Abstract

Conical beams have recently attracted much attention due to their excellent performances and potential applications in wireless and satellite-based communication technology. Here, reflective metasurfaces composed of Pancharatnam-Berry (PB) phase elements are demonstrated to have the ability to be flexible and to fully control the conical beam generation with desirable orbital angular momentum (OAM) modes. The theoretical model is developed to analyze the behavior of the conical beam radiation from the reflective metasurface and especially to predict the cone angle, one of the most important factors in the conical beam design. Analysis shows that arbitrary combinations of the cone angle and the OAM mode can be obtained by synthesizing the spatial phase distribution of the metasurface. Finally, two prototypes of microwave metasurfaces, with working bands from 14 GHz to 17 GHz, are fabricated and measured, and the results agree well with the theoretical predictions and simulations. This work demonstrates that metasurfaces can be used for controlling the conical beam generation with desirable OAM modes to potentially enable high capacity data communication, paving the way for novel devices with an appealing low-profile in wireless communication applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Generating an orbital-angular-momentum beam with a metasurface of gradient reflective phase

Bijun Xu, Chao Wu, Zeyong Wei, Yuancheng Fan, and Hongqiang Li
Opt. Mater. Express 6(12) 3940-3945 (2016)

All-dielectric reflective metasurface for orbital angular momentum beam generation

Jiaqi Yang, Heng Zhou, and Tian Lan
Opt. Mater. Express 9(9) 3594-3603 (2019)

Tailoring polarization states of multiple beams that carry different topological charges of orbital angular momentums

Jin Yang, Cheng Zhang, Huifeng Ma, Wei Yuan, Liuxi Yang, Juncheng Ke, Mingzheng Chen, Abdelhady Mahmoud, Qiang Cheng, and Tiejun Cui
Opt. Express 26(24) 31664-31674 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Huang, “Circularly polarized conical patterns from circular microstrip antennas,” IEEE Trans. Antenn. Propag. 32(9), 991–994 (1984).
    [Crossref]
  2. K.-C. Chen, Y. Qian, C.-K. Tzuang, and T. Itoh, “A periodic microstrip radial antenna array with a conical beam,” IEEE Trans. Antenn. Propag. 51(4), 756–765 (2003).
    [Crossref]
  3. K. Lau and K. Luk, “A wideband circularly polarized conical-beam patch antenna,” IEEE Trans. Antenn. Propag. 54(5), 1591–1594 (2006).
    [Crossref]
  4. W. Chen, J. Sun, X. Wang, Z. Feng, F. Chen, Y. Furuya, and A. Kuramoto, “A novel planar switched parasitic array antenna with steered conical pattern,” IEEE Trans. Antenn. Propag. 55(6), 1883–1887 (2007).
    [Crossref]
  5. S.-H. Son, S.-I. Jeon, C.-J. Kim, and W. Hwang, “GA-based design of multi-ring arrays with omnidirectional conical beam pattern,” IEEE Trans. Antenn. Propag. 58(5), 1527–1535 (2010).
    [Crossref]
  6. L. Cui, S.-S. Qi, W. Wu, and D.-G. Fang, “High gain conical beam antenna array exploiting grating lobes,” IEEE Trans. Antenn. Propag. 63(2), 848–853 (2015).
    [Crossref]
  7. W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
    [Crossref] [PubMed]
  8. J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “High-Efficiency Mutual Dual-Band Asymmetric Transmission of Circularly Polarized Waves with Few-Layer Anisotropic Metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
    [Crossref]
  9. F. Lu, B. Liu, and S. Shen, “Infrared wavefront control based on graphene metasurfaces,” Adv. Opt. Mater. 2(8), 794–799 (2014).
    [Crossref]
  10. Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
    [Crossref]
  11. S. Liu and T. J. Cui, “Flexible controls of terahertz waves using coding and programmable metasurfaces,” IEEE J. Sel. Top. Quant. 23, 1–12 (2017).
  12. Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
    [Crossref]
  13. C. Huang, W. Pan, X. Ma, and X. Luo, “Multi-spectral metasurface for different functional control of reflection waves,” Sci. Rep. 6(1), 23291 (2016).
    [Crossref] [PubMed]
  14. H.-X. Xu, G.-M. Wang, T. Cai, J. Xiao, and Y.-Q. Zhuang, “Tunable Pancharatnam-Berry metasurface for dynamical and high-efficiency anomalous reflection,” Opt. Express 24(24), 27836–27848 (2016).
    [Crossref] [PubMed]
  15. Y. Zhao, X. Cao, J. Gao, X. Liu, and S. Li, “Jigsaw puzzle metasurface for multiple functions: polarization conversion, anomalous reflection and diffusion,” Opt. Express 24(10), 11208–11217 (2016).
    [Crossref] [PubMed]
  16. Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15(3), 1615–1621 (2015).
    [Crossref] [PubMed]
  17. S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
    [Crossref] [PubMed]
  18. S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
    [Crossref]
  19. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  20. H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
    [Crossref]
  21. H.-X. Xu, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces,” Appl. Phys. Lett. 109(19), 193506 (2016).
    [Crossref]
  22. K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
    [Crossref] [PubMed]
  23. Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
    [Crossref]
  24. A. Alù, “Mantle cloak: Invisibility induced by a surface,” Phys. Rev. B 80(24), 245115 (2009).
    [Crossref]
  25. N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
    [Crossref]
  26. X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
    [Crossref] [PubMed]
  27. K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6(1), 35968 (2016).
    [Crossref] [PubMed]
  28. L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A Tunable Dispersion-Free Terahertz Metadevice with Pancharatnam-Berry-Phase-Enabled Modulation and Polarization Control,” Adv. Mater. 27(42), 6630–6636 (2015).
    [Crossref] [PubMed]
  29. X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
    [Crossref] [PubMed]
  30. Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. H. An, Y. B. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
    [Crossref]
  31. L. Huang, H. Mühlenbernd, X. Li, X. Song, B. Bai, Y. Wang, and T. Zentgraf, “Broadband hybrid holographic multiplexing with geometric metasurfaces,” Adv. Mater. 27(41), 6444–6449 (2015).
    [Crossref] [PubMed]
  32. Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, “Beam-Editing Coding Metasurfaces Based on Polarization Bit and Orbital-Angular-Momentum-Mode Bit,” Adv. Opt. Mater. 5(23), 1700548 (2017).
    [Crossref]
  33. S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
    [Crossref]
  34. S. M. Mohammadi, L. K. Daldorff, J. E. Bergman, R. L. Karlsson, B. Thidé, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio - a system study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
    [Crossref]
  35. H. Sobhani, H. Rooholamininejad, and A. Bahrampour, “Creation of twisted terahertz waves carrying orbital angular momentum via a plasma vortex,” J. Phys. D Appl. Phys. 49(29), 295107 (2016).
    [Crossref]
  36. H. Sobhani, “Creation of twisted terahertz carrying orbital angular momentum via stimulated Raman scattering in a plasma vortex,” Laser Phys. 27(9), 096001 (2017).
    [Crossref]
  37. R. C. Devlin, A. Ambrosio, N. A. Rubin, J. P. B. Mueller, and F. Capasso, “Arbitrary spin-to-orbital angular momentum conversion of light,” Science 358(6365), 896–901 (2017).
    [Crossref] [PubMed]
  38. E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
    [Crossref]
  39. Y. Guo, M. Pu, Z. Zhao, Y. Wang, J. Jin, P. Gao, X. Li, X. Ma, and X. Luo, “Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation,” ACS Photonics 3(11), 2022–2029 (2016).
    [Crossref]
  40. M. L. Chen, L. J. Jiang, and W. E. Sha, “Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency,” J. Appl. Phys. 119(6), 064506 (2016).
    [Crossref]
  41. F. Bouchard, I. De Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105(10), 101905 (2014).
    [Crossref]
  42. Y. Li, X. Li, L. Chen, M. Pu, J. Jin, M. Hong, and X. Luo, “Orbital angular momentum multiplexing and demultiplexing by a single metasurface,” Adv. Opt. Mater. 5(2), 1600502 (2017).
    [Crossref]
  43. L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
    [Crossref]
  44. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
    [Crossref] [PubMed]
  45. L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
    [Crossref]
  46. S. M. Kamali, A. Arbabi, E. Arbabi, Y. Horie, and A. Faraon, “Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces,” Nat. Commun. 7, 11618 (2016).
    [Crossref] [PubMed]

