Abstract

The coherent optical negative feedback scheme is systematically investigated by calculating rate equations that model a noise-added semiconductor laser coupled to a Fabry-Perot optical filter for the FM noise reduction. The calculated results indicate that the FM noise is minimized when a lasing frequency of the free-running laser matches a valley frequency of the filter (the point where power reflectivity becomes zero) under a specific feedback phase, where the slope of the electric field reflectivity for the lasing light and frequency discrimination efficiency to electric field amplitude of the feedback light becomes maximum. And the linewidth is also minimized at a lasing frequency corresponding to the valley frequency of the Fabry-Perot optical filter. It is also made clear that the laser frequency becomes less sensitive to the fluctuation of the injection current of the laser under optical negative feedback.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Subkilohertz linewidth reduction of a DFB diode laser using self-injection locking with a fiber Bragg grating Fabry-Perot cavity

Fang Wei, Fei Yang, Xi Zhang, Dan Xu, Meng Ding, Li Zhang, Dijun Chen, Haiwen Cai, Zujie Fang, and Gu Xijia
Opt. Express 24(15) 17406-17415 (2016)

Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Perot cavity

Wojciech Lewoczko-Adamczyk, Christoph Pyrlik, Johannes Häger, Sven Schwertfeger, Andreas Wicht, Achim Peters, Götz Erbert, and Günther Tränkle
Opt. Express 23(8) 9705-9709 (2015)

All-optical frequency stabilization and linewidth reduction of distributed feedback diode lasers by polarization rotated optical feedback

