Abstract

We propose an on-chip excitation structure for orthogonal-polarized gap plasmons in polarization multiplexing photonic integrated circuits. The structure consists of a Au nanostripe and tapered gap for refractive index matching to a nano-scale gap plasmonic waveguide; it was fabricated on the top surface of a dielectric-stripe-type waveguide. The excitation ratio from the dielectric-stripe-surface mode to the metallic-gap mode was estimated to be 0.79 using the finite-difference time-domain method for a 100-nm-wide, 100-nm-thick gap waveguide. We experimentally observed the gap mode plasmonic intensity distribution using scanning near-field optical microscopy and confirmed the conversion.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-controlled excitation of multilevel plasmonic nano-circuits using single silicon nanowire

Mohamed H. El Sherif, Osman S. Ahmed, Mohamed H. Bakr, and Mohamed A. Swillam
Opt. Express 20(11) 12473-12486 (2012)

Highly confined gap surface plasmon modes in metal strip–gap–film configurations

Michael G. Nielsen and Sergey I. Bozhevolnyi
J. Opt. Soc. Am. B 32(3) 462-467 (2015)

On-chip polarization splitter based on a multimode plasmonic waveguide

Fengyuan Gan, Chengwei Sun, Hongyun Li, Qihuang Gong, and Jianjun Chen
Photon. Res. 6(1) 47-53 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. J. Savory, “Digital Coherent Optical Receivers: Algorithms and Subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
    [Crossref]
  2. P. J. Winzer, “High-Spectral-Efficiency Optical Modulation Formats,” J. Lightwave Technol. 30(24), 3824–3835 (2012).
    [Crossref]
  3. H. S. Abbas and M. A. Gregory, “The next generation of passive optical networks: A review,” J. Netw. Comput. Appl. 67, 53–74 (2016).
    [Crossref]
  4. T. Muciaccia, F. Gargano, and V. M. N. Passaro, “Passive Optical Access Networks: State of the Art and Future Evolution,” Photonics 1(4), 323–346 (2014).
    [Crossref]
  5. M. Zaitsu, T. Tanemura, A. Higo, and Y. Nakano, “Experimental demonstration of self-aligned InP/InGaAsP polarization converter for polarization multiplexed photonic integrated circuits,” Opt. Express 21(6), 6910–6918 (2013).
    [Crossref] [PubMed]
  6. P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic Silicon Photonic Integrated Circuits for Compact 100+ Gb/s Coherent Optical Receivers and Transmitters,” IEEE J. Sel. Top. Quantum Electron. 20, 6100108 (2014).
  7. P. Dong, C. Xie, L. Chen, L. L. Buhl, and Y. K. Chen, “112-Gb/s monolithic PDM-QPSK modulator in silicon,” Opt. Express 20(26), B624–B629 (2012).
    [Crossref] [PubMed]
  8. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
    [Crossref] [PubMed]
  9. T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18(22), 23009–23015 (2010).
    [Crossref] [PubMed]
  10. A. F. Koenderink, A. Alù, and A. Polman, “Nanophotonics: Shrinking light-based technology,” Science 348(6234), 516–521 (2015).
    [Crossref] [PubMed]
  11. D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
    [Crossref]
  12. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
    [Crossref]
  13. M. Ono, H. Taniyama, H. Xu, M. Tsunekawa, E. Kuramochi, K. Nozaki, and M. Notomi, “Deep-subwavelength plasmonic mode converter with large size reduction for Si-wire waveguide,” Optica 3(9), 999–1005 (2016).
    [Crossref]
  14. M. Cohen, Z. Zalevsky, and R. Shavit, “Towards integrated nanoplasmonic logic circuitry,” Nanoscale 5(12), 5442–5449 (2013).
    [Crossref] [PubMed]
  15. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap Plasmon Polariton Structure for Very Efficient Microscale-to-Nanoscale Interfacing,” Opt. Lett. 31(22), 3288–3290 (2006).
    [Crossref] [PubMed]
  16. H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
    [Crossref]
  17. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
    [Crossref]
  18. G. Veronis and S. Fan, “Modes of Subwavelength Plasmonic Slot Waveguides,” J. Lightwave Technol. 25(9), 2511–2521 (2007).
    [Crossref]
  19. J. Wen, P. Banzer, A. Kriesch, D. Ploss, B. Schmauss, and U. Peschel, “Experimental cross-polarization detection of coupling far-field light to highly confined plasmonic gap modes via nanoantennas,” Appl. Phys. Lett. 98(10), 101109 (2011).
    [Crossref]
  20. I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [Crossref]
  21. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]