2017 (7)

S. Liu and T. J. Cui, “Flexible controls of terahertz waves using coding and programmable metasurfaces,” IEEE J. Sel. Top. Quant. 23, 1–12 (2017).

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, “Beam-Editing Coding Metasurfaces Based on Polarization Bit and Orbital-Angular-Momentum-Mode Bit,” Adv. Opt. Mater. 5(23), 1700548 (2017).
[Crossref]

H. Sobhani, “Creation of twisted terahertz carrying orbital angular momentum via stimulated Raman scattering in a plasma vortex,” Laser Phys. 27(9), 096001 (2017).
[Crossref]

R. C. Devlin, A. Ambrosio, N. A. Rubin, J. P. B. Mueller, and F. Capasso, “Arbitrary spin-to-orbital angular momentum conversion of light,” Science 358(6365), 896–901 (2017).
[Crossref] [PubMed]

Y. Li, X. Li, L. Chen, M. Pu, J. Jin, M. Hong, and X. Luo, “Orbital angular momentum multiplexing and demultiplexing by a single metasurface,” Adv. Opt. Mater. 5(2), 1600502 (2017).
[Crossref]

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

2016 (13)

Y. Guo, M. Pu, Z. Zhao, Y. Wang, J. Jin, P. Gao, X. Li, X. Ma, and X. Luo, “Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation,” ACS Photonics 3(11), 2022–2029 (2016).
[Crossref]

M. L. Chen, L. J. Jiang, and W. E. Sha, “Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency,” J. Appl. Phys. 119(6), 064506 (2016).
[Crossref]

H. Sobhani, H. Rooholamininejad, and A. Bahrampour, “Creation of twisted terahertz waves carrying orbital angular momentum via a plasma vortex,” J. Phys. D Appl. Phys. 49(29), 295107 (2016).
[Crossref]

S. M. Kamali, A. Arbabi, E. Arbabi, Y. Horie, and A. Faraon, “Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces,” Nat. Commun. 7, 11618 (2016).
[Crossref] [PubMed]

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6(1), 35968 (2016).
[Crossref] [PubMed]

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

H.-X. Xu, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces,” Appl. Phys. Lett. 109(19), 193506 (2016).
[Crossref]

C. Huang, W. Pan, X. Ma, and X. Luo, “Multi-spectral metasurface for different functional control of reflection waves,” Sci. Rep. 6(1), 23291 (2016).
[Crossref] [PubMed]

H.-X. Xu, G.-M. Wang, T. Cai, J. Xiao, and Y.-Q. Zhuang, “Tunable Pancharatnam-Berry metasurface for dynamical and high-efficiency anomalous reflection,” Opt. Express 24(24), 27836–27848 (2016).
[Crossref] [PubMed]

Y. Zhao, X. Cao, J. Gao, X. Liu, and S. Li, “Jigsaw puzzle metasurface for multiple functions: polarization conversion, anomalous reflection and diffusion,” Opt. Express 24(10), 11208–11217 (2016).
[Crossref] [PubMed]

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
[Crossref] [PubMed]

J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “High-Efficiency Mutual Dual-Band Asymmetric Transmission of Circularly Polarized Waves with Few-Layer Anisotropic Metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

2015 (11)

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15(3), 1615–1621 (2015).
[Crossref] [PubMed]

L. Cui, S.-S. Qi, W. Wu, and D.-G. Fang, “High gain conical beam antenna array exploiting grating lobes,” IEEE Trans. Antenn. Propag. 63(2), 848–853 (2015).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
[Crossref]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A Tunable Dispersion-Free Terahertz Metadevice with Pancharatnam-Berry-Phase-Enabled Modulation and Polarization Control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. H. An, Y. B. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

L. Huang, H. Mühlenbernd, X. Li, X. Song, B. Bai, Y. Wang, and T. Zentgraf, “Broadband hybrid holographic multiplexing with geometric metasurfaces,” Adv. Mater. 27(41), 6444–6449 (2015).
[Crossref] [PubMed]

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

2014 (5)

F. Bouchard, I. De Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105(10), 101905 (2014).
[Crossref]

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

F. Lu, B. Liu, and S. Shen, “Infrared wavefront control based on graphene metasurfaces,” Adv. Opt. Mater. 2(8), 794–799 (2014).
[Crossref]

Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

2013 (1)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

2012 (1)

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

2011 (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

2010 (2)

S. M. Mohammadi, L. K. Daldorff, J. E. Bergman, R. L. Karlsson, B. Thidé, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio - a system study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

S.-H. Son, S.-I. Jeon, C.-J. Kim, and W. Hwang, “GA-based design of multi-ring arrays with omnidirectional conical beam pattern,” IEEE Trans. Antenn. Propag. 58(5), 1527–1535 (2010).
[Crossref]