Yanguang Sun, Fang Wei, Zuoren Dong, Dijun Chen, Haiwen Cai, and Ronghui Qu
Opt. Express 22(13) 15757-15762 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” in Optical Fiber communication/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuM2.
    [Crossref]
  2. K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, “Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator,” J. Lightwave Technol. 2(6), 1024–1033 (1984).
    [Crossref]
  3. J. P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” C. R. Phys. 7(2), 213–223 (2006).
    [Crossref]
  4. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [Crossref] [PubMed]
  5. K. Kojima, K. Kyuma, and T. Nakayama, “Analysis of the spectral linewidth of distributed feedback laser diode,” J. Lightwave Technol. 3(5), 1048–1055 (1985).
    [Crossref]
  6. H. Ishii, K. Kasaya, and H. Oohashi, “Narrow spectral linewidth operation (<160 kHz) in widely tunable distributed feedback laser array,” Electron. Lett. 46(10), 714–715 (2010).
    [Crossref]
  7. H. Sato and J. Ohya, “Theory of spectral linewidth of external cavity semiconductor lasers,” IEEE J. Quantum Electron. 22(7), 1060–1063 (1986).
    [Crossref]
  8. M. C. Larson, A. Bhardwaj, W. Xiong, Y. Feng, X. D. Huang, K. P. Petrov, M. Moewe, H. Y. Ji, A. Semakov, C. W. Lv, S. Kutty, A. Patwardhan, N. Liu, Z. M. Li, Y. J. Bao, Z. H. Shen, S. Bajwa, F. H. Zhou, and P. C. Koh, “Narrow linewidth sampled-grating distributed bragg reflector laser with enhanced side-mode suppression,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2D.1.
    [Crossref]
  9. T. Kimoto, T. Kurobe, K. Muranushi, T. Mukaihara, and A. Kasukawa, “Reduction of spectral-linewidth in high power SOA integrated wavelength selectable laser,” IEEE J. Sel. Top. Quantum Electron. 11(5), 919–923 (2005).
    [Crossref]
  10. H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
    [Crossref]
  11. W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35(16), 2822–2824 (2010).
    [Crossref] [PubMed]
  12. B. Dahmani, L. Hollberg, and R. Drullinger, “Frequency stabilization of semiconductor lasers by resonant optical feedback,” Opt. Lett. 12(11), 876–878 (1987).
    [Crossref] [PubMed]
  13. P. H. Laurent, A. Clairon, and C. H. Breant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25(6), 1131–1142 (1989).
    [Crossref]
  14. T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 214–222 (2015).
    [Crossref]
  15. H. Debregeas, C. Ferrari, M. A. Cappuzzo, F. Klemens, R. Leller, F. Pardo, C. Bolle, C. Xie, and M. P. Earnshaw, “2kHz linewidth C-band tunable laser by hybrid integration of reflective SOA and SiO2 PLC external cavity,” in Proceeding of International Semiconductor Laser Conference2014, paper 50–51.
    [Crossref]
  16. R. Tang, T. Kita, and H. Yamada, “Narrow-spectral-linewidth silicon photonic wavelength-tunable laser with highly asymmetric Mach-Zehnder interferometer,” Opt. Lett. 40(7), 1504–1507 (2015).
    [Crossref] [PubMed]
  17. O. Nilsson, S. Saito, and Y. Yamamoto, “Oscillation frequency, linewidth reduction and frequency modulation characteristics for a diode laser with external grating feedback,” Electron. Lett. 17(17), 589–591 (1981).
    [Crossref]
  18. K. Aoyama, R. Yoshioka, N. Yokota, W. Kobayashi, and H. Yasaka, “Optical negative feedback for linewidth reduction of semiconductor lasers,” IEEE Photonics Technol. Lett. 27(4), 340–343 (2015).
    [Crossref]
  19. K. Aoyama, R. Yoshioka, N. Yokota, W. Kobayashi, and H. Yasaka, “Experimental demonstration of linewidth reduction of laser diode by compact coherent optical negative feedback system,” Appl. Phys. Express 7(12), 122701 (2014).
    [Crossref]
  20. K. Aoyama, N. Yokota, and H. Yasaka, “3-kHz spectral linewidth laser assembly with coherent optical negative feedback,” IEEE Photonics Technol. Lett. 30(3), 277–280 (2018).
    [Crossref]
  21. M. Ohtsu and S. Kotajima, “Linewidth reduction of a semiconductor laser by electrical feedback,” IEEE J. Quantum Electron. 21(12), 1905–1912 (1985).
    [Crossref]
  22. M. Ohtsu, M. Murata, and M. Kourogi, “FM noise reduction and subkilohertz linewidth of an AlGaAs laser by negative electrical feedback,” IEEE J. Quantum Electron. 26(2), 231–241 (1990).
    [Crossref]
  23. S. G. Abdulrhmann, M. Ahmed, T. Okamoto, W. Ishimori, and M. Yamada, “An improved analysis of semiconductor laser dynamics under strong optical feedback,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1265–1274 (2003).
    [Crossref]
  24. C. H. Henry, “Theory of the Linewidth of Semiconductor Lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
    [Crossref]
  25. H. Yasaka, K. Takahata, N. Yamamoto, and M. Naganuma, “Gain saturation coefficients of strained-layer multiple quantum-well distributed feedback lasers,” IEEE Photonics Technol. Lett. 3(10), 879–882 (1991).
    [Crossref]
  26. M. Ahmed, M. Yamada, and M. Saito, “Numerical modeling of intensity and phase noise in semiconductor lasers,” IEEE J. Quantum Electron. 37(12), 1600–1610 (2001).
    [Crossref]
  27. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(1), 630–631 (1980).
    [Crossref]

2018 (1)

K. Aoyama, N. Yokota, and H. Yasaka, “3-kHz spectral linewidth laser assembly with coherent optical negative feedback,” IEEE Photonics Technol. Lett. 30(3), 277–280 (2018).
[Crossref]

2015 (3)

K. Aoyama, R. Yoshioka, N. Yokota, W. Kobayashi, and H. Yasaka, “Optical negative feedback for linewidth reduction of semiconductor lasers,” IEEE Photonics Technol. Lett. 27(4), 340–343 (2015).
[Crossref]

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 214–222 (2015).
[Crossref]

R. Tang, T. Kita, and H. Yamada, “Narrow-spectral-linewidth silicon photonic wavelength-tunable laser with highly asymmetric Mach-Zehnder interferometer,” Opt. Lett. 40(7), 1504–1507 (2015).
[Crossref] [PubMed]

2014 (1)

K. Aoyama, R. Yoshioka, N. Yokota, W. Kobayashi, and H. Yasaka, “Experimental demonstration of linewidth reduction of laser diode by compact coherent optical negative feedback system,” Appl. Phys. Express 7(12), 122701 (2014).
[Crossref]

2010 (2)

