Abstract

We introduce the concept of geometric frustration in plasmonic arrays of nanoelements. In particular, we present the case of a hexagonal lattice of Au nanoasterisks arranged so that the gaps between neighboring elements are small and lead to a strong near-field dipolar coupling. Besides, far-field interactions yield higher-order collective modes around the visible region that follow the translational symmetry of the lattice. However, dipolar excitations of the gaps in the hexagonal array are geometrically frustrated for interactions beyond nearest neighbors, yielding the destabilization of the low energy modes in the near infrared. This in turn results in a slow dynamics of the optical response and a complex interplay between localized and collective modes, a behavior that shares features with geometrically frustrated magnetic systems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Superresolution imaging of the local density of states in plasmon lattices

Ke Guo, Marc A. Verschuuren, and A. Femius Koenderink
Optica 3(3) 289-298 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. Du, X. Zhang, T. Mei, and X. Yuan, “Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS,” Opt. Express 18(3), 1959–1965 (2010).
    [Crossref] [PubMed]
  2. A. Rakovich, P. Albella, and S. A. Maier, “Plasmonic Control of Radiative Properties of Semiconductor Quantum Dots Coupled to Plasmonic Ring Cavities,” ACS Nano 9(3), 2648–2658 (2015).
    [Crossref] [PubMed]
  3. M. Baia, L. Baia, S. Astilean, and J. Popp, “Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings,” Appl. Phys. Lett. 88(14), 143121 (2006).
    [Crossref]
  4. L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-Shaped Gold Nanoantennas above Reflective Substrates for Surface-Enhanced Infrared Absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
    [Crossref] [PubMed]
  5. F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
    [Crossref] [PubMed]
  6. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal Dual-Band Near-Perfectly Absorbing Mid-Infrared Metamaterial Coating,” ACS Nano 5(6), 4641–4647 (2011).
    [Crossref] [PubMed]
  7. R. Alaee, “Optical Nanoantennas and Their Use as Perfect Absorbers,” Karlsruher Institut für Technologie (KIT) (2015).
  8. F. Liu, X. Zhang, and X. Fang, “Plasmonic plano-semi-cylindrical nanocavities with high-efficiency local-field confinement,” Sci. Rep. 7(1), 40071 (2017).
    [Crossref] [PubMed]
  9. T. K. Hakala, H. T. Rekola, A. I. Väkeväinen, J.-P. Martikainen, M. Nečada, A. J. Moilanen, and P. Törmä, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
    [Crossref] [PubMed]
  10. M. Kuttge, F. J. García de Abajo, and A. Polman, “Ultrasmall Mode Volume Plasmonic Nanodisk Resonators,” Nano Lett. 10(5), 1537–1541 (2010).
    [Crossref] [PubMed]
  11. W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
    [Crossref] [PubMed]
  12. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  13. S. Gottheim, H. Zhang, A. O. Govorov, and N. J. Halas, “Fractal nanoparticle plasmonics: The cayley tree,” ACS Nano 9(3), 3284–3292 (2015).
    [Crossref] [PubMed]
  14. L. Lin and Y. Zheng, “Optimizing plasmonic nanoantennas via coordinated multiple coupling,” Sci. Rep. 5, 14788 (2015).
    [Crossref] [PubMed]
  15. A. D. Humphrey, N. Meinzer, T. A. Starkey, and W. L. Barnes, “Surface Lattice Resonances in Plasmonic Arrays of Asymmetric Disc Dimers,” ACS Photonics 3(4), 634–639 (2016).
    [Crossref]
  16. S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement,” ACS Photonics 2(6), 779–786 (2015).
    [Crossref]
  17. R. Guo, T. K. Hakala, and P. Törmä, “Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays,” Phys. Rev. B 95(15), 155423 (2017).
    [Crossref]
  18. Y. Chen, J. Dai, M. Yan, and M. Qiu, “Metal-insulator-metal plasmonic absorbers: influence of lattice,” Opt. Express 22(25), 30807–30814 (2014).
    [Crossref] [PubMed]
  19. A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonances on arrays of different lattice symmetry,” Phys. Rev. B 90(7), 075404 (2014).
    [Crossref]
  20. Y. Chen, J. Dai, M. Yan, and M. Qiu, “Honeycomb-lattice plasmonic absorbers at NIR: anomalous high-order resonance,” Opt. Express 21(18), 20873–20879 (2013).
    [Crossref] [PubMed]
  21. B. Auguié and W. L. Barnes, “Collective Resonances in Gold Nanoparticle Arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
    [Crossref] [PubMed]
  22. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
    [Crossref]
  23. S. Pourjamal, M. Kataja, N. Maccaferri, P. Vavassori, and S. van Dijken, “Hybrid Ni/SiO2/Au dimer arrays for high-resolution refractive index sensing,” Nanophotonics 7(5), 905–912 (2018).
    [Crossref]
  24. M. J. Huttunen, P. Rasekh, R. W. Boyd, and K. Dolgaleva, “Using surface lattice resonances to engineer nonlinear optical processes in metal nanoparticle arrays,” Phys. Rev. A 97(5), 053817 (2018).
    [Crossref]
  25. L. Michaeli, S. Keren-Zur, O. Avayu, H. Suchowski, and T. Ellenbogen, “Nonlinear Surface Lattice Resonance in Plasmonic Nanoparticle Arrays,” Phys. Rev. Lett. 118(24), 243904 (2017).
    [Crossref] [PubMed]
  26. A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopdekar, M. Wyss, L. Anghinolfi, F. Nolting, and L. J. Heyderman, “Exploring hyper-cubic energy landscapes in thermally active finite artificial spin-ice systems,” Nat. Phys. 9(6), 375–382 (2013).
    [Crossref]
  27. S. R. Giblin, S. T. Bramwell, P. C. W. Holdsworth, D. Prabhakaran, and I. Terry, “Creation and measurement of long-lived magnetic monopole currents in spin ice,” Nat. Phys. 7(3), 252–258 (2011).
    [Crossref]
  28. G. Weick, C. Woollacott, W. L. Barnes, O. Hess, and E. Mariani, “Dirac-like Plasmons in Honeycomb Lattices of Metallic Nanoparticles,” Phys. Rev. Lett. 110(10), 106801 (2013).
    [Crossref] [PubMed]
  29. N. Maccaferri, L. Bergamini, M. Pancaldi, M. K. Schmidt, M. Kataja, S. Dijken, N. Zabala, J. Aizpurua, and P. Vavassori, “Anisotropic Nanoantenna-Based Magnetoplasmonic Crystals for Highly Enhanced and Tunable Magneto-Optical Activity,” Nano Lett. 16(4), 2533–2542 (2016).
    [Crossref] [PubMed]
  30. M. Kataja, S. Pourjamal, N. Maccaferri, P. Vavassori, T. K. Hakala, M. J. Huttunen, P. Törmä, and S. van Dijken, “Hybrid plasmonic lattices with tunable magneto-optical activity,” Opt. Express 24(4), 3652–3662 (2016).
    [Crossref] [PubMed]
  31. M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. van Dijken, and P. Törmä, “Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays,” Nat. Commun. 6(1), 7072 (2015).
    [Crossref] [PubMed]
  32. A. P. Ramirez, “Geometric frustration: Magic moments,” Nature 421(6922), 483 (2003).
    [Crossref] [PubMed]
  33. W. W. Salisbury, “Absorbent body for electromagnetic waves,” U.S. patent US2599944 A (1943).
  34. Lumerical Solutions Home Page (n.d.).
  35. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985), 1.
  36. P. B. Johnson, R. W. Christy, and R. C. P. B. Johnson, “Optical Constants of Noble Metal,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  37. F. Colas, D. Barchiesi, S. Kessentini, T. Toury, and M. L. de la Chapelle, “Comparison of adhesion layers of gold on silicate glasses for SERS detection,” J. Opt. 17(11), 114010 (2015).
    [Crossref]
  38. T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic Adhesion Layer Induced Plasmon Damping and Molecular Linker as a Nondamping Alternative,” ACS Nano 6(6), 5702–5709 (2012).
    [Crossref] [PubMed]
  39. J. P. Morgan, A. Stein, S. Langridge, and C. H. Marrows, “Thermal ground-state ordering and elementary excitations in artificial magnetic square ice,” Nat. Phys. 7(1), 75–79 (2011).
    [Crossref]
  40. V. Kapaklis, U. B. Arnalds, A. Farhan, R. V. Chopdekar, A. Balan, A. Scholl, L. J. Heyderman, and B. Hjörvarsson, “Thermal fluctuations in artificial spin ice,” Nat. Nanotechnol. 9(7), 514–519 (2014).
    [Crossref] [PubMed]
  41. A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopdekar, M. Wyss, J. Perron, A. Scholl, F. Nolting, and L. J. Heyderman, “Direct Observation of Thermal Relaxation in Artificial Spin Ice,” Phys. Rev. Lett. 111(5), 057204 (2013).
    [Crossref] [PubMed]