2009 (1)

A. Alù, “Mantle cloak: Invisibility induced by a surface,” Phys. Rev. B 80(24), 245115 (2009).
[Crossref]

2007 (1)

W. Chen, J. Sun, X. Wang, Z. Feng, F. Chen, Y. Furuya, and A. Kuramoto, “A novel planar switched parasitic array antenna with steered conical pattern,” IEEE Trans. Antenn. Propag. 55(6), 1883–1887 (2007).
[Crossref]

2006 (1)

K. Lau and K. Luk, “A wideband circularly polarized conical-beam patch antenna,” IEEE Trans. Antenn. Propag. 54(5), 1591–1594 (2006).
[Crossref]

2003 (1)

K.-C. Chen, Y. Qian, C.-K. Tzuang, and T. Itoh, “A periodic microstrip radial antenna array with a conical beam,” IEEE Trans. Antenn. Propag. 51(4), 756–765 (2003).
[Crossref]

1984 (1)

J. Huang, “Circularly polarized conical patterns from circular microstrip antennas,” IEEE Trans. Antenn. Propag. 32(9), 991–994 (1984).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Alù, A.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

A. Alù, “Mantle cloak: Invisibility induced by a surface,” Phys. Rev. B 80(24), 245115 (2009).
[Crossref]

Ambrosio, A.

R. C. Devlin, A. Ambrosio, N. A. Rubin, J. P. B. Mueller, and F. Capasso, “Arbitrary spin-to-orbital angular momentum conversion of light,” Science 358(6365), 896–901 (2017).
[Crossref] [PubMed]

An, Z. H.

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. H. An, Y. B. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Arbabi, A.

S. M. Kamali, A. Arbabi, E. Arbabi, Y. Horie, and A. Faraon, “Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces,” Nat. Commun. 7, 11618 (2016).
[Crossref] [PubMed]

Arbabi, E.

S. M. Kamali, A. Arbabi, E. Arbabi, Y. Horie, and A. Faraon, “Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces,” Nat. Commun. 7, 11618 (2016).
[Crossref] [PubMed]

Aydin, K.

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15(3), 1615–1621 (2015).
[Crossref] [PubMed]

Bahrampour, A.

H. Sobhani, H. Rooholamininejad, and A. Bahrampour, “Creation of twisted terahertz waves carrying orbital angular momentum via a plasma vortex,” J. Phys. D Appl. Phys. 49(29), 295107 (2016).
[Crossref]

Bai, B.

L. Huang, H. Mühlenbernd, X. Li, X. Song, B. Bai, Y. Wang, and T. Zentgraf, “Broadband hybrid holographic multiplexing with geometric metasurfaces,” Adv. Mater. 27(41), 6444–6449 (2015).
[Crossref] [PubMed]

Bai, G. D.

Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, “Beam-Editing Coding Metasurfaces Based on Polarization Bit and Orbital-Angular-Momentum-Mode Bit,” Adv. Opt. Mater. 5(23), 1700548 (2017).
[Crossref]

Bergman, J. E.

S. M. Mohammadi, L. K. Daldorff, J. E. Bergman, R. L. Karlsson, B. Thidé, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio - a system study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Bouchard, F.

F. Bouchard, I. De Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105(10), 101905 (2014).
[Crossref]

Boyd, R. W.

F. Bouchard, I. De Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105(10), 101905 (2014).
[Crossref]

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Burokur, S. N.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Butun, S.

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15(3), 1615–1621 (2015).
[Crossref] [PubMed]

Cai, T.

H.-X. Xu, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces,” Appl. Phys. Lett. 109(19), 193506 (2016).
[Crossref]

H.-X. Xu, G.-M. Wang, T. Cai, J. Xiao, and Y.-Q. Zhuang, “Tunable Pancharatnam-Berry metasurface for dynamical and high-efficiency anomalous reflection,” Opt. Express 24(24), 27836–27848 (2016).
[Crossref] [PubMed]

Cao, X.

Capasso, F.

R. C. Devlin, A. Ambrosio, N. A. Rubin, J. P. B. Mueller, and F. Capasso, “Arbitrary spin-to-orbital angular momentum conversion of light,” Science 358(6365), 896–901 (2017).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Carozzi, T. D.

S. M. Mohammadi, L. K. Daldorff, J. E. Bergman, R. L. Karlsson, B. Thidé, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio - a system study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

Chen, F.

W. Chen, J. Sun, X. Wang, Z. Feng, F. Chen, Y. Furuya, and A. Kuramoto, “A novel planar switched parasitic array antenna with steered conical pattern,” IEEE Trans. Antenn. Propag. 55(6), 1883–1887 (2007).
[Crossref]

Chen, H.

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Chen, H. B.

N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
[Crossref]

Chen, H.-B.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Chen, K.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6(1), 35968 (2016).
[Crossref] [PubMed]

Chen, K.-C.

K.-C. Chen, Y. Qian, C.-K. Tzuang, and T. Itoh, “A periodic microstrip radial antenna array with a conical beam,” IEEE Trans. Antenn. Propag. 51(4), 756–765 (2003).
[Crossref]

Chen, L.

Y. Li, X. Li, L. Chen, M. Pu, J. Jin, M. Hong, and X. Luo, “Orbital angular momentum multiplexing and demultiplexing by a single metasurface,” Adv. Opt. Mater. 5(2), 1600502 (2017).
[Crossref]

Chen, M. L.

M. L. Chen, L. J. Jiang, and W. E. Sha, “Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency,” J. Appl. Phys. 119(6), 064506 (2016).
[Crossref]

Chen, S.

J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “High-Efficiency Mutual Dual-Band Asymmetric Transmission of Circularly Polarized Waves with Few-Layer Anisotropic Metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

Chen, T. Y.

Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, “Beam-Editing Coding Metasurfaces Based on Polarization Bit and Orbital-Angular-Momentum-Mode Bit,” Adv. Opt. Mater. 5(23), 1700548 (2017).
[Crossref]

Chen, W.

W. Chen, J. Sun, X. Wang, Z. Feng, F. Chen, Y. Furuya, and A. Kuramoto, “A novel planar switched parasitic array antenna with steered conical pattern,” IEEE Trans. Antenn. Propag. 55(6), 1883–1887 (2007).
[Crossref]

Chen, W. T.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Cheng, H.

J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “High-Efficiency Mutual Dual-Band Asymmetric Transmission of Circularly Polarized Waves with Few-Layer Anisotropic Metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

Cheng, Q.