H. Ishii, K. Kasaya, and H. Oohashi, “Narrow spectral linewidth operation (<160 kHz) in widely tunable distributed feedback laser array,” Electron. Lett. 46(10), 714–715 (2010).
[Crossref]

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35(16), 2822–2824 (2010).
[Crossref] [PubMed]

2009 (1)

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
[Crossref]

2008 (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

2006 (1)

J. P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” C. R. Phys. 7(2), 213–223 (2006).
[Crossref]

2005 (1)

T. Kimoto, T. Kurobe, K. Muranushi, T. Mukaihara, and A. Kasukawa, “Reduction of spectral-linewidth in high power SOA integrated wavelength selectable laser,” IEEE J. Sel. Top. Quantum Electron. 11(5), 919–923 (2005).
[Crossref]

2003 (1)

S. G. Abdulrhmann, M. Ahmed, T. Okamoto, W. Ishimori, and M. Yamada, “An improved analysis of semiconductor laser dynamics under strong optical feedback,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1265–1274 (2003).
[Crossref]

2001 (1)

M. Ahmed, M. Yamada, and M. Saito, “Numerical modeling of intensity and phase noise in semiconductor lasers,” IEEE J. Quantum Electron. 37(12), 1600–1610 (2001).
[Crossref]

1991 (1)

H. Yasaka, K. Takahata, N. Yamamoto, and M. Naganuma, “Gain saturation coefficients of strained-layer multiple quantum-well distributed feedback lasers,” IEEE Photonics Technol. Lett. 3(10), 879–882 (1991).
[Crossref]

1990 (1)

M. Ohtsu, M. Murata, and M. Kourogi, “FM noise reduction and subkilohertz linewidth of an AlGaAs laser by negative electrical feedback,” IEEE J. Quantum Electron. 26(2), 231–241 (1990).
[Crossref]

1989 (1)

P. H. Laurent, A. Clairon, and C. H. Breant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25(6), 1131–1142 (1989).
[Crossref]

1987 (1)

1986 (1)

H. Sato and J. Ohya, “Theory of spectral linewidth of external cavity semiconductor lasers,” IEEE J. Quantum Electron. 22(7), 1060–1063 (1986).
[Crossref]

1985 (2)

K. Kojima, K. Kyuma, and T. Nakayama, “Analysis of the spectral linewidth of distributed feedback laser diode,” J. Lightwave Technol. 3(5), 1048–1055 (1985).
[Crossref]

M. Ohtsu and S. Kotajima, “Linewidth reduction of a semiconductor laser by electrical feedback,” IEEE J. Quantum Electron. 21(12), 1905–1912 (1985).
[Crossref]

1984 (1)

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, “Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator,” J. Lightwave Technol. 2(6), 1024–1033 (1984).
[Crossref]

1982 (1)

C. H. Henry, “Theory of the Linewidth of Semiconductor Lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

1981 (1)

O. Nilsson, S. Saito, and Y. Yamamoto, “Oscillation frequency, linewidth reduction and frequency modulation characteristics for a diode laser with external grating feedback,” Electron. Lett. 17(17), 589–591 (1981).
[Crossref]

1980 (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(1), 630–631 (1980).
[Crossref]

Abdulrhmann, S. G.

S. G. Abdulrhmann, M. Ahmed, T. Okamoto, W. Ishimori, and M. Yamada, “An improved analysis of semiconductor laser dynamics under strong optical feedback,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1265–1274 (2003).
[Crossref]

Ahmed, M.

S. G. Abdulrhmann, M. Ahmed, T. Okamoto, W. Ishimori, and M. Yamada, “An improved analysis of semiconductor laser dynamics under strong optical feedback,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1265–1274 (2003).
[Crossref]

M. Ahmed, M. Yamada, and M. Saito, “Numerical modeling of intensity and phase noise in semiconductor lasers,” IEEE J. Quantum Electron. 37(12), 1600–1610 (2001).
[Crossref]

Aoyama, K.

