W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Reports. 6, 26133 (2016).

[Crossref]

M. Padgett, R. Aspden, G. Gibson, M. Edgar, and G. Spalding, “Ghost imaging,” Opt. Photon. News 27, 38–45 (2016).

[Crossref]

C. Guo and M. Davies, “Near optimal compressed sensing without priors: Parametric sure approximate message passing,” IEEE Transactions on Signal Process. 63, 2130–2141 (2015).

[Crossref]

J. Tan, Y. Ma, and D. Baron, “Compressive imaging via approximate message passing with image denoising,” IEEE Transactions on Signal Process. 63, 2085–2092 (2015).

[Crossref]

Y. Bromberg and H. Cao, “Generating non-rayleigh speckles with tailored intensity statistics,” Phys. Rev. Lett. 112, 213904 (2014).

[Crossref]

X. Yao, W. Yu, X. Liu, L. Li, M. Li, L. Wu, and G. Zhai, “Iterative denoising of ghost imaging,” Opt. Express 22, 24268–24275 (2014).

[Crossref]
[PubMed]

D. Donoho, A. Javanmard, and A. Montanari, “Information-theoretically optimal compressed sensing via spatial coupling and approximate message passing,” IEEE Transactions on Inf. Theory 59, 7434–7464 (2013).

[Crossref]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20, 16892–16901 (2012).

[Crossref]

B. I. Erkmen, “Computational ghost imaging for remote sensing,” J. Opt. Soc. Am. A 29, 782–789 (2012).

[Crossref]

V. Katkovnik and J. Astola, “Compressive sensing computational ghost imaging,” J. Opt. Soc. Am. A 29, 1556–1567 (2012).

[Crossref]

W. Gong and S. Han, “Multiple-input ghost imaging via sparsity constraints,” J. Opt. Soc. Am. A 29, 1571–1579 (2012).

[Crossref]

S. Som and P. Schniter, “Compressive imaging using approximate message passing and a markov-tree prior,” IEEE Transactions on Signal Process. 60, 3439–3448 (2012).

[Crossref]

L. Jiying, Z. Jubo, L. Chuan, and H. Shisheng, “High-quality quantum-imaging algorithm and experiment based on compressive sensing,” Opt. Lett. 35, 1206–1208 (2010).

[Crossref]
[PubMed]

B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photon. 2, 405–450 (2010).

[Crossref]

J. Bioucas-Dias and M. Figueiredo, “Multiplicative noise removal using variable splitting and constrained optimization,” IEEE Transactions on Image Process. 19, 1720–1730 (2010).

[Crossref]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).

[Crossref]
[PubMed]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).

[Crossref]

D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed sensing,” Proc. Natl. Acad. Sci. 106, 18914–18919 (2009).

[Crossref]
[PubMed]

E. van den Berg and M. P. Friedlander, “Probing the pareto frontier for basis pursuit solutions,” SIAM J. on Sci. Comput. 31, 890–912 (2008).

[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).

[Crossref]
[PubMed]

A. Ayebo and T. J. Kozubowski, “An asymmetric generalization of gaussian and laplace laws,” J. Probab. Stat. Sci. 1, 187–210 (2003).

M. Padgett, R. Aspden, G. Gibson, M. Edgar, and G. Spalding, “Ghost imaging,” Opt. Photon. News 27, 38–45 (2016).

[Crossref]

A. Ayebo and T. J. Kozubowski, “An asymmetric generalization of gaussian and laplace laws,” J. Probab. Stat. Sci. 1, 187–210 (2003).

J. Tan, Y. Ma, and D. Baron, “Compressive imaging via approximate message passing with image denoising,” IEEE Transactions on Signal Process. 63, 2085–2092 (2015).

[Crossref]

J. Bioucas-Dias and M. Figueiredo, “Multiplicative noise removal using variable splitting and constrained optimization,” IEEE Transactions on Image Process. 19, 1720–1730 (2010).

[Crossref]

N. Bender, H. Yilmaz, Y. Bromberg, and H. Cao, “Customizing speckle intensity statistics,” Optica 5, 595–600 (2018).

[Crossref]

Y. Bromberg and H. Cao, “Generating non-rayleigh speckles with tailored intensity statistics,” Phys. Rev. Lett. 112, 213904 (2014).

[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).

[Crossref]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Reports. 6, 26133 (2016).

[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).