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
[Crossref]

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Cong, L.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A Tunable Dispersion-Free Terahertz Metadevice with Pancharatnam-Berry-Phase-Enabled Modulation and Polarization Control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

Cui, L.

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6(1), 35968 (2016).
[Crossref] [PubMed]

L. Cui, S.-S. Qi, W. Wu, and D.-G. Fang, “High gain conical beam antenna array exploiting grating lobes,” IEEE Trans. Antenn. Propag. 63(2), 848–853 (2015).
[Crossref]

Cui, T. J.

S. Liu and T. J. Cui, “Flexible controls of terahertz waves using coding and programmable metasurfaces,” IEEE J. Sel. Top. Quant. 23, 1–12 (2017).

Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, “Beam-Editing Coding Metasurfaces Based on Polarization Bit and Orbital-Angular-Momentum-Mode Bit,” Adv. Opt. Mater. 5(23), 1700548 (2017).
[Crossref]

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
[Crossref]

Cui, T.-J.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Daldorff, L. K.

S. M. Mohammadi, L. K. Daldorff, J. E. Bergman, R. L. Karlsson, B. Thidé, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio - a system study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

De Leon, I.

F. Bouchard, I. De Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105(10), 101905 (2014).
[Crossref]

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

de Lustrac, A.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Devlin, R. C.

R. C. Devlin, A. Ambrosio, N. A. Rubin, J. P. B. Mueller, and F. Capasso, “Arbitrary spin-to-orbital angular momentum conversion of light,” Science 358(6365), 896–901 (2017).
[Crossref] [PubMed]

Ding, K.

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. H. An, Y. B. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Ding, X.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Du, L. L.

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

Fang, D.-G.

L. Cui, S.-S. Qi, W. Wu, and D.-G. Fang, “High gain conical beam antenna array exploiting grating lobes,” IEEE Trans. Antenn. Propag. 63(2), 848–853 (2015).
[Crossref]

Faraon, A.

S. M. Kamali, A. Arbabi, E. Arbabi, Y. Horie, and A. Faraon, “Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces,” Nat. Commun. 7, 11618 (2016).
[Crossref] [PubMed]

Feng, Y.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6(1), 35968 (2016).
[Crossref] [PubMed]

Feng, Z.

W. Chen, J. Sun, X. Wang, Z. Feng, F. Chen, Y. Furuya, and A. Kuramoto, “A novel planar switched parasitic array antenna with steered conical pattern,” IEEE Trans. Antenn. Propag. 55(6), 1883–1887 (2007).
[Crossref]

Forozesh, K.

S. M. Mohammadi, L. K. Daldorff, J. E. Bergman, R. L. Karlsson, B. Thidé, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio - a system study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

Furuya, Y.

W. Chen, J. Sun, X. Wang, Z. Feng, F. Chen, Y. Furuya, and A. Kuramoto, “A novel planar switched parasitic array antenna with steered conical pattern,” IEEE Trans. Antenn. Propag. 55(6), 1883–1887 (2007).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gao, D.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Gao, J.

Gao, L.-H.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Gao, P.

Y. Guo, M. Pu, Z. Zhao, Y. Wang, J. Jin, P. Gao, X. Li, X. Ma, and X. Luo, “Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation,” ACS Photonics 3(11), 2022–2029 (2016).
[Crossref]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gu, J.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Guo, G.-Y.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Guo, Y.

Y. Guo, M. Pu, Z. Zhao, Y. Wang, J. Jin, P. Gao, X. Li, X. Ma, and X. Luo, “Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation,” ACS Photonics 3(11), 2022–2029 (2016).
[Crossref]

Han, J.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A Tunable Dispersion-Free Terahertz Metadevice with Pancharatnam-Berry-Phase-Enabled Modulation and Polarization Control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

Han, J. G.

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

He, Q.

H.-X. Xu, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces,” Appl. Phys. Lett. 109(19), 193506 (2016).
[Crossref]

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. H. An, Y. B. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Hong, M.

Y. Li, X. Li, L. Chen, M. Pu, J. Jin, M. Hong, and X. Luo, “Orbital angular momentum multiplexing and demultiplexing by a single metasurface,” Adv. Opt. Mater. 5(2), 1600502 (2017).
[Crossref]

Horie, Y.

S. M. Kamali, A. Arbabi, E. Arbabi, Y. Horie, and A. Faraon, “Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces,” Nat. Commun. 7, 11618 (2016).
[Crossref] [PubMed]

Huang, C.

C. Huang, W. Pan, X. Ma, and X. Luo, “Multi-spectral metasurface for different functional control of reflection waves,” Sci. Rep. 6(1), 23291 (2016).
[Crossref] [PubMed]

Huang, J.

J. Huang, “Circularly polarized conical patterns from circular microstrip antennas,” IEEE Trans. Antenn. Propag. 32(9), 991–994 (1984).
[Crossref]

Huang, L.

L. Huang, H. Mühlenbernd, X. Li, X. Song, B. Bai, Y. Wang, and T. Zentgraf, “Broadband hybrid holographic multiplexing with geometric metasurfaces,” Adv. Mater. 27(41), 6444–6449 (2015).
[Crossref] [PubMed]

Hwang, W.

S.-H. Son, S.-I. Jeon, C.-J. Kim, and W. Hwang, “GA-based design of multi-ring arrays with omnidirectional conical beam pattern,” IEEE Trans. Antenn. Propag. 58(5), 1527–1535 (2010).
[Crossref]

Isham, B.

S. M. Mohammadi, L. K. Daldorff, J. E. Bergman, R. L. Karlsson, B. Thidé, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio - a system study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

Itoh, T.

K.-C. Chen, Y. Qian, C.-K. Tzuang, and T. Itoh, “A periodic microstrip radial antenna array with a conical beam,” IEEE Trans. Antenn. Propag. 51(4), 756–765 (2003).
[Crossref]

Jeon, S.-I.

S.-H. Son, S.-I. Jeon, C.-J. Kim, and W. Hwang, “GA-based design of multi-ring arrays with omnidirectional conical beam pattern,” IEEE Trans. Antenn. Propag. 58(5), 1527–1535 (2010).
[Crossref]

Jiang, L. J.

M. L. Chen, L. J. Jiang, and W. E. Sha, “Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency,” J. Appl. Phys. 119(6), 064506 (2016).
[Crossref]

Jiang, T.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6(1), 35968 (2016).
[Crossref] [PubMed]

Jiang, W. X.

N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
[Crossref]

Jiang, W.-X.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Jin, B.-B.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Jin, J.