2018 (2)

S. Pourjamal, M. Kataja, N. Maccaferri, P. Vavassori, and S. van Dijken, “Hybrid Ni/SiO2/Au dimer arrays for high-resolution refractive index sensing,” Nanophotonics 7(5), 905–912 (2018).
[Crossref]

M. J. Huttunen, P. Rasekh, R. W. Boyd, and K. Dolgaleva, “Using surface lattice resonances to engineer nonlinear optical processes in metal nanoparticle arrays,” Phys. Rev. A 97(5), 053817 (2018).
[Crossref]

2017 (5)

L. Michaeli, S. Keren-Zur, O. Avayu, H. Suchowski, and T. Ellenbogen, “Nonlinear Surface Lattice Resonance in Plasmonic Nanoparticle Arrays,” Phys. Rev. Lett. 118(24), 243904 (2017).
[Crossref] [PubMed]

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

F. Liu, X. Zhang, and X. Fang, “Plasmonic plano-semi-cylindrical nanocavities with high-efficiency local-field confinement,” Sci. Rep. 7(1), 40071 (2017).
[Crossref] [PubMed]

T. K. Hakala, H. T. Rekola, A. I. Väkeväinen, J.-P. Martikainen, M. Nečada, A. J. Moilanen, and P. Törmä, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
[Crossref] [PubMed]

R. Guo, T. K. Hakala, and P. Törmä, “Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays,” Phys. Rev. B 95(15), 155423 (2017).
[Crossref]

2016 (3)

N. Maccaferri, L. Bergamini, M. Pancaldi, M. K. Schmidt, M. Kataja, S. Dijken, N. Zabala, J. Aizpurua, and P. Vavassori, “Anisotropic Nanoantenna-Based Magnetoplasmonic Crystals for Highly Enhanced and Tunable Magneto-Optical Activity,” Nano Lett. 16(4), 2533–2542 (2016).
[Crossref] [PubMed]

M. Kataja, S. Pourjamal, N. Maccaferri, P. Vavassori, T. K. Hakala, M. J. Huttunen, P. Törmä, and S. van Dijken, “Hybrid plasmonic lattices with tunable magneto-optical activity,” Opt. Express 24(4), 3652–3662 (2016).
[Crossref] [PubMed]

A. D. Humphrey, N. Meinzer, T. A. Starkey, and W. L. Barnes, “Surface Lattice Resonances in Plasmonic Arrays of Asymmetric Disc Dimers,” ACS Photonics 3(4), 634–639 (2016).
[Crossref]

2015 (7)

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

F. Colas, D. Barchiesi, S. Kessentini, T. Toury, and M. L. de la Chapelle, “Comparison of adhesion layers of gold on silicate glasses for SERS detection,” J. Opt. 17(11), 114010 (2015).
[Crossref]

M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. van Dijken, and P. Törmä, “Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays,” Nat. Commun. 6(1), 7072 (2015).
[Crossref] [PubMed]

S. Gottheim, H. Zhang, A. O. Govorov, and N. J. Halas, “Fractal nanoparticle plasmonics: The cayley tree,” ACS Nano 9(3), 3284–3292 (2015).
[Crossref] [PubMed]

L. Lin and Y. Zheng, “Optimizing plasmonic nanoantennas via coordinated multiple coupling,” Sci. Rep. 5, 14788 (2015).
[Crossref] [PubMed]

A. Rakovich, P. Albella, and S. A. Maier, “Plasmonic Control of Radiative Properties of Semiconductor Quantum Dots Coupled to Plasmonic Ring Cavities,” ACS Nano 9(3), 2648–2658 (2015).
[Crossref] [PubMed]

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-Shaped Gold Nanoantennas above Reflective Substrates for Surface-Enhanced Infrared Absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

2014 (3)

Y. Chen, J. Dai, M. Yan, and M. Qiu, “Metal-insulator-metal plasmonic absorbers: influence of lattice,” Opt. Express 22(25), 30807–30814 (2014).
[Crossref] [PubMed]

A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonances on arrays of different lattice symmetry,” Phys. Rev. B 90(7), 075404 (2014).
[Crossref]

V. Kapaklis, U. B. Arnalds, A. Farhan, R. V. Chopdekar, A. Balan, A. Scholl, L. J. Heyderman, and B. Hjörvarsson, “Thermal fluctuations in artificial spin ice,” Nat. Nanotechnol. 9(7), 514–519 (2014).
[Crossref] [PubMed]

2013 (5)

A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopdekar, M. Wyss, J. Perron, A. Scholl, F. Nolting, and L. J. Heyderman, “Direct Observation of Thermal Relaxation in Artificial Spin Ice,” Phys. Rev. Lett. 111(5), 057204 (2013).
[Crossref] [PubMed]

G. Weick, C. Woollacott, W. L. Barnes, O. Hess, and E. Mariani, “Dirac-like Plasmons in Honeycomb Lattices of Metallic Nanoparticles,” Phys. Rev. Lett. 110(10), 106801 (2013).
[Crossref] [PubMed]

A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopdekar, M. Wyss, L. Anghinolfi, F. Nolting, and L. J. Heyderman, “Exploring hyper-cubic energy landscapes in thermally active finite artificial spin-ice systems,” Nat. Phys. 9(6), 375–382 (2013).
[Crossref]

Y. Chen, J. Dai, M. Yan, and M. Qiu, “Honeycomb-lattice plasmonic absorbers at NIR: anomalous high-order resonance,” Opt. Express 21(18), 20873–20879 (2013).
[Crossref] [PubMed]

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

2012 (1)

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic Adhesion Layer Induced Plasmon Damping and Molecular Linker as a Nondamping Alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

2011 (3)

J. P. Morgan, A. Stein, S. Langridge, and C. H. Marrows, “Thermal ground-state ordering and elementary excitations in artificial magnetic square ice,” Nat. Phys. 7(1), 75–79 (2011).
[Crossref]

S. R. Giblin, S. T. Bramwell, P. C. W. Holdsworth, D. Prabhakaran, and I. Terry, “Creation and measurement of long-lived magnetic monopole currents in spin ice,” Nat. Phys. 7(3), 252–258 (2011).
[Crossref]

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal Dual-Band Near-Perfectly Absorbing Mid-Infrared Metamaterial Coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

2010 (3)

M. Kuttge, F. J. García de Abajo, and A. Polman, “Ultrasmall Mode Volume Plasmonic Nanodisk Resonators,” Nano Lett. 10(5), 1537–1541 (2010).
[Crossref] [PubMed]

L. Du, X. Zhang, T. Mei, and X. Yuan, “Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS,” Opt. Express 18(3), 1959–1965 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

2008 (2)

B. Auguié and W. L. Barnes, “Collective Resonances in Gold Nanoparticle Arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

2006 (1)

M. Baia, L. Baia, S. Astilean, and J. Popp, “Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings,” Appl. Phys. Lett. 88(14), 143121 (2006).
[Crossref]

2003 (1)

A. P. Ramirez, “Geometric frustration: Magic moments,” Nature 421(6922), 483 (2003).
[Crossref] [PubMed]

1972 (1)

P. B. Johnson, R. W. Christy, and R. C. P. B. Johnson, “Optical Constants of Noble Metal,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Aizpurua, J.