[Crossref]
[PubMed]

C. Guo and M. Davies, “Near optimal compressed sensing without priors: Parametric sure approximate message passing,” IEEE Transactions on Signal Process. 63, 2130–2141 (2015).

[Crossref]

D. Donoho, A. Javanmard, and A. Montanari, “Information-theoretically optimal compressed sensing via spatial coupling and approximate message passing,” IEEE Transactions on Inf. Theory 59, 7434–7464 (2013).

[Crossref]

D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed sensing,” Proc. Natl. Acad. Sci. 106, 18914–18919 (2009).

[Crossref]
[PubMed]

M. Padgett, R. Aspden, G. Gibson, M. Edgar, and G. Spalding, “Ghost imaging,” Opt. Photon. News 27, 38–45 (2016).

[Crossref]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).

[Crossref]
[PubMed]

J. Bioucas-Dias and M. Figueiredo, “Multiplicative noise removal using variable splitting and constrained optimization,” IEEE Transactions on Image Process. 19, 1720–1730 (2010).

[Crossref]

E. van den Berg and M. P. Friedlander, “Probing the pareto frontier for basis pursuit solutions,” SIAM J. on Sci. Comput. 31, 890–912 (2008).

[Crossref]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).

[Crossref]
[PubMed]

M. Padgett, R. Aspden, G. Gibson, M. Edgar, and G. Spalding, “Ghost imaging,” Opt. Photon. News 27, 38–45 (2016).

[Crossref]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Reports. 6, 26133 (2016).

[Crossref]

W. Gong and S. Han, “Multiple-input ghost imaging via sparsity constraints,” J. Opt. Soc. Am. A 29, 1571–1579 (2012).

[Crossref]

J. W. Goodman, Speckle phenomena in optics: theory and applications (Roberts and Company, 2007).

C. Guo and M. Davies, “Near optimal compressed sensing without priors: Parametric sure approximate message passing,” IEEE Transactions on Signal Process. 63, 2130–2141 (2015).

[Crossref]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Reports. 6, 26133 (2016).

[Crossref]

W. Gong and S. Han, “Multiple-input ghost imaging via sparsity constraints,” J. Opt. Soc. Am. A 29, 1571–1579 (2012).

[Crossref]

D. Donoho, A. Javanmard, and A. Montanari, “Information-theoretically optimal compressed sensing via spatial coupling and approximate message passing,” IEEE Transactions on Inf. Theory 59, 7434–7464 (2013).

[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).

[Crossref]

S. Kotz, T. J. Kozubowski, and K. Podgorski, The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance(Birkhauser, 2001).

[Crossref]

A. Ayebo and T. J. Kozubowski, “An asymmetric generalization of gaussian and laplace laws,” J. Probab. Stat. Sci. 1, 187–210 (2003).

S. Kotz, T. J. Kozubowski, and K. Podgorski, The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance(Birkhauser, 2001).

[Crossref]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).

[Crossref]
[PubMed]

J. Tan, Y. Ma, and D. Baron, “Compressive imaging via approximate message passing with image denoising,” IEEE Transactions on Signal Process. 63, 2085–2092 (2015).

[Crossref]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).

[Crossref]
[PubMed]

D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed sensing,” Proc. Natl. Acad. Sci. 106, 18914–18919 (2009).

[Crossref]
[PubMed]

D. Donoho, A. Javanmard, and A. Montanari, “Information-theoretically optimal compressed sensing via spatial coupling and approximate message passing,” IEEE Transactions on Inf. Theory 59, 7434–7464 (2013).

[Crossref]

D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed sensing,” Proc. Natl. Acad. Sci. 106, 18914–18919 (2009).

[Crossref]
[PubMed]

M. Padgett, R. Aspden, G. Gibson, M. Edgar, and G. Spalding, “Ghost imaging,” Opt. Photon. News 27, 38–45 (2016).

[Crossref]

S. Kotz, T. J. Kozubowski, and K. Podgorski, The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance(Birkhauser, 2001).

[Crossref]

S. Rangan, “Generalized approximate message passing for estimation with random linear mixing,” in The 2011 IEEE International Symposium on Information Theory Proceedings (ISIT), (2011), pp. 2168–2172.

[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).

[Crossref]
[PubMed]

S. Som and P. Schniter, “Compressive imaging using approximate message passing and a markov-tree prior,” IEEE Transactions on Signal Process. 60, 3439–3448 (2012).