K. Aoyama, N. Yokota, and H. Yasaka, “3-kHz spectral linewidth laser assembly with coherent optical negative feedback,” IEEE Photonics Technol. Lett. 30(3), 277–280 (2018).
[Crossref]

K. Aoyama, R. Yoshioka, N. Yokota, W. Kobayashi, and H. Yasaka, “Optical negative feedback for linewidth reduction of semiconductor lasers,” IEEE Photonics Technol. Lett. 27(4), 340–343 (2015).
[Crossref]

K. Aoyama, R. Yoshioka, N. Yokota, W. Kobayashi, and H. Yasaka, “Experimental demonstration of linewidth reduction of laser diode by compact coherent optical negative feedback system,” Appl. Phys. Express 7(12), 122701 (2014).
[Crossref]

Augere, B.

J. P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” C. R. Phys. 7(2), 213–223 (2006).
[Crossref]

Bowers, J. E.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 214–222 (2015).
[Crossref]

Breant, C. H.

P. H. Laurent, A. Clairon, and C. H. Breant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25(6), 1131–1142 (1989).
[Crossref]

Cariou, J. P.

J. P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” C. R. Phys. 7(2), 213–223 (2006).
[Crossref]

Clairon, A.

P. H. Laurent, A. Clairon, and C. H. Breant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25(6), 1131–1142 (1989).
[Crossref]

Coddington, I.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Dahmani, B.

Davenport, M.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 214–222 (2015).
[Crossref]

Drullinger, R.

Fish, G.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 214–222 (2015).
[Crossref]

Henmi, N.

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, “Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator,” J. Lightwave Technol. 2(6), 1024–1033 (1984).
[Crossref]

Henry, C. H.

C. H. Henry, “Theory of the Linewidth of Semiconductor Lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

Hollberg, L.

Ilchenko, V. S.

Ishii, H.

H. Ishii, K. Kasaya, and H. Oohashi, “Narrow spectral linewidth operation (<160 kHz) in widely tunable distributed feedback laser array,” Electron. Lett. 46(10), 714–715 (2010).
[Crossref]

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
[Crossref]

Ishimori, W.

S. G. Abdulrhmann, M. Ahmed, T. Okamoto, W. Ishimori, and M. Yamada, “An improved analysis of semiconductor laser dynamics under strong optical feedback,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1265–1274 (2003).
[Crossref]

Kasaya, K.

H. Ishii, K. Kasaya, and H. Oohashi, “Narrow spectral linewidth operation (<160 kHz) in widely tunable distributed feedback laser array,” Electron. Lett. 46(10), 714–715 (2010).
[Crossref]

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
[Crossref]

Kasukawa, A.

T. Kimoto, T. Kurobe, K. Muranushi, T. Mukaihara, and A. Kasukawa, “Reduction of spectral-linewidth in high power SOA integrated wavelength selectable laser,” IEEE J. Sel. Top. Quantum Electron. 11(5), 919–923 (2005).
[Crossref]

Kikuchi, K.

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, “Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator,” J. Lightwave Technol. 2(6), 1024–1033 (1984).
[Crossref]

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(1), 630–631 (1980).
[Crossref]

Kimoto, T.

T. Kimoto, T. Kurobe, K. Muranushi, T. Mukaihara, and A. Kasukawa, “Reduction of spectral-linewidth in high power SOA integrated wavelength selectable laser,” IEEE J. Sel. Top. Quantum Electron. 11(5), 919–923 (2005).
[Crossref]

Kita, T.

Kobayashi, W.

K. Aoyama, R. Yoshioka, N. Yokota, W. Kobayashi, and H. Yasaka, “Optical negative feedback for linewidth reduction of semiconductor lasers,” IEEE Photonics Technol. Lett. 27(4), 340–343 (2015).
[Crossref]

K. Aoyama, R. Yoshioka, N. Yokota, W. Kobayashi, and H. Yasaka, “Experimental demonstration of linewidth reduction of laser diode by compact coherent optical negative feedback system,” Appl. Phys. Express 7(12), 122701 (2014).
[Crossref]

Kojima, K.

K. Kojima, K. Kyuma, and T. Nakayama, “Analysis of the spectral linewidth of distributed feedback laser diode,” J. Lightwave Technol. 3(5), 1048–1055 (1985).
[Crossref]

Komljenovic, T.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 214–222 (2015).
[Crossref]

Kotajima, S.

M. Ohtsu and S. Kotajima, “Linewidth reduction of a semiconductor laser by electrical feedback,” IEEE J. Quantum Electron. 21(12), 1905–1912 (1985).
[Crossref]

Kourogi, M.