N. Maccaferri, L. Bergamini, M. Pancaldi, M. K. Schmidt, M. Kataja, S. Dijken, N. Zabala, J. Aizpurua, and P. Vavassori, “Anisotropic Nanoantenna-Based Magnetoplasmonic Crystals for Highly Enhanced and Tunable Magneto-Optical Activity,” Nano Lett. 16(4), 2533–2542 (2016).
[Crossref] [PubMed]

Albella, P.

A. Rakovich, P. Albella, and S. A. Maier, “Plasmonic Control of Radiative Properties of Semiconductor Quantum Dots Coupled to Plasmonic Ring Cavities,” ACS Nano 9(3), 2648–2658 (2015).
[Crossref] [PubMed]

Alivisatos, A. P.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic Adhesion Layer Induced Plasmon Damping and Molecular Linker as a Nondamping Alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Anghinolfi, L.

A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopdekar, M. Wyss, L. Anghinolfi, F. Nolting, and L. J. Heyderman, “Exploring hyper-cubic energy landscapes in thermally active finite artificial spin-ice systems,” Nat. Phys. 9(6), 375–382 (2013).
[Crossref]

Arnalds, U. B.

V. Kapaklis, U. B. Arnalds, A. Farhan, R. V. Chopdekar, A. Balan, A. Scholl, L. J. Heyderman, and B. Hjörvarsson, “Thermal fluctuations in artificial spin ice,” Nat. Nanotechnol. 9(7), 514–519 (2014).
[Crossref] [PubMed]

Astilean, S.

M. Baia, L. Baia, S. Astilean, and J. Popp, “Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings,” Appl. Phys. Lett. 88(14), 143121 (2006).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Auguié, B.

B. Auguié and W. L. Barnes, “Collective Resonances in Gold Nanoparticle Arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Avayu, O.

L. Michaeli, S. Keren-Zur, O. Avayu, H. Suchowski, and T. Ellenbogen, “Nonlinear Surface Lattice Resonance in Plasmonic Nanoparticle Arrays,” Phys. Rev. Lett. 118(24), 243904 (2017).
[Crossref] [PubMed]

Bagheri, S.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

Baia, L.

M. Baia, L. Baia, S. Astilean, and J. Popp, “Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings,” Appl. Phys. Lett. 88(14), 143121 (2006).
[Crossref]

Baia, M.

M. Baia, L. Baia, S. Astilean, and J. Popp, “Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings,” Appl. Phys. Lett. 88(14), 143121 (2006).
[Crossref]

Balan, A.

V. Kapaklis, U. B. Arnalds, A. Farhan, R. V. Chopdekar, A. Balan, A. Scholl, L. J. Heyderman, and B. Hjörvarsson, “Thermal fluctuations in artificial spin ice,” Nat. Nanotechnol. 9(7), 514–519 (2014).
[Crossref] [PubMed]

A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopdekar, M. Wyss, J. Perron, A. Scholl, F. Nolting, and L. J. Heyderman, “Direct Observation of Thermal Relaxation in Artificial Spin Ice,” Phys. Rev. Lett. 111(5), 057204 (2013).
[Crossref] [PubMed]

A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopdekar, M. Wyss, L. Anghinolfi, F. Nolting, and L. J. Heyderman, “Exploring hyper-cubic energy landscapes in thermally active finite artificial spin-ice systems,” Nat. Phys. 9(6), 375–382 (2013).
[Crossref]

Barchiesi, D.

F. Colas, D. Barchiesi, S. Kessentini, T. Toury, and M. L. de la Chapelle, “Comparison of adhesion layers of gold on silicate glasses for SERS detection,” J. Opt. 17(11), 114010 (2015).
[Crossref]

Barnes, W. L.

A. D. Humphrey, N. Meinzer, T. A. Starkey, and W. L. Barnes, “Surface Lattice Resonances in Plasmonic Arrays of Asymmetric Disc Dimers,” ACS Photonics 3(4), 634–639 (2016).
[Crossref]

A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonances on arrays of different lattice symmetry,” Phys. Rev. B 90(7), 075404 (2014).
[Crossref]

G. Weick, C. Woollacott, W. L. Barnes, O. Hess, and E. Mariani, “Dirac-like Plasmons in Honeycomb Lattices of Metallic Nanoparticles,” Phys. Rev. Lett. 110(10), 106801 (2013).
[Crossref] [PubMed]

B. Auguié and W. L. Barnes, “Collective Resonances in Gold Nanoparticle Arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Bergamini, L.

N. Maccaferri, L. Bergamini, M. Pancaldi, M. K. Schmidt, M. Kataja, S. Dijken, N. Zabala, J. Aizpurua, and P. Vavassori, “Anisotropic Nanoantenna-Based Magnetoplasmonic Crystals for Highly Enhanced and Tunable Magneto-Optical Activity,” Nano Lett. 16(4), 2533–2542 (2016).
[Crossref] [PubMed]

Boyd, R. W.

M. J. Huttunen, P. Rasekh, R. W. Boyd, and K. Dolgaleva, “Using surface lattice resonances to engineer nonlinear optical processes in metal nanoparticle arrays,” Phys. Rev. A 97(5), 053817 (2018).
[Crossref]

Bramwell, S. T.

S. R. Giblin, S. T. Bramwell, P. C. W. Holdsworth, D. Prabhakaran, and I. Terry, “Creation and measurement of long-lived magnetic monopole currents in spin ice,” Nat. Phys. 7(3), 252–258 (2011).
[Crossref]

Brown, L. V.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-Shaped Gold Nanoantennas above Reflective Substrates for Surface-Enhanced Infrared Absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Cabrini, S.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic Adhesion Layer Induced Plasmon Damping and Molecular Linker as a Nondamping Alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Chen, Y.

Chopdekar, R. V.

V. Kapaklis, U. B. Arnalds, A. Farhan, R. V. Chopdekar, A. Balan, A. Scholl, L. J. Heyderman, and B. Hjörvarsson, “Thermal fluctuations in artificial spin ice,” Nat. Nanotechnol. 9(7), 514–519 (2014).
[Crossref] [PubMed]

A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopdekar, M. Wyss, J. Perron, A. Scholl, F. Nolting, and L. J. Heyderman, “Direct Observation of Thermal Relaxation in Artificial Spin Ice,” Phys. Rev. Lett. 111(5), 057204 (2013).
[Crossref] [PubMed]

A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopdekar, M. Wyss, L. Anghinolfi, F. Nolting, and L. J. Heyderman, “Exploring hyper-cubic energy landscapes in thermally active finite artificial spin-ice systems,” Nat. Phys. 9(6), 375–382 (2013).
[Crossref]

Christy, R. W.

P. B. Johnson, R. W. Christy, and R. C. P. B. Johnson, “Optical Constants of Noble Metal,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chu, Y.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Co, D. T.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Colas, F.

F. Colas, D. Barchiesi, S. Kessentini, T. Toury, and M. L. de la Chapelle, “Comparison of adhesion layers of gold on silicate glasses for SERS detection,” J. Opt. 17(11), 114010 (2015).
[Crossref]

Crozier, K. B.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Dai, J.

de la Chapelle, M. L.

F. Colas, D. Barchiesi, S. Kessentini, T. Toury, and M. L. de la Chapelle, “Comparison of adhesion layers of gold on silicate glasses for SERS detection,” J. Opt. 17(11), 114010 (2015).
[Crossref]

Derlet, P. M.

A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopdekar, M. Wyss, L. Anghinolfi, F. Nolting, and L. J. Heyderman, “Exploring hyper-cubic energy landscapes in thermally active finite artificial spin-ice systems,” Nat. Phys. 9(6), 375–382 (2013).
[Crossref]

A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopdekar, M. Wyss, J. Perron, A. Scholl, F. Nolting, and L. J. Heyderman, “Direct Observation of Thermal Relaxation in Artificial Spin Ice,” Phys. Rev. Lett. 111(5), 057204 (2013).
[Crossref] [PubMed]

Dhuey, S.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic Adhesion Layer Induced Plasmon Damping and Molecular Linker as a Nondamping Alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Dijken, S.

N. Maccaferri, L. Bergamini, M. Pancaldi, M. K. Schmidt, M. Kataja, S. Dijken, N. Zabala, J. Aizpurua, and P. Vavassori, “Anisotropic Nanoantenna-Based Magnetoplasmonic Crystals for Highly Enhanced and Tunable Magneto-Optical Activity,” Nano Lett. 16(4), 2533–2542 (2016).
[Crossref] [PubMed]

Dolgaleva, K.