Y. Li, X. Li, L. Chen, M. Pu, J. Jin, M. Hong, and X. Luo, “Orbital angular momentum multiplexing and demultiplexing by a single metasurface,” Adv. Opt. Mater. 5(2), 1600502 (2017).
[Crossref]

Y. Guo, M. Pu, Z. Zhao, Y. Wang, J. Jin, P. Gao, X. Li, X. Ma, and X. Luo, “Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation,” ACS Photonics 3(11), 2022–2029 (2016).
[Crossref]

Jing, L.

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Juan, T.-K.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Kamali, S. M.

S. M. Kamali, A. Arbabi, E. Arbabi, Y. Horie, and A. Faraon, “Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces,” Nat. Commun. 7, 11618 (2016).
[Crossref] [PubMed]

Karimi, E.

F. Bouchard, I. De Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105(10), 101905 (2014).
[Crossref]

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Karlsson, R. L.

S. M. Mohammadi, L. K. Daldorff, J. E. Bergman, R. L. Karlsson, B. Thidé, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio - a system study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Kim, C.-J.

S.-H. Son, S.-I. Jeon, C.-J. Kim, and W. Hwang, “GA-based design of multi-ring arrays with omnidirectional conical beam pattern,” IEEE Trans. Antenn. Propag. 58(5), 1527–1535 (2010).
[Crossref]

Kim, Y.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

Kung, W.-T.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Kuramoto, A.

W. Chen, J. Sun, X. Wang, Z. Feng, F. Chen, Y. Furuya, and A. Kuramoto, “A novel planar switched parasitic array antenna with steered conical pattern,” IEEE Trans. Antenn. Propag. 55(6), 1883–1887 (2007).
[Crossref]

Lau, K.

K. Lau and K. Luk, “A wideband circularly polarized conical-beam patch antenna,” IEEE Trans. Antenn. Propag. 54(5), 1591–1594 (2006).
[Crossref]

Li, J.

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

Li, L.

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

Li, S.

Li, X.

Y. Li, X. Li, L. Chen, M. Pu, J. Jin, M. Hong, and X. Luo, “Orbital angular momentum multiplexing and demultiplexing by a single metasurface,” Adv. Opt. Mater. 5(2), 1600502 (2017).
[Crossref]

Y. Guo, M. Pu, Z. Zhao, Y. Wang, J. Jin, P. Gao, X. Li, X. Ma, and X. Luo, “Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation,” ACS Photonics 3(11), 2022–2029 (2016).
[Crossref]

L. Huang, H. Mühlenbernd, X. Li, X. Song, B. Bai, Y. Wang, and T. Zentgraf, “Broadband hybrid holographic multiplexing with geometric metasurfaces,” Adv. Mater. 27(41), 6444–6449 (2015).
[Crossref] [PubMed]

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. H. An, Y. B. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Li, Y.

Y. Li, X. Li, L. Chen, M. Pu, J. Jin, M. Hong, and X. Luo, “Orbital angular momentum multiplexing and demultiplexing by a single metasurface,” Adv. Opt. Mater. 5(2), 1600502 (2017).
[Crossref]

Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Li, Z.

J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “High-Efficiency Mutual Dual-Band Asymmetric Transmission of Circularly Polarized Waves with Few-Layer Anisotropic Metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15(3), 1615–1621 (2015).
[Crossref] [PubMed]

Liang, L.-J.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Liao, C. Y.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Liu, B.

F. Lu, B. Liu, and S. Shen, “Infrared wavefront control based on graphene metasurfaces,” Adv. Opt. Mater. 2(8), 794–799 (2014).
[Crossref]

Liu, J.

J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “High-Efficiency Mutual Dual-Band Asymmetric Transmission of Circularly Polarized Waves with Few-Layer Anisotropic Metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

Liu, S.

S. Liu and T. J. Cui, “Flexible controls of terahertz waves using coding and programmable metasurfaces,” IEEE J. Sel. Top. Quant. 23, 1–12 (2017).

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Liu, W.

J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “High-Efficiency Mutual Dual-Band Asymmetric Transmission of Circularly Polarized Waves with Few-Layer Anisotropic Metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

Liu, W.-W.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Liu, X.

Liu, Y.

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Lu, F.

F. Lu, B. Liu, and S. Shen, “Infrared wavefront control based on graphene metasurfaces,” Adv. Opt. Mater. 2(8), 794–799 (2014).
[Crossref]

Luan, K.

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

Luk, K.

K. Lau and K. Luk, “A wideband circularly polarized conical-beam patch antenna,” IEEE Trans. Antenn. Propag. 54(5), 1591–1594 (2006).
[Crossref]

Luo, W.

H.-X. Xu, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces,” Appl. Phys. Lett. 109(19), 193506 (2016).
[Crossref]

Luo, X.

Y. Li, X. Li, L. Chen, M. Pu, J. Jin, M. Hong, and X. Luo, “Orbital angular momentum multiplexing and demultiplexing by a single metasurface,” Adv. Opt. Mater. 5(2), 1600502 (2017).
[Crossref]

Y. Guo, M. Pu, Z. Zhao, Y. Wang, J. Jin, P. Gao, X. Li, X. Ma, and X. Luo, “Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation,” ACS Photonics 3(11), 2022–2029 (2016).
[Crossref]

C. Huang, W. Pan, X. Ma, and X. Luo, “Multi-spectral metasurface for different functional control of reflection waves,” Sci. Rep. 6(1), 23291 (2016).
[Crossref] [PubMed]

Ma, H. F.

N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
[Crossref]

Ma, H.-F.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Ma, Q.

Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, “Beam-Editing Coding Metasurfaces Based on Polarization Bit and Orbital-Angular-Momentum-Mode Bit,” Adv. Opt. Mater. 5(23), 1700548 (2017).
[Crossref]

Ma, S.

H.-X. Xu, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces,” Appl. Phys. Lett. 109(19), 193506 (2016).
[Crossref]

Ma, S.-J.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Ma, X.

Y. Guo, M. Pu, Z. Zhao, Y. Wang, J. Jin, P. Gao, X. Li, X. Ma, and X. Luo, “Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation,” ACS Photonics 3(11), 2022–2029 (2016).
[Crossref]

C. Huang, W. Pan, X. Ma, and X. Luo, “Multi-spectral metasurface for different functional control of reflection waves,” Sci. Rep. 6(1), 23291 (2016).
[Crossref] [PubMed]

Miao, Z. Q.

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. H. An, Y. B. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Mohammadi, S. M.

S. M. Mohammadi, L. K. Daldorff, J. E. Bergman, R. L. Karlsson, B. Thidé, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio - a system study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

Monticone, F.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Mrejen, M.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Mueller, J. P. B.