M. Ohtsu, M. Murata, and M. Kourogi, “FM noise reduction and subkilohertz linewidth of an AlGaAs laser by negative electrical feedback,” IEEE J. Quantum Electron. 26(2), 231–241 (1990).
[Crossref]

Kurobe, T.

T. Kimoto, T. Kurobe, K. Muranushi, T. Mukaihara, and A. Kasukawa, “Reduction of spectral-linewidth in high power SOA integrated wavelength selectable laser,” IEEE J. Sel. Top. Quantum Electron. 11(5), 919–923 (2005).
[Crossref]

Kyuma, K.

K. Kojima, K. Kyuma, and T. Nakayama, “Analysis of the spectral linewidth of distributed feedback laser diode,” J. Lightwave Technol. 3(5), 1048–1055 (1985).
[Crossref]

Laurent, P. H.

P. H. Laurent, A. Clairon, and C. H. Breant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25(6), 1131–1142 (1989).
[Crossref]

Liang, W.

Maleki, L.

Matsko, A. B.

Mukaihara, T.

T. Kimoto, T. Kurobe, K. Muranushi, T. Mukaihara, and A. Kasukawa, “Reduction of spectral-linewidth in high power SOA integrated wavelength selectable laser,” IEEE J. Sel. Top. Quantum Electron. 11(5), 919–923 (2005).
[Crossref]

Muranushi, K.

T. Kimoto, T. Kurobe, K. Muranushi, T. Mukaihara, and A. Kasukawa, “Reduction of spectral-linewidth in high power SOA integrated wavelength selectable laser,” IEEE J. Sel. Top. Quantum Electron. 11(5), 919–923 (2005).
[Crossref]

Murata, M.

M. Ohtsu, M. Murata, and M. Kourogi, “FM noise reduction and subkilohertz linewidth of an AlGaAs laser by negative electrical feedback,” IEEE J. Quantum Electron. 26(2), 231–241 (1990).
[Crossref]

Nagamatsu, M.

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, “Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator,” J. Lightwave Technol. 2(6), 1024–1033 (1984).
[Crossref]

Naganuma, M.

H. Yasaka, K. Takahata, N. Yamamoto, and M. Naganuma, “Gain saturation coefficients of strained-layer multiple quantum-well distributed feedback lasers,” IEEE Photonics Technol. Lett. 3(10), 879–882 (1991).
[Crossref]

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(1), 630–631 (1980).
[Crossref]

Nakayama, T.

K. Kojima, K. Kyuma, and T. Nakayama, “Analysis of the spectral linewidth of distributed feedback laser diode,” J. Lightwave Technol. 3(5), 1048–1055 (1985).
[Crossref]

Newbury, N. R.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Nilsson, O.

O. Nilsson, S. Saito, and Y. Yamamoto, “Oscillation frequency, linewidth reduction and frequency modulation characteristics for a diode laser with external grating feedback,” Electron. Lett. 17(17), 589–591 (1981).
[Crossref]

Norberg, E.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 214–222 (2015).
[Crossref]

Ohtsu, M.

M. Ohtsu, M. Murata, and M. Kourogi, “FM noise reduction and subkilohertz linewidth of an AlGaAs laser by negative electrical feedback,” IEEE J. Quantum Electron. 26(2), 231–241 (1990).
[Crossref]

M. Ohtsu and S. Kotajima, “Linewidth reduction of a semiconductor laser by electrical feedback,” IEEE J. Quantum Electron. 21(12), 1905–1912 (1985).
[Crossref]

Ohya, J.

H. Sato and J. Ohya, “Theory of spectral linewidth of external cavity semiconductor lasers,” IEEE J. Quantum Electron. 22(7), 1060–1063 (1986).
[Crossref]

Okamoto, T.

S. G. Abdulrhmann, M. Ahmed, T. Okamoto, W. Ishimori, and M. Yamada, “An improved analysis of semiconductor laser dynamics under strong optical feedback,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1265–1274 (2003).
[Crossref]

Okoshi, T.

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, “Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator,” J. Lightwave Technol. 2(6), 1024–1033 (1984).
[Crossref]

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(1), 630–631 (1980).
[Crossref]

Oohashi, H.