M. J. Huttunen, P. Rasekh, R. W. Boyd, and K. Dolgaleva, “Using surface lattice resonances to engineer nonlinear optical processes in metal nanoparticle arrays,” Phys. Rev. A 97(5), 053817 (2018).
[Crossref]

Dridi, M.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Du, L.

Ellenbogen, T.

L. Michaeli, S. Keren-Zur, O. Avayu, H. Suchowski, and T. Ellenbogen, “Nonlinear Surface Lattice Resonance in Plasmonic Nanoparticle Arrays,” Phys. Rev. Lett. 118(24), 243904 (2017).
[Crossref] [PubMed]

Fang, X.

F. Liu, X. Zhang, and X. Fang, “Plasmonic plano-semi-cylindrical nanocavities with high-efficiency local-field confinement,” Sci. Rep. 7(1), 40071 (2017).
[Crossref] [PubMed]

Farhan, A.

V. Kapaklis, U. B. Arnalds, A. Farhan, R. V. Chopdekar, A. Balan, A. Scholl, L. J. Heyderman, and B. Hjörvarsson, “Thermal fluctuations in artificial spin ice,” Nat. Nanotechnol. 9(7), 514–519 (2014).
[Crossref] [PubMed]

A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopdekar, M. Wyss, J. Perron, A. Scholl, F. Nolting, and L. J. Heyderman, “Direct Observation of Thermal Relaxation in Artificial Spin Ice,” Phys. Rev. Lett. 111(5), 057204 (2013).
[Crossref] [PubMed]

A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopdekar, M. Wyss, L. Anghinolfi, F. Nolting, and L. J. Heyderman, “Exploring hyper-cubic energy landscapes in thermally active finite artificial spin-ice systems,” Nat. Phys. 9(6), 375–382 (2013).
[Crossref]

García de Abajo, F. J.

M. Kuttge, F. J. García de Abajo, and A. Polman, “Ultrasmall Mode Volume Plasmonic Nanodisk Resonators,” Nano Lett. 10(5), 1537–1541 (2010).
[Crossref] [PubMed]

Gargas, D.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic Adhesion Layer Induced Plasmon Damping and Molecular Linker as a Nondamping Alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Giblin, S. R.

S. R. Giblin, S. T. Bramwell, P. C. W. Holdsworth, D. Prabhakaran, and I. Terry, “Creation and measurement of long-lived magnetic monopole currents in spin ice,” Nat. Phys. 7(3), 252–258 (2011).
[Crossref]

Giessen, H.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

Gissibl, T.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

Gottheim, S.

S. Gottheim, H. Zhang, A. O. Govorov, and N. J. Halas, “Fractal nanoparticle plasmonics: The cayley tree,” ACS Nano 9(3), 3284–3292 (2015).
[Crossref] [PubMed]

Govorov, A. O.

S. Gottheim, H. Zhang, A. O. Govorov, and N. J. Halas, “Fractal nanoparticle plasmonics: The cayley tree,” ACS Nano 9(3), 3284–3292 (2015).
[Crossref] [PubMed]

Guo, R.

R. Guo, T. K. Hakala, and P. Törmä, “Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays,” Phys. Rev. B 95(15), 155423 (2017).
[Crossref]

Habteyes, T. G.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic Adhesion Layer Induced Plasmon Damping and Molecular Linker as a Nondamping Alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Hakala, T. K.

R. Guo, T. K. Hakala, and P. Törmä, “Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays,” Phys. Rev. B 95(15), 155423 (2017).
[Crossref]

T. K. Hakala, H. T. Rekola, A. I. Väkeväinen, J.-P. Martikainen, M. Nečada, A. J. Moilanen, and P. Törmä, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
[Crossref] [PubMed]

M. Kataja, S. Pourjamal, N. Maccaferri, P. Vavassori, T. K. Hakala, M. J. Huttunen, P. Törmä, and S. van Dijken, “Hybrid plasmonic lattices with tunable magneto-optical activity,” Opt. Express 24(4), 3652–3662 (2016).
[Crossref] [PubMed]

M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. van Dijken, and P. Törmä, “Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays,” Nat. Commun. 6(1), 7072 (2015).
[Crossref] [PubMed]

Halas, N. J.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-Shaped Gold Nanoantennas above Reflective Substrates for Surface-Enhanced Infrared Absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

S. Gottheim, H. Zhang, A. O. Govorov, and N. J. Halas, “Fractal nanoparticle plasmonics: The cayley tree,” ACS Nano 9(3), 3284–3292 (2015).
[Crossref] [PubMed]

Hess, O.

G. Weick, C. Woollacott, W. L. Barnes, O. Hess, and E. Mariani, “Dirac-like Plasmons in Honeycomb Lattices of Metallic Nanoparticles,” Phys. Rev. Lett. 110(10), 106801 (2013).
[Crossref] [PubMed]

Heyderman, L. J.

V. Kapaklis, U. B. Arnalds, A. Farhan, R. V. Chopdekar, A. Balan, A. Scholl, L. J. Heyderman, and B. Hjörvarsson, “Thermal fluctuations in artificial spin ice,” Nat. Nanotechnol. 9(7), 514–519 (2014).
[Crossref] [PubMed]

A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopdekar, M. Wyss, J. Perron, A. Scholl, F. Nolting, and L. J. Heyderman, “Direct Observation of Thermal Relaxation in Artificial Spin Ice,” Phys. Rev. Lett. 111(5), 057204 (2013).
[Crossref] [PubMed]

A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopdekar, M. Wyss, L. Anghinolfi, F. Nolting, and L. J. Heyderman, “Exploring hyper-cubic energy landscapes in thermally active finite artificial spin-ice systems,” Nat. Phys. 9(6), 375–382 (2013).
[Crossref]

Hjörvarsson, B.

V. Kapaklis, U. B. Arnalds, A. Farhan, R. V. Chopdekar, A. Balan, A. Scholl, L. J. Heyderman, and B. Hjörvarsson, “Thermal fluctuations in artificial spin ice,” Nat. Nanotechnol. 9(7), 514–519 (2014).
[Crossref] [PubMed]

Holdsworth, P. C. W.

S. R. Giblin, S. T. Bramwell, P. C. W. Holdsworth, D. Prabhakaran, and I. Terry, “Creation and measurement of long-lived magnetic monopole currents in spin ice,” Nat. Phys. 7(3), 252–258 (2011).
[Crossref]

Huck, C.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

Humphrey, A. D.

A. D. Humphrey, N. Meinzer, T. A. Starkey, and W. L. Barnes, “Surface Lattice Resonances in Plasmonic Arrays of Asymmetric Disc Dimers,” ACS Photonics 3(4), 634–639 (2016).
[Crossref]

A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonances on arrays of different lattice symmetry,” Phys. Rev. B 90(7), 075404 (2014).
[Crossref]

Huttunen, M. J.

M. J. Huttunen, P. Rasekh, R. W. Boyd, and K. Dolgaleva, “Using surface lattice resonances to engineer nonlinear optical processes in metal nanoparticle arrays,” Phys. Rev. A 97(5), 053817 (2018).
[Crossref]

M. Kataja, S. Pourjamal, N. Maccaferri, P. Vavassori, T. K. Hakala, M. J. Huttunen, P. Törmä, and S. van Dijken, “Hybrid plasmonic lattices with tunable magneto-optical activity,” Opt. Express 24(4), 3652–3662 (2016).
[Crossref] [PubMed]

M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. van Dijken, and P. Törmä, “Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays,” Nat. Commun. 6(1), 7072 (2015).
[Crossref] [PubMed]

Jiang, Z. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal Dual-Band Near-Perfectly Absorbing Mid-Infrared Metamaterial Coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson, R. W. Christy, and R. C. P. B. Johnson, “Optical Constants of Noble Metal,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Johnson, R. C. P. B.

P. B. Johnson, R. W. Christy, and R. C. P. B. Johnson, “Optical Constants of Noble Metal,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Julku, A.