R. C. Devlin, A. Ambrosio, N. A. Rubin, J. P. B. Mueller, and F. Capasso, “Arbitrary spin-to-orbital angular momentum conversion of light,” Science 358(6365), 896–901 (2017).
[Crossref] [PubMed]

Mühlenbernd, H.

L. Huang, H. Mühlenbernd, X. Li, X. Song, B. Bai, Y. Wang, and T. Zentgraf, “Broadband hybrid holographic multiplexing with geometric metasurfaces,” Adv. Mater. 27(41), 6444–6449 (2015).
[Crossref] [PubMed]

Ni, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Noor, A.

Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, “Beam-Editing Coding Metasurfaces Based on Polarization Bit and Orbital-Angular-Momentum-Mode Bit,” Adv. Opt. Mater. 5(23), 1700548 (2017).
[Crossref]

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

Palacios, E.

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15(3), 1615–1621 (2015).
[Crossref] [PubMed]

Pan, W.

C. Huang, W. Pan, X. Ma, and X. Luo, “Multi-spectral metasurface for different functional control of reflection waves,” Sci. Rep. 6(1), 23291 (2016).
[Crossref] [PubMed]

Pu, M.

Y. Li, X. Li, L. Chen, M. Pu, J. Jin, M. Hong, and X. Luo, “Orbital angular momentum multiplexing and demultiplexing by a single metasurface,” Adv. Opt. Mater. 5(2), 1600502 (2017).
[Crossref]

Y. Guo, M. Pu, Z. Zhao, Y. Wang, J. Jin, P. Gao, X. Li, X. Ma, and X. Luo, “Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation,” ACS Photonics 3(11), 2022–2029 (2016).
[Crossref]

Qassim, H.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Qi, S.-S.

L. Cui, S.-S. Qi, W. Wu, and D.-G. Fang, “High gain conical beam antenna array exploiting grating lobes,” IEEE Trans. Antenn. Propag. 63(2), 848–853 (2015).
[Crossref]

Qian, Y.

K.-C. Chen, Y. Qian, C.-K. Tzuang, and T. Itoh, “A periodic microstrip radial antenna array with a conical beam,” IEEE Trans. Antenn. Propag. 51(4), 756–765 (2003).
[Crossref]

Qiu, C. W.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Qu, S.

Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Rooholamininejad, H.

H. Sobhani, H. Rooholamininejad, and A. Bahrampour, “Creation of twisted terahertz waves carrying orbital angular momentum via a plasma vortex,” J. Phys. D Appl. Phys. 49(29), 295107 (2016).
[Crossref]

Rubin, N. A.

R. C. Devlin, A. Ambrosio, N. A. Rubin, J. P. B. Mueller, and F. Capasso, “Arbitrary spin-to-orbital angular momentum conversion of light,” Science 358(6365), 896–901 (2017).
[Crossref] [PubMed]

Schulz, S. A.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

F. Bouchard, I. De Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105(10), 101905 (2014).
[Crossref]

Sha, W. E.

M. L. Chen, L. J. Jiang, and W. E. Sha, “Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency,” J. Appl. Phys. 119(6), 064506 (2016).
[Crossref]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Shen, S.

F. Lu, B. Liu, and S. Shen, “Infrared wavefront control based on graphene metasurfaces,” Adv. Opt. Mater. 2(8), 794–799 (2014).
[Crossref]

Shi, C. B.

Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, “Beam-Editing Coding Metasurfaces Based on Polarization Bit and Orbital-Angular-Momentum-Mode Bit,” Adv. Opt. Mater. 5(23), 1700548 (2017).
[Crossref]

Shi, G.

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

Shi, Y.

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

Singh, R.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A Tunable Dispersion-Free Terahertz Metadevice with Pancharatnam-Berry-Phase-Enabled Modulation and Polarization Control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

Sobhani, H.

H. Sobhani, “Creation of twisted terahertz carrying orbital angular momentum via stimulated Raman scattering in a plasma vortex,” Laser Phys. 27(9), 096001 (2017).
[Crossref]

H. Sobhani, H. Rooholamininejad, and A. Bahrampour, “Creation of twisted terahertz waves carrying orbital angular momentum via a plasma vortex,” J. Phys. D Appl. Phys. 49(29), 295107 (2016).
[Crossref]

Son, S.-H.

S.-H. Son, S.-I. Jeon, C.-J. Kim, and W. Hwang, “GA-based design of multi-ring arrays with omnidirectional conical beam pattern,” IEEE Trans. Antenn. Propag. 58(5), 1527–1535 (2010).
[Crossref]

Song, X.

L. Huang, H. Mühlenbernd, X. Li, X. Song, B. Bai, Y. Wang, and T. Zentgraf, “Broadband hybrid holographic multiplexing with geometric metasurfaces,” Adv. Mater. 27(41), 6444–6449 (2015).
[Crossref] [PubMed]

Sun, J.

W. Chen, J. Sun, X. Wang, Z. Feng, F. Chen, Y. Furuya, and A. Kuramoto, “A novel planar switched parasitic array antenna with steered conical pattern,” IEEE Trans. Antenn. Propag. 55(6), 1883–1887 (2007).
[Crossref]

Sun, S.

H.-X. Xu, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces,” Appl. Phys. Lett. 109(19), 193506 (2016).
[Crossref]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Tang, W. X.

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Thidé, B.

S. M. Mohammadi, L. K. Daldorff, J. E. Bergman, R. L. Karlsson, B. Thidé, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio - a system study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

Tian, J.

J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “High-Efficiency Mutual Dual-Band Asymmetric Transmission of Circularly Polarized Waves with Few-Layer Anisotropic Metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

Tian, Z.

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Tsai, D. P.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Tzuang, C.-K.

K.-C. Chen, Y. Qian, C.-K. Tzuang, and T. Itoh, “A periodic microstrip radial antenna array with a conical beam,” IEEE Trans. Antenn. Propag. 51(4), 756–765 (2003).
[Crossref]

Upham, J.

F. Bouchard, I. De Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105(10), 101905 (2014).
[Crossref]

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Wan, W.

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
[Crossref] [PubMed]

Wang, C.-M.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Wang, G.-M.

Wang, J.

Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Wang, Q.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Wang, T. Q.

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

Wang, X.

W. Chen, J. Sun, X. Wang, Z. Feng, F. Chen, Y. Furuya, and A. Kuramoto, “A novel planar switched parasitic array antenna with steered conical pattern,” IEEE Trans. Antenn. Propag. 55(6), 1883–1887 (2007).
[Crossref]

Wang, Y.