H. Ishii, K. Kasaya, and H. Oohashi, “Narrow spectral linewidth operation (<160 kHz) in widely tunable distributed feedback laser array,” Electron. Lett. 46(10), 714–715 (2010).
[Crossref]

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
[Crossref]

Saito, M.

M. Ahmed, M. Yamada, and M. Saito, “Numerical modeling of intensity and phase noise in semiconductor lasers,” IEEE J. Quantum Electron. 37(12), 1600–1610 (2001).
[Crossref]

Saito, S.

O. Nilsson, S. Saito, and Y. Yamamoto, “Oscillation frequency, linewidth reduction and frequency modulation characteristics for a diode laser with external grating feedback,” Electron. Lett. 17(17), 589–591 (1981).
[Crossref]

Sato, H.

H. Sato and J. Ohya, “Theory of spectral linewidth of external cavity semiconductor lasers,” IEEE J. Quantum Electron. 22(7), 1060–1063 (1986).
[Crossref]

Savchenkov, A. A.

Seidel, D.

Srinivasan, S.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 214–222 (2015).
[Crossref]

Swann, W. C.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Takahata, K.

H. Yasaka, K. Takahata, N. Yamamoto, and M. Naganuma, “Gain saturation coefficients of strained-layer multiple quantum-well distributed feedback lasers,” IEEE Photonics Technol. Lett. 3(10), 879–882 (1991).
[Crossref]

Tang, R.

Valla, M.

J. P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” C. R. Phys. 7(2), 213–223 (2006).
[Crossref]

Yamada, H.

Yamada, M.

S. G. Abdulrhmann, M. Ahmed, T. Okamoto, W. Ishimori, and M. Yamada, “An improved analysis of semiconductor laser dynamics under strong optical feedback,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1265–1274 (2003).
[Crossref]

M. Ahmed, M. Yamada, and M. Saito, “Numerical modeling of intensity and phase noise in semiconductor lasers,” IEEE J. Quantum Electron. 37(12), 1600–1610 (2001).
[Crossref]

Yamamoto, N.

H. Yasaka, K. Takahata, N. Yamamoto, and M. Naganuma, “Gain saturation coefficients of strained-layer multiple quantum-well distributed feedback lasers,” IEEE Photonics Technol. Lett. 3(10), 879–882 (1991).
[Crossref]

Yamamoto, Y.

O. Nilsson, S. Saito, and Y. Yamamoto, “Oscillation frequency, linewidth reduction and frequency modulation characteristics for a diode laser with external grating feedback,” Electron. Lett. 17(17), 589–591 (1981).
[Crossref]

Yasaka, H.

K. Aoyama, N. Yokota, and H. Yasaka, “3-kHz spectral linewidth laser assembly with coherent optical negative feedback,” IEEE Photonics Technol. Lett. 30(3), 277–280 (2018).
[Crossref]

K. Aoyama, R. Yoshioka, N. Yokota, W. Kobayashi, and H. Yasaka, “Optical negative feedback for linewidth reduction of semiconductor lasers,” IEEE Photonics Technol. Lett. 27(4), 340–343 (2015).
[Crossref]

K. Aoyama, R. Yoshioka, N. Yokota, W. Kobayashi, and H. Yasaka, “Experimental demonstration of linewidth reduction of laser diode by compact coherent optical negative feedback system,” Appl. Phys. Express 7(12), 122701 (2014).
[Crossref]

H. Yasaka, K. Takahata, N. Yamamoto, and M. Naganuma, “Gain saturation coefficients of strained-layer multiple quantum-well distributed feedback lasers,” IEEE Photonics Technol. Lett. 3(10), 879–882 (1991).
[Crossref]

Yokota, N.

K. Aoyama, N. Yokota, and H. Yasaka, “3-kHz spectral linewidth laser assembly with coherent optical negative feedback,” IEEE Photonics Technol. Lett. 30(3), 277–280 (2018).
[Crossref]

K. Aoyama, R. Yoshioka, N. Yokota, W. Kobayashi, and H. Yasaka, “Optical negative feedback for linewidth reduction of semiconductor lasers,” IEEE Photonics Technol. Lett. 27(4), 340–343 (2015).
[Crossref]

K. Aoyama, R. Yoshioka, N. Yokota, W. Kobayashi, and H. Yasaka, “Experimental demonstration of linewidth reduction of laser diode by compact coherent optical negative feedback system,” Appl. Phys. Express 7(12), 122701 (2014).
[Crossref]

Yoshioka, R.