2016 (2)

2015 (1)

A. F. Koenderink, A. Alù, and A. Polman, “Nanophotonics: Shrinking light-based technology,” Science 348(6234), 516–521 (2015).
[Crossref] [PubMed]

2014 (2)

T. Muciaccia, F. Gargano, and V. M. N. Passaro, “Passive Optical Access Networks: State of the Art and Future Evolution,” Photonics 1(4), 323–346 (2014).
[Crossref]

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic Silicon Photonic Integrated Circuits for Compact 100+ Gb/s Coherent Optical Receivers and Transmitters,” IEEE J. Sel. Top. Quantum Electron. 20, 6100108 (2014).

2013 (2)

2012 (3)

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

P. Dong, C. Xie, L. Chen, L. L. Buhl, and Y. K. Chen, “112-Gb/s monolithic PDM-QPSK modulator in silicon,” Opt. Express 20(26), B624–B629 (2012).
[Crossref] [PubMed]

P. J. Winzer, “High-Spectral-Efficiency Optical Modulation Formats,” J. Lightwave Technol. 30(24), 3824–3835 (2012).
[Crossref]

2011 (1)

J. Wen, P. Banzer, A. Kriesch, D. Ploss, B. Schmauss, and U. Peschel, “Experimental cross-polarization detection of coupling far-field light to highly confined plasmonic gap modes via nanoantennas,” Appl. Phys. Lett. 98(10), 101109 (2011).
[Crossref]

2010 (2)

S. J. Savory, “Digital Coherent Optical Receivers: Algorithms and Subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[Crossref]

T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18(22), 23009–23015 (2010).
[Crossref] [PubMed]

2009 (1)

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[Crossref]

2007 (2)

2006 (3)

P. Ginzburg, D. Arbel, and M. Orenstein, “Gap Plasmon Polariton Structure for Very Efficient Microscale-to-Nanoscale Interfacing,” Opt. Lett. 31(22), 3288–3290 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1965 (1)

Abbas, H. S.

H. S. Abbas and M. A. Gregory, “The next generation of passive optical networks: A review,” J. Netw. Comput. Appl. 67, 53–74 (2016).
[Crossref]

Alù, A.

A. F. Koenderink, A. Alù, and A. Polman, “Nanophotonics: Shrinking light-based technology,” Science 348(6234), 516–521 (2015).
[Crossref] [PubMed]

Arbel, D.

Aroca, R.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic Silicon Photonic Integrated Circuits for Compact 100+ Gb/s Coherent Optical Receivers and Transmitters,” IEEE J. Sel. Top. Quantum Electron. 20, 6100108 (2014).

Atwater, H. A.

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[Crossref] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

Banzer, P.

J. Wen, P. Banzer, A. Kriesch, D. Ploss, B. Schmauss, and U. Peschel, “Experimental cross-polarization detection of coupling far-field light to highly confined plasmonic gap modes via nanoantennas,” Appl. Phys. Lett. 98(10), 101109 (2011).
[Crossref]

Bokor, J.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Borghs, G.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[Crossref]

Bozhevolnyi, S. I.

Buhl, L. L.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic Silicon Photonic Integrated Circuits for Compact 100+ Gb/s Coherent Optical Receivers and Transmitters,” IEEE J. Sel. Top. Quantum Electron. 20, 6100108 (2014).

P. Dong, C. Xie, L. Chen, L. L. Buhl, and Y. K. Chen, “112-Gb/s monolithic PDM-QPSK modulator in silicon,” Opt. Express 20(26), B624–B629 (2012).
[Crossref] [PubMed]

Cabrini, S.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Chandrasekhar, S.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic Silicon Photonic Integrated Circuits for Compact 100+ Gb/s Coherent Optical Receivers and Transmitters,” IEEE J. Sel. Top. Quantum Electron. 20, 6100108 (2014).

Chen, L.

Chen, Y. K.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic Silicon Photonic Integrated Circuits for Compact 100+ Gb/s Coherent Optical Receivers and Transmitters,” IEEE J. Sel. Top. Quantum Electron. 20, 6100108 (2014).