M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. van Dijken, and P. Törmä, “Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays,” Nat. Commun. 6(1), 7072 (2015).
[Crossref] [PubMed]

Kapaklis, V.

V. Kapaklis, U. B. Arnalds, A. Farhan, R. V. Chopdekar, A. Balan, A. Scholl, L. J. Heyderman, and B. Hjörvarsson, “Thermal fluctuations in artificial spin ice,” Nat. Nanotechnol. 9(7), 514–519 (2014).
[Crossref] [PubMed]

Kataja, M.

S. Pourjamal, M. Kataja, N. Maccaferri, P. Vavassori, and S. van Dijken, “Hybrid Ni/SiO2/Au dimer arrays for high-resolution refractive index sensing,” Nanophotonics 7(5), 905–912 (2018).
[Crossref]

N. Maccaferri, L. Bergamini, M. Pancaldi, M. K. Schmidt, M. Kataja, S. Dijken, N. Zabala, J. Aizpurua, and P. Vavassori, “Anisotropic Nanoantenna-Based Magnetoplasmonic Crystals for Highly Enhanced and Tunable Magneto-Optical Activity,” Nano Lett. 16(4), 2533–2542 (2016).
[Crossref] [PubMed]

M. Kataja, S. Pourjamal, N. Maccaferri, P. Vavassori, T. K. Hakala, M. J. Huttunen, P. Törmä, and S. van Dijken, “Hybrid plasmonic lattices with tunable magneto-optical activity,” Opt. Express 24(4), 3652–3662 (2016).
[Crossref] [PubMed]

M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. van Dijken, and P. Törmä, “Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays,” Nat. Commun. 6(1), 7072 (2015).
[Crossref] [PubMed]

Keren-Zur, S.

L. Michaeli, S. Keren-Zur, O. Avayu, H. Suchowski, and T. Ellenbogen, “Nonlinear Surface Lattice Resonance in Plasmonic Nanoparticle Arrays,” Phys. Rev. Lett. 118(24), 243904 (2017).
[Crossref] [PubMed]

Kessentini, S.

F. Colas, D. Barchiesi, S. Kessentini, T. Toury, and M. L. de la Chapelle, “Comparison of adhesion layers of gold on silicate glasses for SERS detection,” J. Opt. 17(11), 114010 (2015).
[Crossref]

Kim, C. H.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Kleibert, A.

A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopdekar, M. Wyss, L. Anghinolfi, F. Nolting, and L. J. Heyderman, “Exploring hyper-cubic energy landscapes in thermally active finite artificial spin-ice systems,” Nat. Phys. 9(6), 375–382 (2013).
[Crossref]

A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopdekar, M. Wyss, J. Perron, A. Scholl, F. Nolting, and L. J. Heyderman, “Direct Observation of Thermal Relaxation in Artificial Spin Ice,” Phys. Rev. Lett. 111(5), 057204 (2013).
[Crossref] [PubMed]

Kuttge, M.

M. Kuttge, F. J. García de Abajo, and A. Polman, “Ultrasmall Mode Volume Plasmonic Nanodisk Resonators,” Nano Lett. 10(5), 1537–1541 (2010).
[Crossref] [PubMed]

Langridge, S.

J. P. Morgan, A. Stein, S. Langridge, and C. H. Marrows, “Thermal ground-state ordering and elementary excitations in artificial magnetic square ice,” Nat. Phys. 7(1), 75–79 (2011).
[Crossref]

Leone, S. R.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic Adhesion Layer Induced Plasmon Damping and Molecular Linker as a Nondamping Alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Lin, L.

L. Lin and Y. Zheng, “Optimizing plasmonic nanoantennas via coordinated multiple coupling,” Sci. Rep. 5, 14788 (2015).
[Crossref] [PubMed]

Liu, F.

F. Liu, X. Zhang, and X. Fang, “Plasmonic plano-semi-cylindrical nanocavities with high-efficiency local-field confinement,” Sci. Rep. 7(1), 40071 (2017).
[Crossref] [PubMed]

Maccaferri, N.

S. Pourjamal, M. Kataja, N. Maccaferri, P. Vavassori, and S. van Dijken, “Hybrid Ni/SiO2/Au dimer arrays for high-resolution refractive index sensing,” Nanophotonics 7(5), 905–912 (2018).
[Crossref]

N. Maccaferri, L. Bergamini, M. Pancaldi, M. K. Schmidt, M. Kataja, S. Dijken, N. Zabala, J. Aizpurua, and P. Vavassori, “Anisotropic Nanoantenna-Based Magnetoplasmonic Crystals for Highly Enhanced and Tunable Magneto-Optical Activity,” Nano Lett. 16(4), 2533–2542 (2016).
[Crossref] [PubMed]

M. Kataja, S. Pourjamal, N. Maccaferri, P. Vavassori, T. K. Hakala, M. J. Huttunen, P. Törmä, and S. van Dijken, “Hybrid plasmonic lattices with tunable magneto-optical activity,” Opt. Express 24(4), 3652–3662 (2016).
[Crossref] [PubMed]

Maier, S. A.

A. Rakovich, P. Albella, and S. A. Maier, “Plasmonic Control of Radiative Properties of Semiconductor Quantum Dots Coupled to Plasmonic Ring Cavities,” ACS Nano 9(3), 2648–2658 (2015).
[Crossref] [PubMed]

Mariani, E.

G. Weick, C. Woollacott, W. L. Barnes, O. Hess, and E. Mariani, “Dirac-like Plasmons in Honeycomb Lattices of Metallic Nanoparticles,” Phys. Rev. Lett. 110(10), 106801 (2013).
[Crossref] [PubMed]

Marrows, C. H.

J. P. Morgan, A. Stein, S. Langridge, and C. H. Marrows, “Thermal ground-state ordering and elementary excitations in artificial magnetic square ice,” Nat. Phys. 7(1), 75–79 (2011).
[Crossref]

Martikainen, J.-P.

T. K. Hakala, H. T. Rekola, A. I. Väkeväinen, J.-P. Martikainen, M. Nečada, A. J. Moilanen, and P. Törmä, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
[Crossref] [PubMed]

Mayer, T. S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal Dual-Band Near-Perfectly Absorbing Mid-Infrared Metamaterial Coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Mei, T.

Meinzer, N.

A. D. Humphrey, N. Meinzer, T. A. Starkey, and W. L. Barnes, “Surface Lattice Resonances in Plasmonic Arrays of Asymmetric Disc Dimers,” ACS Photonics 3(4), 634–639 (2016).
[Crossref]

Michaeli, L.

L. Michaeli, S. Keren-Zur, O. Avayu, H. Suchowski, and T. Ellenbogen, “Nonlinear Surface Lattice Resonance in Plasmonic Nanoparticle Arrays,” Phys. Rev. Lett. 118(24), 243904 (2017).
[Crossref] [PubMed]

Moilanen, A. J.

T. K. Hakala, H. T. Rekola, A. I. Väkeväinen, J.-P. Martikainen, M. Nečada, A. J. Moilanen, and P. Törmä, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
[Crossref] [PubMed]

Morgan, J. P.

J. P. Morgan, A. Stein, S. Langridge, and C. H. Marrows, “Thermal ground-state ordering and elementary excitations in artificial magnetic square ice,” Nat. Phys. 7(1), 75–79 (2011).
[Crossref]

Necada, M.

T. K. Hakala, H. T. Rekola, A. I. Väkeväinen, J.-P. Martikainen, M. Nečada, A. J. Moilanen, and P. Törmä, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
[Crossref] [PubMed]

Neubrech, F.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

Nolting, F.

A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopdekar, M. Wyss, L. Anghinolfi, F. Nolting, and L. J. Heyderman, “Exploring hyper-cubic energy landscapes in thermally active finite artificial spin-ice systems,” Nat. Phys. 9(6), 375–382 (2013).
[Crossref]

A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopdekar, M. Wyss, J. Perron, A. Scholl, F. Nolting, and L. J. Heyderman, “Direct Observation of Thermal Relaxation in Artificial Spin Ice,” Phys. Rev. Lett. 111(5), 057204 (2013).
[Crossref] [PubMed]

Nordlander, P.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-Shaped Gold Nanoantennas above Reflective Substrates for Surface-Enhanced Infrared Absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Odom, T. W.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Pancaldi, M.