K. Aoyama, R. Yoshioka, N. Yokota, W. Kobayashi, and H. Yasaka, “Optical negative feedback for linewidth reduction of semiconductor lasers,” IEEE Photonics Technol. Lett. 27(4), 340–343 (2015).
[Crossref]

K. Aoyama, R. Yoshioka, N. Yokota, W. Kobayashi, and H. Yasaka, “Experimental demonstration of linewidth reduction of laser diode by compact coherent optical negative feedback system,” Appl. Phys. Express 7(12), 122701 (2014).
[Crossref]

Appl. Phys. Express (1)

K. Aoyama, R. Yoshioka, N. Yokota, W. Kobayashi, and H. Yasaka, “Experimental demonstration of linewidth reduction of laser diode by compact coherent optical negative feedback system,” Appl. Phys. Express 7(12), 122701 (2014).
[Crossref]

C. R. Phys. (1)

J. P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” C. R. Phys. 7(2), 213–223 (2006).
[Crossref]

Electron. Lett. (3)

H. Ishii, K. Kasaya, and H. Oohashi, “Narrow spectral linewidth operation (<160 kHz) in widely tunable distributed feedback laser array,” Electron. Lett. 46(10), 714–715 (2010).
[Crossref]

O. Nilsson, S. Saito, and Y. Yamamoto, “Oscillation frequency, linewidth reduction and frequency modulation characteristics for a diode laser with external grating feedback,” Electron. Lett. 17(17), 589–591 (1981).
[Crossref]

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(1), 630–631 (1980).
[Crossref]

IEEE J. Quantum Electron. (6)

P. H. Laurent, A. Clairon, and C. H. Breant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25(6), 1131–1142 (1989).
[Crossref]

M. Ahmed, M. Yamada, and M. Saito, “Numerical modeling of intensity and phase noise in semiconductor lasers,” IEEE J. Quantum Electron. 37(12), 1600–1610 (2001).
[Crossref]

M. Ohtsu and S. Kotajima, “Linewidth reduction of a semiconductor laser by electrical feedback,” IEEE J. Quantum Electron. 21(12), 1905–1912 (1985).
[Crossref]

M. Ohtsu, M. Murata, and M. Kourogi, “FM noise reduction and subkilohertz linewidth of an AlGaAs laser by negative electrical feedback,” IEEE J. Quantum Electron. 26(2), 231–241 (1990).
[Crossref]

C. H. Henry, “Theory of the Linewidth of Semiconductor Lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

H. Sato and J. Ohya, “Theory of spectral linewidth of external cavity semiconductor lasers,” IEEE J. Quantum Electron. 22(7), 1060–1063 (1986).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

T. Kimoto, T. Kurobe, K. Muranushi, T. Mukaihara, and A. Kasukawa, “Reduction of spectral-linewidth in high power SOA integrated wavelength selectable laser,” IEEE J. Sel. Top. Quantum Electron. 11(5), 919–923 (2005).
[Crossref]

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
[Crossref]

S. G. Abdulrhmann, M. Ahmed, T. Okamoto, W. Ishimori, and M. Yamada, “An improved analysis of semiconductor laser dynamics under strong optical feedback,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1265–1274 (2003).
[Crossref]

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 214–222 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (3)

H. Yasaka, K. Takahata, N. Yamamoto, and M. Naganuma, “Gain saturation coefficients of strained-layer multiple quantum-well distributed feedback lasers,” IEEE Photonics Technol. Lett. 3(10), 879–882 (1991).
[Crossref]

K. Aoyama, R. Yoshioka, N. Yokota, W. Kobayashi, and H. Yasaka, “Optical negative feedback for linewidth reduction of semiconductor lasers,” IEEE Photonics Technol. Lett. 27(4), 340–343 (2015).
[Crossref]

K. Aoyama, N. Yokota, and H. Yasaka, “3-kHz spectral linewidth laser assembly with coherent optical negative feedback,” IEEE Photonics Technol. Lett. 30(3), 277–280 (2018).
[Crossref]

J. Lightwave Technol. (2)

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, “Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator,” J. Lightwave Technol. 2(6), 1024–1033 (1984).
[Crossref]

