeter-wave sensor based on optical upconversion,” Appl. Optics 51(18), 4157–4167 (2012).
[Crossref]

Wu, J.

C. Zhang, H. Liu, J. Wu, S. Zhang, J. Yan, L. Niu, W. Sun, and H. Li, “Imaging Analysis and First Results of the Geostationary Interferometric Microwave Sounder Demonstrator,” IEEE Trans. Geosci. Remote Sensing 53(1), 207–218 (2015).
[Crossref]

Wu, L.

F. Hu, Y. Cheng, L. Gui, L. Wu, X. Zhang, X. Peng, and J. Su, “Polarization-based material classification technique using passive millimeter-wave polarimetric imagery,” Appl. Optics 55(31), 8690–8697 (2016).
[Crossref]

Y. Cheng, F. Hu, L. Gui, L. Wu, and L. Lang, “Polarization-based method for object surface orientation information in passive millimeter-wave imaging,” IEEE Photonics J.  8(1), 5500112 (2016).
[Crossref]

Xiao, Y.

F. Hu, X. Zhang, Y. Cheng, Y. Xiao, and M. Song, “Influence of surface roughness on polarization property in passive millimeter-wave imaging,” IEICE Electron. Express 14(21), 20171005 (2017).
[Crossref]

Xu, A.-A.

G.-P. Hu, K. L. Chan, Y.-C. Zheng, K. T. Tsang, and A.-A. Xu, “Comparison and evaluation of the change microwave radiometer data based on theoretical computation of brightness temperatures at the apollo 15 and 17 sites,” Icarus 294, 72–80 (2017).
[Crossref]

Xu, P.

L. Tsang, P. Xu, and K. S. Chen, “Third and fourth stokes parameters in polarimetric passive microwave remote sensing of rough surfaces over layered media,” Microw. Opt. Technol. Lett. 50(12), 3063–3069 (2008).
[Crossref]

Yan, J.

C. Zhang, H. Liu, J. Wu, S. Zhang, J. Yan, L. Niu, W. Sun, and H. Li, “Imaging Analysis and First Results of the Geostationary Interferometric Microwave Sounder Demonstrator,” IEEE Trans. Geosci. Remote Sensing 53(1), 207–218 (2015).
[Crossref]

Yao, P.

J. P. Wilson, C. A. Schuetz, T. E. Dillon, P. Yao, C. E. Harrity, and D. W. Prather, “Passive 77 GHz millimeter-wave sensor based on optical upconversion,” Appl. Optics 51(18), 4157–4167 (2012).
[Crossref]

Yujiri, L.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter-wave imaging,” IEEE Microw. Mag. 4(3), 39–50 (2003).
[Crossref]

Zhang, C.

C. Zhang, H. Liu, J. Wu, S. Zhang, J. Yan, L. Niu, W. Sun, and H. Li, “Imaging Analysis and First Results of the Geostationary Interferometric Microwave Sounder Demonstrator,” IEEE Trans. Geosci. Remote Sensing 53(1), 207–218 (2015).
[Crossref]

Zhang, S.

C. Zhang, H. Liu, J. Wu, S. Zhang, J. Yan, L. Niu, W. Sun, and H. Li, “Imaging Analysis and First Results of the Geostationary Interferometric Microwave Sounder Demonstrator,” IEEE Trans. Geosci. Remote Sensing 53(1), 207–218 (2015).
[Crossref]

Zhang, X.

F. Hu, X. Zhang, Y. Cheng, Y. Xiao, and M. Song, “Influence of surface roughness on polarization property in passive millimeter-wave imaging,” IEICE Electron. Express 14(21), 20171005 (2017).
[Crossref]

F. Hu, Y. Cheng, L. Gui, L. Wu, X. Zhang, X. Peng, and J. Su, “Polarization-based material classification technique using passive millimeter-wave polarimetric imagery,” Appl. Optics 55(31), 8690–8697 (2016).
[Crossref]

Zheng, Y.-C.

G.-P. Hu, K. L. Chan, Y.-C. Zheng, K. T. Tsang, and A.-A. Xu, “Comparison and evaluation of the change microwave radiometer data based on theoretical computation of brightness temperatures at the apollo 15 and 17 sites,” Icarus 294, 72–80 (2017).
[Crossref]

Appl. Optics (3)

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Optics 45(22), 5453–5469 (2006).
[Crossref]

J. P. Wilson, C. A. Schuetz, T. E. Dillon, P. Yao, C. E. Harrity, and D. W. Prather, “Passive 77 GHz millimeter-wave sensor based on optical upconversion,” Appl. Optics 51(18), 4157–4167 (2012).
[Crossref]

F. Hu, Y. Cheng, L. Gui, L. Wu, X. Zhang, X. Peng, and J. Su, “Polarization-based material classification technique using passive millimeter-wave polarimetric imagery,” Appl. Optics 55(31), 8690–8697 (2016).
[Crossref]

Electron. Lett. (1)