N. Maccaferri, L. Bergamini, M. Pancaldi, M. K. Schmidt, M. Kataja, S. Dijken, N. Zabala, J. Aizpurua, and P. Vavassori, “Anisotropic Nanoantenna-Based Magnetoplasmonic Crystals for Highly Enhanced and Tunable Magneto-Optical Activity,” Nano Lett. 16(4), 2533–2542 (2016).
[Crossref] [PubMed]

Perron, J.

A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopdekar, M. Wyss, J. Perron, A. Scholl, F. Nolting, and L. J. Heyderman, “Direct Observation of Thermal Relaxation in Artificial Spin Ice,” Phys. Rev. Lett. 111(5), 057204 (2013).
[Crossref] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

M. Kuttge, F. J. García de Abajo, and A. Polman, “Ultrasmall Mode Volume Plasmonic Nanodisk Resonators,” Nano Lett. 10(5), 1537–1541 (2010).
[Crossref] [PubMed]

Popp, J.

M. Baia, L. Baia, S. Astilean, and J. Popp, “Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings,” Appl. Phys. Lett. 88(14), 143121 (2006).
[Crossref]

Pourjamal, S.

S. Pourjamal, M. Kataja, N. Maccaferri, P. Vavassori, and S. van Dijken, “Hybrid Ni/SiO2/Au dimer arrays for high-resolution refractive index sensing,” Nanophotonics 7(5), 905–912 (2018).
[Crossref]

M. Kataja, S. Pourjamal, N. Maccaferri, P. Vavassori, T. K. Hakala, M. J. Huttunen, P. Törmä, and S. van Dijken, “Hybrid plasmonic lattices with tunable magneto-optical activity,” Opt. Express 24(4), 3652–3662 (2016).
[Crossref] [PubMed]

Prabhakaran, D.

S. R. Giblin, S. T. Bramwell, P. C. W. Holdsworth, D. Prabhakaran, and I. Terry, “Creation and measurement of long-lived magnetic monopole currents in spin ice,” Nat. Phys. 7(3), 252–258 (2011).
[Crossref]

Pucci, A.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

Qiu, M.

Rakovich, A.

A. Rakovich, P. Albella, and S. A. Maier, “Plasmonic Control of Radiative Properties of Semiconductor Quantum Dots Coupled to Plasmonic Ring Cavities,” ACS Nano 9(3), 2648–2658 (2015).
[Crossref] [PubMed]

Ramirez, A. P.

A. P. Ramirez, “Geometric frustration: Magic moments,” Nature 421(6922), 483 (2003).
[Crossref] [PubMed]

Rasekh, P.

M. J. Huttunen, P. Rasekh, R. W. Boyd, and K. Dolgaleva, “Using surface lattice resonances to engineer nonlinear optical processes in metal nanoparticle arrays,” Phys. Rev. A 97(5), 053817 (2018).
[Crossref]

Rekola, H. T.

T. K. Hakala, H. T. Rekola, A. I. Väkeväinen, J.-P. Martikainen, M. Nečada, A. J. Moilanen, and P. Törmä, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
[Crossref] [PubMed]

Schatz, G. C.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Schmidt, M. K.

N. Maccaferri, L. Bergamini, M. Pancaldi, M. K. Schmidt, M. Kataja, S. Dijken, N. Zabala, J. Aizpurua, and P. Vavassori, “Anisotropic Nanoantenna-Based Magnetoplasmonic Crystals for Highly Enhanced and Tunable Magneto-Optical Activity,” Nano Lett. 16(4), 2533–2542 (2016).
[Crossref] [PubMed]

Scholl, A.

V. Kapaklis, U. B. Arnalds, A. Farhan, R. V. Chopdekar, A. Balan, A. Scholl, L. J. Heyderman, and B. Hjörvarsson, “Thermal fluctuations in artificial spin ice,” Nat. Nanotechnol. 9(7), 514–519 (2014).
[Crossref] [PubMed]

A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopdekar, M. Wyss, J. Perron, A. Scholl, F. Nolting, and L. J. Heyderman, “Direct Observation of Thermal Relaxation in Artificial Spin Ice,” Phys. Rev. Lett. 111(5), 057204 (2013).
[Crossref] [PubMed]

Schonbrun, E.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Schuck, P. J.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic Adhesion Layer Induced Plasmon Damping and Molecular Linker as a Nondamping Alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Starkey, T. A.

A. D. Humphrey, N. Meinzer, T. A. Starkey, and W. L. Barnes, “Surface Lattice Resonances in Plasmonic Arrays of Asymmetric Disc Dimers,” ACS Photonics 3(4), 634–639 (2016).
[Crossref]

Stein, A.

J. P. Morgan, A. Stein, S. Langridge, and C. H. Marrows, “Thermal ground-state ordering and elementary excitations in artificial magnetic square ice,” Nat. Phys. 7(1), 75–79 (2011).
[Crossref]

Suchowski, H.

L. Michaeli, S. Keren-Zur, O. Avayu, H. Suchowski, and T. Ellenbogen, “Nonlinear Surface Lattice Resonance in Plasmonic Nanoparticle Arrays,” Phys. Rev. Lett. 118(24), 243904 (2017).
[Crossref] [PubMed]

Suh, J. Y.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Terry, I.

S. R. Giblin, S. T. Bramwell, P. C. W. Holdsworth, D. Prabhakaran, and I. Terry, “Creation and measurement of long-lived magnetic monopole currents in spin ice,” Nat. Phys. 7(3), 252–258 (2011).
[Crossref]

Toor, F.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal Dual-Band Near-Perfectly Absorbing Mid-Infrared Metamaterial Coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Törmä, P.

T. K. Hakala, H. T. Rekola, A. I. Väkeväinen, J.-P. Martikainen, M. Nečada, A. J. Moilanen, and P. Törmä, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
[Crossref] [PubMed]

R. Guo, T. K. Hakala, and P. Törmä, “Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays,” Phys. Rev. B 95(15), 155423 (2017).
[Crossref]

M. Kataja, S. Pourjamal, N. Maccaferri, P. Vavassori, T. K. Hakala, M. J. Huttunen, P. Törmä, and S. van Dijken, “Hybrid plasmonic lattices with tunable magneto-optical activity,” Opt. Express 24(4), 3652–3662 (2016).
[Crossref] [PubMed]

M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. van Dijken, and P. Törmä, “Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays,” Nat. Commun. 6(1), 7072 (2015).
[Crossref] [PubMed]

Toury, T.

F. Colas, D. Barchiesi, S. Kessentini, T. Toury, and M. L. de la Chapelle, “Comparison of adhesion layers of gold on silicate glasses for SERS detection,” J. Opt. 17(11), 114010 (2015).
[Crossref]

Väkeväinen, A. I.

T. K. Hakala, H. T. Rekola, A. I. Väkeväinen, J.-P. Martikainen, M. Nečada, A. J. Moilanen, and P. Törmä, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
[Crossref] [PubMed]

van Dijken, S.

S. Pourjamal, M. Kataja, N. Maccaferri, P. Vavassori, and S. van Dijken, “Hybrid Ni/SiO2/Au dimer arrays for high-resolution refractive index sensing,” Nanophotonics 7(5), 905–912 (2018).
[Crossref]

M. Kataja, S. Pourjamal, N. Maccaferri, P. Vavassori, T. K. Hakala, M. J. Huttunen, P. Törmä, and S. van Dijken, “Hybrid plasmonic lattices with tunable magneto-optical activity,” Opt. Express 24(4), 3652–3662 (2016).
[Crossref] [PubMed]

M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. van Dijken, and P. Törmä, “Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays,” Nat. Commun. 6(1), 7072 (2015).
[Crossref] [PubMed]

Vavassori, P.