P. Dong, C. Xie, L. Chen, L. L. Buhl, and Y. K. Chen, “112-Gb/s monolithic PDM-QPSK modulator in silicon,” Opt. Express 20(26), B624–B629 (2012).
[Crossref] [PubMed]

Choo, H.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cohen, M.

M. Cohen, Z. Zalevsky, and R. Shavit, “Towards integrated nanoplasmonic logic circuitry,” Nanoscale 5(12), 5442–5449 (2013).
[Crossref] [PubMed]

De Vlaminck, I.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[Crossref]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

Dong, P.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic Silicon Photonic Integrated Circuits for Compact 100+ Gb/s Coherent Optical Receivers and Transmitters,” IEEE J. Sel. Top. Quantum Electron. 20, 6100108 (2014).

P. Dong, C. Xie, L. Chen, L. L. Buhl, and Y. K. Chen, “112-Gb/s monolithic PDM-QPSK modulator in silicon,” Opt. Express 20(26), B624–B629 (2012).
[Crossref] [PubMed]

Fan, S.

Gargano, F.

T. Muciaccia, F. Gargano, and V. M. N. Passaro, “Passive Optical Access Networks: State of the Art and Future Evolution,” Photonics 1(4), 323–346 (2014).
[Crossref]

Ginzburg, P.

Gosciniak, J.

Gregory, M. A.

H. S. Abbas and M. A. Gregory, “The next generation of passive optical networks: A review,” J. Netw. Comput. Appl. 67, 53–74 (2016).
[Crossref]

Higo, A.

Holmgaard, T.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kim, M. K.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Koenderink, A. F.

A. F. Koenderink, A. Alù, and A. Polman, “Nanophotonics: Shrinking light-based technology,” Science 348(6234), 516–521 (2015).
[Crossref] [PubMed]

Kriesch, A.

J. Wen, P. Banzer, A. Kriesch, D. Ploss, B. Schmauss, and U. Peschel, “Experimental cross-polarization detection of coupling far-field light to highly confined plasmonic gap modes via nanoantennas,” Appl. Phys. Lett. 98(10), 101109 (2011).
[Crossref]

Kuramochi, E.

Lagae, L.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[Crossref]

Liu, X.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic Silicon Photonic Integrated Circuits for Compact 100+ Gb/s Coherent Optical Receivers and Transmitters,” IEEE J. Sel. Top. Quantum Electron. 20, 6100108 (2014).

Malitson, I. H.

Mock, J. J.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

Muciaccia, T.

T. Muciaccia, F. Gargano, and V. M. N. Passaro, “Passive Optical Access Networks: State of the Art and Future Evolution,” Photonics 1(4), 323–346 (2014).
[Crossref]

Nakano, Y.

Neutens, P.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[Crossref]

Notomi, M.

Nozaki, K.

Ono, M.

Orenstein, M.

Passaro, V. M. N.

T. Muciaccia, F. Gargano, and V. M. N. Passaro, “Passive Optical Access Networks: State of the Art and Future Evolution,” Photonics 1(4), 323–346 (2014).
[Crossref]

Peschel, U.

J. Wen, P. Banzer, A. Kriesch, D. Ploss, B. Schmauss, and U. Peschel, “Experimental cross-polarization detection of coupling far-field light to highly confined plasmonic gap modes via nanoantennas,” Appl. Phys. Lett. 98(10), 101109 (2011).
[Crossref]

Ploss, D.

J. Wen, P. Banzer, A. Kriesch, D. Ploss, B. Schmauss, and U. Peschel, “Experimental cross-polarization detection of coupling far-field light to highly confined plasmonic gap modes via nanoantennas,” Appl. Phys. Lett. 98(10), 101109 (2011).
[Crossref]

Polman, A.

A. F. Koenderink, A. Alù, and A. Polman, “Nanophotonics: Shrinking light-based technology,” Science 348(6234), 516–521 (2015).
[Crossref] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

Savory, S. J.

S. J. Savory, “Digital Coherent Optical Receivers: Algorithms and Subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[Crossref]

Schmauss, B.

J. Wen, P. Banzer, A. Kriesch, D. Ploss, B. Schmauss, and U. Peschel, “Experimental cross-polarization detection of coupling far-field light to highly confined plasmonic gap modes via nanoantennas,” Appl. Phys. Lett. 98(10), 101109 (2011).
[Crossref]

Schuck, P. J.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Schurig, D.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

Seok, T. J.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Shavit, R.