Y. Cheng, F. Hu, L. Gui, J. Su, B. Qi, S. Liu, and M. Huang, “Linear polarisation property and fusion method for target recognition in passive millimetre-wave polarimetric imaging,” Electron. Lett. 52(14), 1221–1223 (2016).
[Crossref]

Icarus (1)

G.-P. Hu, K. L. Chan, Y.-C. Zheng, K. T. Tsang, and A.-A. Xu, “Comparison and evaluation of the change microwave radiometer data based on theoretical computation of brightness temperatures at the apollo 15 and 17 sites,” Icarus 294, 72–80 (2017).
[Crossref]

IEEE Microw. Mag. (1)

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter-wave imaging,” IEEE Microw. Mag. 4(3), 39–50 (2003).
[Crossref]

IEEE Photonics J (1)

Y. Cheng, F. Hu, L. Gui, L. Wu, and L. Lang, “Polarization-based method for object surface orientation information in passive millimeter-wave imaging,” IEEE Photonics J.  8(1), 5500112 (2016).
[Crossref]

IEEE Trans. Antennas Propag. (2)

N. A. Salmon, “Outdoor passive millimeter-wave imaging: Phenomenology and scene simulation,” IEEE Trans. Antennas Propag. 66(2) 897–908 (2018).
[Crossref]

J. R. Pardo, J. Cernicharo, and E. Serabyn, “Atmospheric transmission at microwaves (ATM): an improved model for millimeter/submillimeter applications,” IEEE Trans. Antennas Propag. 49(12), 1683–1694 (2001).
[Crossref]

IEEE Trans. Geosci. Remote Sensing (5)

P. W. Gaiser, K. M. St Germain, E. M. Twarog, G. A. Poe, W. Purdy, D. Richardson, W. Grossman, W. L. Jones, D. Spencer, G. Golba, J. Cleveland, L. Choy, R. M. Bevilacqua, and P. S. Chang, “The windsat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance,” IEEE Trans. Geosci. Remote Sensing 42(11), 2347–2361 (2004).
[Crossref]

P. S. Narvekar, G. Heygster, T. J. Jackson, R. Bindlish, G. Macelloni, and J. Notholt, “Passive polarimetric microwave signatures observed over antarctica,” IEEE Trans. Geosci. Remote Sensing 48(3), 1059–1075 (2010).
[Crossref]

H. Suess and M. Soellner, “Fully polarimetric measurements of brightness temperature distributions with a quasi-optical radiometer system at 90 GHz,” IEEE Trans. Geosci. Remote Sensing 43(5), 1170–1179 (2005).
[Crossref]

A. Duric, A. Magun, A. Murk, C. Matzler, and N. Kampfer, “The fully polarimetric imaging radiometer SPIRA at 91 GHz,” IEEE Trans. Geosci. Remote Sensing 46(8), 2323–2336 (2008).
[Crossref]

C. Zhang, H. Liu, J. Wu, S. Zhang, J. Yan, L. Niu, W. Sun, and H. Li, “Imaging Analysis and First Results of the Geostationary Interferometric Microwave Sounder Demonstrator,” IEEE Trans. Geosci. Remote Sensing 53(1), 207–218 (2015).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

S. Liao, N. Gopalsami, T. W. Elmer, E. R. Koehl, A. Heifetz, K. Avers, and A. C. Raptis, “Passive millimeter-wave dual-polarization imagers,” IEEE Trans. Instrum. Meas. 61(7), 2042–2050 (2012).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

T. Luthi and C. Matzler, “Stereoscopic passive millimeter-wave imaging and ranging,” IEEE Trans. Microw. Theory Tech. 53(8), 2594–2599 (2005).
[Crossref]

IEICE Electron. Express (1)

F. Hu, X. Zhang, Y. Cheng, Y. Xiao, and M. Song, “Influence of surface roughness on polarization property in passive millimeter-wave imaging,” IEICE Electron. Express 14(21), 20171005 (2017).
[Crossref]

J. Electromagn. Waves Appl. (1)

L. Tsang, “Polarimetric passive microwave remote sensing of random discrete scatterers and rough surfaces,” J. Electromagn. Waves Appl. 5(1), 41–57 (1991).

Microw. Opt. Technol. Lett. (1)

L. Tsang, P. Xu, and K. S. Chen, “Third and fourth stokes parameters in polarimetric passive microwave remote sensing of rough surfaces over layered media,” Microw. Opt. Technol. Lett. 50(12), 3063–3069 (2008).
[Crossref]

Opt. Eng. (1)

R. G. Driggers, C. M. Webb, S. J. Pruchnic, C. E. Halford, and E. Burroughs, “Laboratory measurement of sampled infrared imaging system performance,” Opt. Eng. 38(5), 852–862 (1999).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. (1)

R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 362, 379–393 (2004).
[Crossref]

Proc. SPIE (5)

M. Peichl, S. Dill, M. Jirousek, J. W. Anthony, and H. Süß, “Fully-polarimetric passive MMW imaging systems for security applications,” Proc. SPIE 7837, 78370C (2010).
[Crossref]

M. Peichl, S. Dill, and D. Rudolf, “Investigation of fully-polarimetric signatures from targets with some relevance to security applications,” Proc. SPIE 8022, 80220E (2011).
[Crossref]

N. A. Salmon, R. Appleby, and P. Coward, “Polarimetric passive millimetre wave imaging,” Proc. SPIE 4373, 82–85 (2001).
[Crossref]

Y. Cheng, F. Hu, L. Gui, Y. Hu, and Z. Han, “Passive millimeter-wave polarization characteristics of several common structures,” Proc. SPIE 10407, 1040711 (2017).