Y. Guo, M. Pu, Z. Zhao, Y. Wang, J. Jin, P. Gao, X. Li, X. Ma, and X. Luo, “Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation,” ACS Photonics 3(11), 2022–2029 (2016).
[Crossref]

L. Huang, H. Mühlenbernd, X. Li, X. Song, B. Bai, Y. Wang, and T. Zentgraf, “Broadband hybrid holographic multiplexing with geometric metasurfaces,” Adv. Mater. 27(41), 6444–6449 (2015).
[Crossref] [PubMed]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Wang, Z.

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Wen, Q.-Y.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Wong, Z. J.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Wu, P.-H.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Wu, Q.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. H. An, Y. B. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Wu, W.

L. Cui, S.-S. Qi, W. Wu, and D.-G. Fang, “High gain conical beam antenna array exploiting grating lobes,” IEEE Trans. Antenn. Propag. 63(2), 848–853 (2015).
[Crossref]

Xiang, N.

N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
[Crossref]

Xiao, J.

Xiao, S.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Xie, B.

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

Xu, H.-X.

H.-X. Xu, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces,” Appl. Phys. Lett. 109(19), 193506 (2016).
[Crossref]

H.-X. Xu, G.-M. Wang, T. Cai, J. Xiao, and Y.-Q. Zhuang, “Tunable Pancharatnam-Berry metasurface for dynamical and high-efficiency anomalous reflection,” Opt. Express 24(24), 27836–27848 (2016).
[Crossref] [PubMed]

Xu, N.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A Tunable Dispersion-Free Terahertz Metadevice with Pancharatnam-Berry-Phase-Enabled Modulation and Polarization Control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

Xu, Q.

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

Xu, Y.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Xu, Z.

Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Yang, J.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Yang, K.-Y.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Yang, X.

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
[Crossref] [PubMed]

Yang, Y.

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Yang, Z.

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6(1), 35968 (2016).
[Crossref] [PubMed]

Yao, J.-Q.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yu, P.

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

Yu, S.

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

Yue, W.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Zentgraf, T.

L. Huang, H. Mühlenbernd, X. Li, X. Song, B. Bai, Y. Wang, and T. Zentgraf, “Broadband hybrid holographic multiplexing with geometric metasurfaces,” Adv. Mater. 27(41), 6444–6449 (2015).
[Crossref] [PubMed]

Zhang, A.

Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Zhang, J.

Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Zhang, K.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Zhang, L.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Zhang, S.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Zhang, W.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A Tunable Dispersion-Free Terahertz Metadevice with Pancharatnam-Berry-Phase-Enabled Modulation and Polarization Control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

Zhang, W. L.

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

Zhang, X.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Zhang, Y. B.

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. H. An, Y. B. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Zhao, J.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6(1), 35968 (2016).
[Crossref] [PubMed]

N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
[Crossref]

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Zhao, Y.

Zhao, Z.

Y. Guo, M. Pu, Z. Zhao, Y. Wang, J. Jin, P. Gao, X. Li, X. Ma, and X. Luo, “Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation,” ACS Photonics 3(11), 2022–2029 (2016).
[Crossref]

Zheng, B.

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Zhou, L.

H.-X. Xu, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces,” Appl. Phys. Lett. 109(19), 193506 (2016).
[Crossref]

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. H. An, Y. B. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Zhou, X. Y.

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

Zhu, B.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6(1), 35968 (2016).
[Crossref] [PubMed]

Zhu, C.

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

Zhuang, Y.-Q.

ACS Nano (1)

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
[Crossref] [PubMed]

ACS Photonics (2)

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

Y. Guo, M. Pu, Z. Zhao, Y. Wang, J. Jin, P. Gao, X. Li, X. Ma, and X. Luo, “Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation,” ACS Photonics 3(11), 2022–2029 (2016).
[Crossref]

Adv. Mater. (4)

L. Huang, H. Mühlenbernd, X. Li, X. Song, B. Bai, Y. Wang, and T. Zentgraf, “Broadband hybrid holographic multiplexing with geometric metasurfaces,” Adv. Mater. 27(41), 6444–6449 (2015).
[Crossref] [PubMed]

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A Tunable Dispersion-Free Terahertz Metadevice with Pancharatnam-Berry-Phase-Enabled Modulation and Polarization Control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Adv. Opt. Mater. (6)

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, “Beam-Editing Coding Metasurfaces Based on Polarization Bit and Orbital-Angular-Momentum-Mode Bit,” Adv. Opt. Mater. 5(23), 1700548 (2017).
[Crossref]

J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “High-Efficiency Mutual Dual-Band Asymmetric Transmission of Circularly Polarized Waves with Few-Layer Anisotropic Metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

F. Lu, B. Liu, and S. Shen, “Infrared wavefront control based on graphene metasurfaces,” Adv. Opt. Mater. 2(8), 794–799 (2014).
[Crossref]

Y. Li, X. Li, L. Chen, M. Pu, J. Jin, M. Hong, and X. Luo, “Orbital angular momentum multiplexing and demultiplexing by a single metasurface,” Adv. Opt. Mater. 5(2), 1600502 (2017).
[Crossref]

Appl. Phys. Express (1)

N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
[Crossref]

Appl. Phys. Lett. (6)

H.-X. Xu, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces,” Appl. Phys. Lett. 109(19), 193506 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

F. Bouchard, I. De Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105(10), 101905 (2014).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

S. Liu and T. J. Cui, “Flexible controls of terahertz waves using coding and programmable metasurfaces,” IEEE J. Sel. Top. Quant. 23, 1–12 (2017).

IEEE Trans. Antenn. Propag. (7)

J. Huang, “Circularly polarized conical patterns from circular microstrip antennas,” IEEE Trans. Antenn. Propag. 32(9), 991–994 (1984).
[Crossref]

K.-C. Chen, Y. Qian, C.-K. Tzuang, and T. Itoh, “A periodic microstrip radial antenna array with a conical beam,” IEEE Trans. Antenn. Propag. 51(4), 756–765 (2003).
[Crossref]

K. Lau and K. Luk, “A wideband circularly polarized conical-beam patch antenna,” IEEE Trans. Antenn. Propag. 54(5), 1591–1594 (2006).
[Crossref]

W. Chen, J. Sun, X. Wang, Z. Feng, F. Chen, Y. Furuya, and A. Kuramoto, “A novel planar switched parasitic array antenna with steered conical pattern,” IEEE Trans. Antenn. Propag. 55(6), 1883–1887 (2007).
[Crossref]