S. Pourjamal, M. Kataja, N. Maccaferri, P. Vavassori, and S. van Dijken, “Hybrid Ni/SiO2/Au dimer arrays for high-resolution refractive index sensing,” Nanophotonics 7(5), 905–912 (2018).
[Crossref]

N. Maccaferri, L. Bergamini, M. Pancaldi, M. K. Schmidt, M. Kataja, S. Dijken, N. Zabala, J. Aizpurua, and P. Vavassori, “Anisotropic Nanoantenna-Based Magnetoplasmonic Crystals for Highly Enhanced and Tunable Magneto-Optical Activity,” Nano Lett. 16(4), 2533–2542 (2016).
[Crossref] [PubMed]

M. Kataja, S. Pourjamal, N. Maccaferri, P. Vavassori, T. K. Hakala, M. J. Huttunen, P. Törmä, and S. van Dijken, “Hybrid plasmonic lattices with tunable magneto-optical activity,” Opt. Express 24(4), 3652–3662 (2016).
[Crossref] [PubMed]

Wasielewski, M. R.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Weber, K.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

Weick, G.

G. Weick, C. Woollacott, W. L. Barnes, O. Hess, and E. Mariani, “Dirac-like Plasmons in Honeycomb Lattices of Metallic Nanoparticles,” Phys. Rev. Lett. 110(10), 106801 (2013).
[Crossref] [PubMed]

Weiss, T.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

Werner, D. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal Dual-Band Near-Perfectly Absorbing Mid-Infrared Metamaterial Coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Wood, E.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic Adhesion Layer Induced Plasmon Damping and Molecular Linker as a Nondamping Alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Woollacott, C.

G. Weick, C. Woollacott, W. L. Barnes, O. Hess, and E. Mariani, “Dirac-like Plasmons in Honeycomb Lattices of Metallic Nanoparticles,” Phys. Rev. Lett. 110(10), 106801 (2013).
[Crossref] [PubMed]

Wyss, M.

A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopdekar, M. Wyss, L. Anghinolfi, F. Nolting, and L. J. Heyderman, “Exploring hyper-cubic energy landscapes in thermally active finite artificial spin-ice systems,” Nat. Phys. 9(6), 375–382 (2013).
[Crossref]

A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopdekar, M. Wyss, J. Perron, A. Scholl, F. Nolting, and L. J. Heyderman, “Direct Observation of Thermal Relaxation in Artificial Spin Ice,” Phys. Rev. Lett. 111(5), 057204 (2013).
[Crossref] [PubMed]

Yan, M.

Yang, T.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Yang, X.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-Shaped Gold Nanoantennas above Reflective Substrates for Surface-Enhanced Infrared Absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Yuan, X.

Yun, S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal Dual-Band Near-Perfectly Absorbing Mid-Infrared Metamaterial Coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Zabala, N.

N. Maccaferri, L. Bergamini, M. Pancaldi, M. K. Schmidt, M. Kataja, S. Dijken, N. Zabala, J. Aizpurua, and P. Vavassori, “Anisotropic Nanoantenna-Based Magnetoplasmonic Crystals for Highly Enhanced and Tunable Magneto-Optical Activity,” Nano Lett. 16(4), 2533–2542 (2016).
[Crossref] [PubMed]

Zhang, H.

S. Gottheim, H. Zhang, A. O. Govorov, and N. J. Halas, “Fractal nanoparticle plasmonics: The cayley tree,” ACS Nano 9(3), 3284–3292 (2015).
[Crossref] [PubMed]

Zhang, X.

F. Liu, X. Zhang, and X. Fang, “Plasmonic plano-semi-cylindrical nanocavities with high-efficiency local-field confinement,” Sci. Rep. 7(1), 40071 (2017).
[Crossref] [PubMed]

L. Du, X. Zhang, T. Mei, and X. Yuan, “Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS,” Opt. Express 18(3), 1959–1965 (2010).
[Crossref] [PubMed]

Zhao, K.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-Shaped Gold Nanoantennas above Reflective Substrates for Surface-Enhanced Infrared Absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Zheng, B. Y.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-Shaped Gold Nanoantennas above Reflective Substrates for Surface-Enhanced Infrared Absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Zheng, Y.

L. Lin and Y. Zheng, “Optimizing plasmonic nanoantennas via coordinated multiple coupling,” Sci. Rep. 5, 14788 (2015).
[Crossref] [PubMed]

Zhou, W.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

ACS Nano (4)

A. Rakovich, P. Albella, and S. A. Maier, “Plasmonic Control of Radiative Properties of Semiconductor Quantum Dots Coupled to Plasmonic Ring Cavities,” ACS Nano 9(3), 2648–2658 (2015).
[Crossref] [PubMed]

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal Dual-Band Near-Perfectly Absorbing Mid-Infrared Metamaterial Coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

S. Gottheim, H. Zhang, A. O. Govorov, and N. J. Halas, “Fractal nanoparticle plasmonics: The cayley tree,” ACS Nano 9(3), 3284–3292 (2015).
[Crossref] [PubMed]

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic Adhesion Layer Induced Plasmon Damping and Molecular Linker as a Nondamping Alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

ACS Photonics (2)

A. D. Humphrey, N. Meinzer, T. A. Starkey, and W. L. Barnes, “Surface Lattice Resonances in Plasmonic Arrays of Asymmetric Disc Dimers,” ACS Photonics 3(4), 634–639 (2016).
[Crossref]

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

Appl. Phys. Lett. (2)

M. Baia, L. Baia, S. Astilean, and J. Popp, “Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings,” Appl. Phys. Lett. 88(14), 143121 (2006).
[Crossref]

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Chem. Rev. (1)

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

J. Opt. (1)

F. Colas, D. Barchiesi, S. Kessentini, T. Toury, and M. L. de la Chapelle, “Comparison of adhesion layers of gold on silicate glasses for SERS detection,” J. Opt. 17(11), 114010 (2015).
[Crossref]

Nano Lett. (3)

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-Shaped Gold Nanoantennas above Reflective Substrates for Surface-Enhanced Infrared Absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

M. Kuttge, F. J. García de Abajo, and A. Polman, “Ultrasmall Mode Volume Plasmonic Nanodisk Resonators,” Nano Lett. 10(5), 1537–1541 (2010).
[Crossref] [PubMed]

N. Maccaferri, L. Bergamini, M. Pancaldi, M. K. Schmidt, M. Kataja, S. Dijken, N. Zabala, J. Aizpurua, and P. Vavassori, “Anisotropic Nanoantenna-Based Magnetoplasmonic Crystals for Highly Enhanced and Tunable Magneto-Optical Activity,” Nano Lett. 16(4), 2533–2542 (2016).
[Crossref] [PubMed]

Nanophotonics (1)

S. Pourjamal, M. Kataja, N. Maccaferri, P. Vavassori, and S. van Dijken, “Hybrid Ni/SiO2/Au dimer arrays for high-resolution refractive index sensing,” Nanophotonics 7(5), 905–912 (2018).
[Crossref]

Nat. Commun. (2)

M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. van Dijken, and P. Törmä, “Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays,” Nat. Commun. 6(1), 7072 (2015).
[Crossref] [PubMed]

T. K. Hakala, H. T. Rekola, A. I. Väkeväinen, J.-P. Martikainen, M. Nečada, A. J. Moilanen, and P. Törmä, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
[Crossref] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

V. Kapaklis, U. B. Arnalds, A. Farhan, R. V. Chopdekar, A. Balan, A. Scholl, L. J. Heyderman, and B. Hjörvarsson, “Thermal fluctuations in artificial spin ice,” Nat. Nanotechnol. 9(7), 514–519 (2014).
[Crossref] [PubMed]

Nat. Phys. (3)

J. P. Morgan, A. Stein, S. Langridge, and C. H. Marrows, “Thermal ground-state ordering and elementary excitations in artificial magnetic square ice,” Nat. Phys. 7(1), 75–79 (2011).
[Crossref]

A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopdekar, M. Wyss, L. Anghinolfi, F. Nolting, and L. J. Heyderman, “Exploring hyper-cubic energy landscapes in thermally active finite artificial spin-ice systems,” Nat. Phys. 9(6), 375–382 (2013).
[Crossref]

S. R. Giblin, S. T. Bramwell, P. C. W. Holdsworth, D. Prabhakaran, and I. Terry, “Creation and measurement of long-lived magnetic monopole currents in spin ice,” Nat. Phys. 7(3), 252–258 (2011).
[Crossref]

Nature (1)