Y. Cheng, B. Qi, S. Liu, F. Hu, L. Gui, and X. Peng, “Polarization ratio property and material classification method in passive millimeter wave polarimetric imaging,” Proc. SPIE 9993, 9993K (2016).

Prog. Electromagn. Res. (1)

W.-G. Kim, N.-W. Moon, H.-K. Kim, and Y.-H. Kim, “Linear polarization sum imaging in passive millimeter-wave imaging system for target recognition,” Prog. Electromagn. Res. 136, 175–193 (2013).
[Crossref]

Other (5)

N. A. Salmon, R. Appleby, and P. Coward, “Polarimetric passive millimetre wave imaging,” Proc. SPIE4373, 82–85 (2001).

F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Microwave remote sensing fundamentals and radiometry, (Addison-Wesley Publishing Company, 1981), Vol. 1.

B. Qi, L. Lang, Y. Cheng, S. Liu, F. Hu, X. He, P. Deng, and L. Gui, “Passive millimeter-wave scene imaging simulation based on fast ray-tracing,” IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (2016), 2642–2645.

D. G. Gleed, R. Appleby, N. A. Salmon, S. Price, G. N. Sinclair, R. N. Anderton, J. R. Borill, and M. R. M. Wasley, “Operational issues of passive millimeter wave imaging systems,” Proc. SPIE3064, 23–33 (1997).
[Crossref]

S. E. Clark, J. A. Lovberg, C. A. Martin, and V. Kolinko, “Passive millimeter-wave imaging for airborne and security applications,” Proc. SPIE5077, 16–21 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Multi-polarization single-pixel PMMW imager. (a) Design diagram of imager. Multi-polarization measurements are realized by rotating the detector around the observation axis direction. (b) Picture of MPSIR. Two computers control radiometer and scanner. (c) Cassegrain antenna. (d) Receiver box, which consists of OMT, direct detect modules, NI data acquisition system and PC mainboard. (e) OMT and orthogonal polarization components. (f) NI DAQ unit.
Fig. 2
Fig. 2 Schematic diagram of the MPSIR imager with two receiver channels. V and H denote two orthogonal-polarization components.
Fig. 3
Fig. 3 Measurement results of MPSIR performance. (a) Radiometer response curve to the absorbing material at a variety of physical temperatures. (b) Calculated and measured PSF of the radiometer from the point source measurments.
Fig. 4
Fig. 4 Visible images of overlook imaging scene. (a) Imaging scene. (b) Imaging area.
Fig. 5
Fig. 5 Multi-polarization PMMW images of outdoor cars in overlook direction.
Fig. 6
Fig. 6 Polarization feature parameters of outdoor cars in overlook direction.
Fig. 7
Fig. 7 Visible images of horizontal imaging scene. (a) Imaging scene. The red block is the imaging area. (b) Imaging area.
Fig. 8
Fig. 8 Multi-polarization PMMW images of dormitory buildings in horizontal direction. To display clearly, the color bar has been manually scaled to 240K ∼ 300K. The real brightness temperature range is about 192K ∼ 306K
Fig. 9
Fig. 9 Polarization feature parameters of dormitory buildings in horizontal direction.

Tables (1)

Tables Icon

Table 1 Instrument main specifications of MPSIR

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

N E T D = N r m s [ V ] R s l o p e [ V / K ]
N E T D = ( T A + T R ) 1 B τ + ( Δ G G ) 2
T B α ( θ ) = e α ( θ ) T o b j + [ 1 e α ( θ ) ] T B i α ( θ )
( T I T Q T U T V ) = ( ( T B h + T B v ) / 2 T B h T B v T B 45 ° T B 45 ° T B c l T B c r )
( T W T X T Y T Z ) = ( ( T B 15 ° T B 75 ° ) T B 30 ° T B 60 ° T B 60 ° T B 30 ° T B 75 ° T B 15 ° ) = ( ( T B 15 ° T B 105 ° ) T B 30 ° T B 120 ° T B 60 ° T B 150 ° T B 75 ° T B 165 ° )
P P = | T Q | T I
D O L P = T Q 2 + T U 2 2 T I
A O P = 1 2 a r c t a n ( T U T Q )
L P R = T B h T o b j T B v T o b j
m D O L P = T Q 2 + T U 2 + T W 2 + T X 2 + T Y 2 + T Z 2 6 T I
m L P R 1 = T B h E ( T I ) T B v E ( T I )
m L P R 2 = T B 45 ° E ( T I ) T B 45 ° E ( T I )
m L P R 3 = T B 45 ° M ( T I ) T B 45 ° M ( T I )

Metrics