S.-H. Son, S.-I. Jeon, C.-J. Kim, and W. Hwang, “GA-based design of multi-ring arrays with omnidirectional conical beam pattern,” IEEE Trans. Antenn. Propag. 58(5), 1527–1535 (2010).
[Crossref]

L. Cui, S.-S. Qi, W. Wu, and D.-G. Fang, “High gain conical beam antenna array exploiting grating lobes,” IEEE Trans. Antenn. Propag. 63(2), 848–853 (2015).
[Crossref]

S. M. Mohammadi, L. K. Daldorff, J. E. Bergman, R. L. Karlsson, B. Thidé, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio - a system study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

J. Appl. Phys. (1)

M. L. Chen, L. J. Jiang, and W. E. Sha, “Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency,” J. Appl. Phys. 119(6), 064506 (2016).
[Crossref]

J. Phys. D Appl. Phys. (1)

H. Sobhani, H. Rooholamininejad, and A. Bahrampour, “Creation of twisted terahertz waves carrying orbital angular momentum via a plasma vortex,” J. Phys. D Appl. Phys. 49(29), 295107 (2016).
[Crossref]

Laser Phys. (1)

H. Sobhani, “Creation of twisted terahertz carrying orbital angular momentum via stimulated Raman scattering in a plasma vortex,” Laser Phys. 27(9), 096001 (2017).
[Crossref]

Light Sci. Appl. (2)

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Nano Lett. (2)

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15(3), 1615–1621 (2015).
[Crossref] [PubMed]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

S. M. Kamali, A. Arbabi, E. Arbabi, Y. Horie, and A. Faraon, “Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces,” Nat. Commun. 7, 11618 (2016).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. B (1)

A. Alù, “Mantle cloak: Invisibility induced by a surface,” Phys. Rev. B 80(24), 245115 (2009).
[Crossref]

Phys. Rev. X (1)

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. H. An, Y. B. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Sci. Rep. (2)

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6(1), 35968 (2016).
[Crossref] [PubMed]

C. Huang, W. Pan, X. Ma, and X. Luo, “Multi-spectral metasurface for different functional control of reflection waves,” Sci. Rep. 6(1), 23291 (2016).
[Crossref] [PubMed]

Science (4)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

R. C. Devlin, A. Ambrosio, N. A. Rubin, J. P. B. Mueller, and F. Capasso, “Arbitrary spin-to-orbital angular momentum conversion of light,” Science 358(6365), 896–901 (2017).
[Crossref] [PubMed]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Schematic of a reflective metasurface for generating conical beam carrying OAM. The black angled arrow indicates the direction with elevation angle θ and azimuth angle φmn in the spherical coordinate. (b) Schematic of the PB phase element.
Fig. 2
Fig. 2 The cone angle of conical beam as functions of two parameters l and δ. Other parameters are set as M = 30 and p = 0.31λ0.
Fig. 3
Fig. 3 (a) Simulated reflection spectrum of the metasurface element for different polarization incidences. (b) Simulated reflection amplitude of the metasurface element with different rotational angels for LCP incidence. Simulated reflection phase responses of the element with different rotational angels for (c) LCP and (d) RCP incidences.
Fig. 4
Fig. 4 Ideal phase distributions of the metasurface for LCP incidence, with (a) δ = π/5 and l = 0, (b) δ = 0 and l = −7, and (c) the superposition of (a) and (b). (d) Phase distribution with δ = π/5 and l = −7 for RCP incidence. (e - h) The corresponding normalized 3D scattering patterns of the metasurface at 15.5 GHz, and (j - l) the theoretical and simulated normalized 2D scattering patterns of the metasurface at 15.5 GHz in the plane of φ = 0°.
Fig. 5
Fig. 5 (a) The theoretical and (b) simulated phase distribution of the metasurface in Fig. 4c at 15.5GHz. The observation plane is set as 100 mm away from the metasurface.
Fig. 6
Fig. 6 Ideal phase distributions for the metasurfaces with l = 2 and (a) δ = 0.19π, (b) δ = 0.25π, (c) δ = 0.33π. (d-f) Corresponding simulations of the normalized 3D scattering patterns for the LCP incidence at 15.5 GHz. (g-i) The corresponding theoretical and simulated normalized 2D scattering patterns of the metasurface at 15.5 GHz in the plane of φ = 0°.
Fig. 7
Fig. 7 Ideal phase distributions for the metasurfaces with (a) l = 2 and δ = 0.16π, (b) l = 4 and δ = 0.13π, (c) l = 10 and δ = 0. (d-f) Corresponding simulations of normalized 3D scattering patterns of the metasurfaces for the LCP incidence at 15.5 GHz. (g-i) The corresponding theoretical and simulated normalized 2D scattering patterns of the metasurface at 15.5 GHz in the plane of φ = 0°.
Fig. 8
Fig. 8 (a) Fabricated PB phase metasurface sample with l = 10, δ = 0. (b) The simulated and measured normalized scattering pattern (in the plane of φ = 0°) of the metasurface under the LCP incidence. The blue asterisks represent the cone angles obtained from simulations. (c), (d) Simulated and measured normalized scattering patterns in the planes of φ = 0° and 90° at 15.5 GHz, respectively.
Fig. 9
Fig. 9 (a) Fabricated PB phase metasurface sample with l = 2, δ = 0.25π. (b) The simulated and measured normalized scattering pattern (in the plane of φ = 0°) of the metasurface under the LCP incidence. The blue asterisks represent the cone angles obtained from simulations. (c), (d) Simulated and measured normalized scattering patterns in the planes of φ = 0° and 90° at 15.5 GHz, respectively.
Fig. 10
Fig. 10 Simulated (left panel) and measured (right panel) E-field reflection phase ((a), (b)), and intensity ((c), (d)) distributions of the metasurface in Fig. 9 at 15.5 GHz.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

r l l = 1 2 [ ( r x x r y y ) j ( r x y + r y x ) ] e j 2 α
r r r = 1 2 [ ( r x x r y y ) + j ( r x y + r y x ) ] e + j 2 α
a m n = a m 1 + Δ a m ( n 1 ) + Δ a n ( m 1 ) = a m 1 + 2 π l N m ( n 1 ) + δ ( m 1 ) ,
F ( θ , φ ) = m = 1 M n = 1 N m I m n e i ( k r m sin θ cos ( φ φ m n ) a m n ) m = 1 M I N m e i l φ e i ( m 1 ) δ 2 π 0 2 π e i k r m sin θ cos φ ' i l φ ' d φ ' = m = 1 M I N m i l e i l φ e i ( m 1 ) δ J l ( k r m sin θ )

Metrics