M. Cohen, Z. Zalevsky, and R. Shavit, “Towards integrated nanoplasmonic logic circuitry,” Nanoscale 5(12), 5442–5449 (2013).
[Crossref] [PubMed]

Smith, D. R.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

Staffaroni, M.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

Tanemura, T.

Taniyama, H.

Tsunekawa, M.

Van Dorpe, P.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[Crossref]

Veronis, G.

Wen, J.

J. Wen, P. Banzer, A. Kriesch, D. Ploss, B. Schmauss, and U. Peschel, “Experimental cross-polarization detection of coupling far-field light to highly confined plasmonic gap modes via nanoantennas,” Appl. Phys. Lett. 98(10), 101109 (2011).
[Crossref]

Winzer, P. J.

Wu, M. C.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Xie, C.

Xu, H.

Yablonovitch, E.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Zaitsu, M.

Zalevsky, Z.

M. Cohen, Z. Zalevsky, and R. Shavit, “Towards integrated nanoplasmonic logic circuitry,” Nanoscale 5(12), 5442–5449 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

J. Wen, P. Banzer, A. Kriesch, D. Ploss, B. Schmauss, and U. Peschel, “Experimental cross-polarization detection of coupling far-field light to highly confined plasmonic gap modes via nanoantennas,” Appl. Phys. Lett. 98(10), 101109 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. J. Savory, “Digital Coherent Optical Receivers: Algorithms and Subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[Crossref]

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic Silicon Photonic Integrated Circuits for Compact 100+ Gb/s Coherent Optical Receivers and Transmitters,” IEEE J. Sel. Top. Quantum Electron. 20, 6100108 (2014).

J. Lightwave Technol. (2)

J. Netw. Comput. Appl. (1)

H. S. Abbas and M. A. Gregory, “The next generation of passive optical networks: A review,” J. Netw. Comput. Appl. 67, 53–74 (2016).
[Crossref]

J. Opt. Soc. Am. (1)

Nanoscale (1)

M. Cohen, Z. Zalevsky, and R. Shavit, “Towards integrated nanoplasmonic logic circuitry,” Nanoscale 5(12), 5442–5449 (2013).
[Crossref] [PubMed]

Nat. Photonics (2)

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Optica (1)

Photonics (1)

T. Muciaccia, F. Gargano, and V. M. N. Passaro, “Passive Optical Access Networks: State of the Art and Future Evolution,” Photonics 1(4), 323–346 (2014).
[Crossref]

Phys. Rev. B (2)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Sci. Am. (1)

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[Crossref] [PubMed]

Science (1)

A. F. Koenderink, A. Alù, and A. Polman, “Nanophotonics: Shrinking light-based technology,” Science 348(6234), 516–521 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic illustration of proposed excitation structure. The width and height of the SiOx stripe waveguide are 600 and 500 nm, respectively.
Fig. 2
Fig. 2 (a) Schematic view of the simulated model. (b) Enlarged view of the Au taper region. Here, w is the Au nanostripe's width, L is the Au nanostripe's length, g is the Au-air-Au gap's width, t is the Au layer's thickness, and θ is the angle of the Au taper. (c–e) Numerical simulation results of the cross-sectional plasmonic intensity distributions corresponding to the dashed lines (c)–(e) in Fig. 2(b). The color bar is linear in intensity. The maximum and minimum values are normalized with respect to the peak and zero plasmonic intensity, respectively.
Fig. 3
Fig. 3 Calculated results of (a) the plasmonic intensity distribution 25 nm above the surface of the SiOx layer (top view), (b) coupling length vs. Au stripe width, and (c) transmittance vs. tapered angle.
Fig. 4
Fig. 4 Experimental results of the fabricated devices. (a) Scanning electron micrograph of the proposed device, which was fabricated using focused ion beam milling. (b) Schematic illustration of the experimental setup. (c) Polarization angle dependence of the propagating plasmonic intensity measured from the evanescent waves at the SiOx stripe's surface. (d) Scanning electron micrograph, (e) experimental result using the SNOM, and (f) calculated result of the near-field optical intensity distribution obtained 100 nm above the studied area. The color and gray scale bars are linear in intensity. The maximum and minimum values are normalized with respect to the peak and zero plasmonic intensity, respectively.

Metrics