A. P. Ramirez, “Geometric frustration: Magic moments,” Nature 421(6922), 483 (2003).
[Crossref] [PubMed]

Opt. Express (4)

Phys. Rev. A (1)

M. J. Huttunen, P. Rasekh, R. W. Boyd, and K. Dolgaleva, “Using surface lattice resonances to engineer nonlinear optical processes in metal nanoparticle arrays,” Phys. Rev. A 97(5), 053817 (2018).
[Crossref]

Phys. Rev. B (3)

P. B. Johnson, R. W. Christy, and R. C. P. B. Johnson, “Optical Constants of Noble Metal,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonances on arrays of different lattice symmetry,” Phys. Rev. B 90(7), 075404 (2014).
[Crossref]

R. Guo, T. K. Hakala, and P. Törmä, “Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays,” Phys. Rev. B 95(15), 155423 (2017).
[Crossref]

Phys. Rev. Lett. (4)

L. Michaeli, S. Keren-Zur, O. Avayu, H. Suchowski, and T. Ellenbogen, “Nonlinear Surface Lattice Resonance in Plasmonic Nanoparticle Arrays,” Phys. Rev. Lett. 118(24), 243904 (2017).
[Crossref] [PubMed]

B. Auguié and W. L. Barnes, “Collective Resonances in Gold Nanoparticle Arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

G. Weick, C. Woollacott, W. L. Barnes, O. Hess, and E. Mariani, “Dirac-like Plasmons in Honeycomb Lattices of Metallic Nanoparticles,” Phys. Rev. Lett. 110(10), 106801 (2013).
[Crossref] [PubMed]

A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopdekar, M. Wyss, J. Perron, A. Scholl, F. Nolting, and L. J. Heyderman, “Direct Observation of Thermal Relaxation in Artificial Spin Ice,” Phys. Rev. Lett. 111(5), 057204 (2013).
[Crossref] [PubMed]

Sci. Rep. (2)

L. Lin and Y. Zheng, “Optimizing plasmonic nanoantennas via coordinated multiple coupling,” Sci. Rep. 5, 14788 (2015).
[Crossref] [PubMed]

F. Liu, X. Zhang, and X. Fang, “Plasmonic plano-semi-cylindrical nanocavities with high-efficiency local-field confinement,” Sci. Rep. 7(1), 40071 (2017).
[Crossref] [PubMed]

Other (4)

R. Alaee, “Optical Nanoantennas and Their Use as Perfect Absorbers,” Karlsruher Institut für Technologie (KIT) (2015).

W. W. Salisbury, “Absorbent body for electromagnetic waves,” U.S. patent US2599944 A (1943).

Lumerical Solutions Home Page (n.d.).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985), 1.

Supplementary Material (2)

NameDescription
» Visualization 1       Time evolution of the electric field distribution in the y=o plane
» Visualization 2       Time evolution of the electric field distribution in the z=15 plane for an array of asterisk-shaped Au nanoelements

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Scheme of the fabricated nanostructures in the MIM configuration. (b) Unit cells of the three interpenetrated hexagonal lattices of nanogaps.
Fig. 2
Fig. 2 Representative SEM micrographs corresponding to different samples, from asterisk- (a) to star-shaped (d) nanoelements, obtained by changing the fabrication parameters. Scale bars: 500 nm.
Fig. 3
Fig. 3 Absorption spectra measured by FTIR in reflection configuration for two arrays in MIM configuration, being the SiO2 thickness 100 nm: 400 nm / 100 nm / 30 nm / 20 nm (red dashed line) and 500 nm / 50 nm / 45 nm / 20 nm (black solid line) (pitch / gap / width / thickness), corresponding to the SEM micrographs shown in Fig. 2(b) and 2(c), respectively.
Fig. 4
Fig. 4 FDTD simulations of (a) a single Au nanoasterisk of 450 nm / 45 nm / 30 nm (length / width /thickness) in MIM configuration with a 100 nm thick SiO2 layer and (b) an array of 500 nm / 50 nm / 45 nm / 30 nm (pitch / gap / width / thickness) asterisk-shaped Au nanostructures in MIM configuration with a 100 nm thick SiO2 layer (black solid line), and on a SiO2 substrate (red dashed line), the inset showing the transmission for the MIM substrate. Both cases have an incident radiation perpendicular to the xy plane and with the electric field parallel to the x-axis. (c) Log (|E|2/|E0|2) for z = 15 nm (upper row), and y = 0 nm (bottom row) planes (these planes are referred to an arbitrary origin located on top of the SiO2 spacer layer under the center of one of the nanoelements, being the x-axis parallel to the electric field of the incident radiation) and (d) charge distributions, at 624 nm (left), 764 nm (center), and 2277 nm (right) for the array in (b).
Fig. 5
Fig. 5 Time evolution of the optical response of an array of 500 nm / 50 nm / 45 nm / 30 nm (pitch / gap / width / thickness) asterisk-shaped Au nanostructures under the excitation of an incident pulse perpendicular to the xy plane with the electric field parallel to the x-axis. (a)-(c) Magnitude of the electric field normalized to the excitation field, E/E0, as a function of the wavelength, at the points 1, 2, and 3 indicated in the insets to the corresponding right panels in each row. (d)-(f) Time evolution of the magnitude of the electric field at the points indicated in the inset to each panel.
Fig. 6
Fig. 6 Snapshots of the time evolution of log(|E|2/|E0|2) for an array of 500 nm / 50 nm / 45 nm / 30 nm (pitch / gap / width / thickness) asterisk-shaped Au nanostructures recorded with increasing elapsed time following an incident excitation pulse perpendicular to the xy plane and with the electric field parallel to the x-axis (see Visualization 1 and Visualization 2).
Fig. 7
Fig. 7 Simulations of an array of 500 nm / 50 nm / 45 nm / 30 nm (pitch / gap / width / thickness) asterisk-shaped Au nanostructures, on a substrate with MIM configuration and a 100 nm-thick SiO2 spacer layer. The source of light is incident perpendicular to the substrate. (a) Absorption spectra for two orthogonal polarizations of the incident electric field: i) along the x-axis, Ex, so that the electric field is parallel to one of the bars composing the asterisks (black solid line), and ii) along the y-axis (red dashed line), Ey. (b)-(c) Response under circular polarization: (b) absorption spectrum and (c) Log(|E|2/|E0|2) corresponding to the peaks I-III in (b). (d)-(e) Results for an excitation by light polarized at 45° with respect to x-axis: (d) absorption spectrum and (e) Log(|E|2/|E0|2) corresponding to the peaks I-III in (d).
Fig. 8
Fig. 8 Simulated absorption spectra of an array of asterisks of 500 nm / 50 nm / 45 nm (pitch / gap / width) on top of a substrate with MIM configuration and being the spacer a 100 nm thick SiO2 layer, (a) as a function of Au thickness; (b) for a Au thickness of 30 nm and several Cr thicknesses.
Fig. 9
Fig. 9 Absorption, reflection and transmission FDTD simulated curves for several array geometries. No substrate has been used for these simulations in order to study the effect of the geometry of the array only.
Fig. 10
Fig. 10 Effect of the gap distribution in the absorption spectra for two asterisk arrays with pitch of 400 nm (a)-(b) and pitch of 500 nm (c)- (d), respectively, both metallized with 0.5 nm Cr + 20 nm Au and fabricated on a substrate with MIM configuration, being the spacer layer 100 nm of SiO2. (a) and (c) show the gap distributions obtained from the SEM images in Fig. 2(b) and 2(c), and correspond to the measurements shown in Fig. 3. Top (b) and (d) panels show the absorption spectra as a function of the gap size, while bottom panels show the resulting averaged curves according to the distributions in (a) and (c) panels, respectively.
Fig. 11
Fig. 11 Effect of shape correction in the absorption spectrum. (a)-(c) Schemes of the simulated samples with different corrections of the shape: (a) asterisk with the rounded shape correction of the bars’ ends. (b) correction in (a), plus an added 200 nm in diameter central cylinder to account for overexposure in the central part. (c) corrections in (b) plus inwards rounded junctions between bars and the central cylinder. (d) Absorption spectra for the different corrections sketched in (a)-(c) and semispheres placed at the ends of the bars.

Metrics