[Crossref]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20, 16892–16901 (2012).

[Crossref]

B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photon. 2, 405–450 (2010).

[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).

[Crossref]
[PubMed]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).

[Crossref]

S. Som and P. Schniter, “Compressive imaging using approximate message passing and a markov-tree prior,” IEEE Transactions on Signal Process. 60, 3439–3448 (2012).

[Crossref]

M. Padgett, R. Aspden, G. Gibson, M. Edgar, and G. Spalding, “Ghost imaging,” Opt. Photon. News 27, 38–45 (2016).

[Crossref]

J. Tan, Y. Ma, and D. Baron, “Compressive imaging via approximate message passing with image denoising,” IEEE Transactions on Signal Process. 63, 2085–2092 (2015).

[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).

[Crossref]
[PubMed]

E. van den Berg and M. P. Friedlander, “Probing the pareto frontier for basis pursuit solutions,” SIAM J. on Sci. Comput. 31, 890–912 (2008).

[Crossref]

H. A. Van der Vorst, Iterative Krylov methods for large linear systems(Cambridge University, 2003).

[Crossref]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Reports. 6, 26133 (2016).

[Crossref]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Reports. 6, 26133 (2016).

[Crossref]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Reports. 6, 26133 (2016).

[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).

[Crossref]

J. Bioucas-Dias and M. Figueiredo, “Multiplicative noise removal using variable splitting and constrained optimization,” IEEE Transactions on Image Process. 19, 1720–1730 (2010).

[Crossref]

D. Donoho, A. Javanmard, and A. Montanari, “Information-theoretically optimal compressed sensing via spatial coupling and approximate message passing,” IEEE Transactions on Inf. Theory 59, 7434–7464 (2013).

[Crossref]

C. Guo and M. Davies, “Near optimal compressed sensing without priors: Parametric sure approximate message passing,” IEEE Transactions on Signal Process. 63, 2130–2141 (2015).

[Crossref]

S. Som and P. Schniter, “Compressive imaging using approximate message passing and a markov-tree prior,” IEEE Transactions on Signal Process. 60, 3439–3448 (2012).

[Crossref]

J. Tan, Y. Ma, and D. Baron, “Compressive imaging via approximate message passing with image denoising,” IEEE Transactions on Signal Process. 63, 2085–2092 (2015).

[Crossref]

A. Ayebo and T. J. Kozubowski, “An asymmetric generalization of gaussian and laplace laws,” J. Probab. Stat. Sci. 1, 187–210 (2003).

X. Yao, W. Yu, X. Liu, L. Li, M. Li, L. Wu, and G. Zhai, “Iterative denoising of ghost imaging,” Opt. Express 22, 24268–24275 (2014).

[Crossref]
[PubMed]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20, 16892–16901 (2012).

[Crossref]

M. Padgett, R. Aspden, G. Gibson, M. Edgar, and G. Spalding, “Ghost imaging,” Opt. Photon. News 27, 38–45 (2016).

[Crossref]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).

[Crossref]
[PubMed]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).

[Crossref]
[PubMed]

Y. Bromberg and H. Cao, “Generating non-rayleigh speckles with tailored intensity statistics,” Phys. Rev. Lett. 112, 213904 (2014).

[Crossref]

D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed sensing,” Proc. Natl. Acad. Sci. 106, 18914–18919 (2009).

[Crossref]
[PubMed]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Reports. 6, 26133 (2016).

[Crossref]

E. van den Berg and M. P. Friedlander, “Probing the pareto frontier for basis pursuit solutions,” SIAM J. on Sci. Comput. 31, 890–912 (2008).

[Crossref]

E. van den Berg and M. P. Friedlander, “SPGL1: A solver for large-scale sparse reconstruction,” (2007). http://www.cs.ubc.ca/labs/scl/spgl1 .

S. Kotz, T. J. Kozubowski, and K. Podgorski, The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance(Birkhauser, 2001).

[Crossref]

H. A. Van der Vorst, Iterative Krylov methods for large linear systems(Cambridge University, 2003).

[Crossref]

S. Rangan, “Generalized approximate message passing for estimation with random linear mixing,” in The 2011 IEEE International Symposium on Information Theory Proceedings (ISIT), (2011), pp. 2168–2172.

[Crossref]

J. W. Goodman, Speckle phenomena in optics: theory and applications (Roberts and Company, 2007).