K. Kojima, K. Kyuma, and T. Nakayama, “Analysis of the spectral linewidth of distributed feedback laser diode,” J. Lightwave Technol. 3(5), 1048–1055 (1985).
[Crossref]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Other (3)

M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” in Optical Fiber communication/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuM2.
[Crossref]

M. C. Larson, A. Bhardwaj, W. Xiong, Y. Feng, X. D. Huang, K. P. Petrov, M. Moewe, H. Y. Ji, A. Semakov, C. W. Lv, S. Kutty, A. Patwardhan, N. Liu, Z. M. Li, Y. J. Bao, Z. H. Shen, S. Bajwa, F. H. Zhou, and P. C. Koh, “Narrow linewidth sampled-grating distributed bragg reflector laser with enhanced side-mode suppression,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2D.1.
[Crossref]

H. Debregeas, C. Ferrari, M. A. Cappuzzo, F. Klemens, R. Leller, F. Pardo, C. Bolle, C. Xie, and M. P. Earnshaw, “2kHz linewidth C-band tunable laser by hybrid integration of reflective SOA and SiO2 PLC external cavity,” in Proceeding of International Semiconductor Laser Conference2014, paper 50–51.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of coherent optical negative feedback scheme.
Fig. 2
Fig. 2 (a) Dependence of HOF|DC on ϕLoop and Δf. Valley frequency of FP optical filter is indicated by black dashed line. (b) Real part of field reflectivity of FP optical filter (solid black lines) and vertical cross-sections of HOF|DC (dashed black lines) under ϕLoop of −π/2, 0, π/2, and π. Red dashed lines indicate the negative feedback region.
Fig. 3
Fig. 3 (a) Relation between ΔfFR and ΔfFB under ϕLoop of −π/2, 0, π/2, and π with transmission spectrum of FP optical filter (right side). Blue-painted areas indicate negative feedback range. Positive and negative sweeps of ΔfFR are indicated by red and blue curves. (b) ΔfFB dependence of reduction ratio of FMN-PSD under ϕLoop = −π/2 and corresponding transmittance of FP optical filter. Reduced ratio of FMN-PSD is defined as 10 × log10(SFB/SFR). (c) Enlarged view of relation between ΔfFR and ΔfFB under ϕLoop = −π/2 and corresponding reduction ratio of FMN-PSD. Dashed curve shows ΔfFR versus (ΔfFB/ΔfFR)2.
Fig. 4
Fig. 4 Dependence of SFB/SFR on ϕLoop and ΔfFB. Valley frequency of FP optical filter is indicated by white dashed line. Within 3-dB down, region of reduction ratio of FMN-PSD from maximum reduction is indicated by black dashed curve.
Fig. 5
Fig. 5 Experimental setup.
Fig. 6
Fig. 6 (a) Measured relation between ΔfFR and ΔfFB under optical negative feedback (red circles). Dashed black line is guide for eye. (b) Enlarged view of (a). Solid black line is fitted line with least squares method. Measured reduction ratio of FMN-PSD (black circles) and transmitted power from FP optical filter (red circles) under (c) ϕLoop = −0.502 π and (d) ϕLoop = 1.11 π. Dashed red curves indicate fitted transmission spectrums of FP optical filter with finesse of 33.3 and 56.0. Dashed black curves indicate simulated results.
Fig. 7
Fig. 7 Measured optical spectrum under optical negative feedback. Spectrum is normalized by peak power. Resolution of optical spectrum analyzer is 0.01 nm.

Tables (1)

Tables Icon

Table 1 Parameters Used in Calculation

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d dt N(t)= J ed N(t) τ s v g A g N(t) N tr 1+ε | E(t) | 2 | E(t) | 2
d dt E(t)= 1 2 [ Γ v g A g N(t) N tr 1+ε | E(t) | 2 ( 1+jα ) 1 τ p +j2π ν 0 + 1 τ c lnT ]E(t)+F
T=1+κrexp(j ϕ Loop ){ E(t τ Loop ) E(t) + p r 2(p1) exp(j2π f 0 p τ OF ) E(tp τ OF ) E(t) }
F=Aexp(j2π f m t),
H OF | DC = dRe[ln(T)] dν .
Δ f FB Δ f FR = S FB S FR

Metrics