Abstract

Various flexible SERS sensors have attracted widespread concern in performing the direct identification of the analytes adsorbed on arbitrary surfaces. Here, a sample method was proposed to integrate plasmonic nanoparticles into polydimethylsiloxane (PDMS) to fabricate flexible substrate for the decoration of silver nanoparticles (AgNPs). The flexible SERS sensor based on AgNPs/AgNPs-PDMS offers highly sensitive Raman detection with enhancement factor up to 8.3 × 109, which can be attributed to the integrative effects from both the increase of the light absorption of the embedded AgNPs in PDMS substrate and the EM enhancement from the adjacent top-top, bottom-bottom and top-bottom AgNPs. After undergoing the cyclic mechanical deformation, the SERS substrate still maintains high mechanical stability and stable SERS signals. However, upon stretching the flexible substrate, there was an amusing phenomenon that SERS signals can be highly increased, which results from that the reduction of lateral nanogaps between top and bottom of the PDMS boundary strengthens the trigger of the plasmon coupling as demonstrated by the simulated result. This result reveals that the tuning and the coupling of the electromagnetic fields can be effectively controlled by the macroscopic mechanical solicitation. That will have an important significance for practical applications in strain-dependent sensors and detectors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-performance 3D flexible SERS substrate based on graphene oxide/silver nanoparticles/pyramid PMMA

Xianwu Xiu, Yu Guo, Chonghui Li, Zhen Li, Dazhen Li, Chuanwei Zang, Shouzhen Jiang, Aihua Liu, Baoyuan Man, and Chao Zhang
Opt. Mater. Express 8(4) 844-857 (2018)

Silver-decorated aligned CNT arrays as SERS substrates by high temperature annealing

Jie Zhang, Xiaolei Zhang, Chunhong Lai, Haijun Zhou, and Yong Zhu
Opt. Express 22(18) 21157-21166 (2014)

3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure

Jihua Xu, Chonghui Li, Haipeng Si, Xiaofei Zhao, Lin Wang, Shouzhen Jiang, Dongmei Wei, Jing Yu, Xianwu Xiu, and Chao Zhang
Opt. Express 26(17) 21546-21557 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Lee, L. Tian, and S. Singamaneni, “Paper-based SERS swab for rapid trace detection on real-world surfaces,” ACS Appl. Mater. Interfaces 2(12), 3429–3435 (2010).
    [Crossref] [PubMed]
  2. C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
    [Crossref] [PubMed]
  3. Z. Zheng, S. Cong, W. Gong, J. Xuan, G. Li, W. Lu, F. Geng, and Z. Zhao, “Semiconductor SERS enhancement enabled by oxygen incorporation,” Nat. Commun. 8(1), 1993 (2017).
    [Crossref] [PubMed]
  4. K. J. Lee, D. Kim, B. C. Jang, D. J. Kim, H. Park, D. Y. Jung, W. Hong, T. K. Kim, Y. K. Choi, and S. Y. Choi, “Multilayer Graphene with a Rippled Structure as a Spacer for Improving Plasmonic Coupling,” Adv. Funct. Mater. 26(28), 5093–5101 (2016).
    [Crossref]
  5. G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-Coded Gold Nanorods as a Multifunctional Platform for Densely Multiplexed Near-Infrared Imaging and Photothermal Heating,” Adv. Mater. 21(31), 3175–3180 (2009).
    [Crossref] [PubMed]
  6. W. J. Cho, Y. Kim, and J. K. Kim, “Ultrahigh-Density Array of Silver Nanoclusters for SERS Substrate with High Sensitivity and Excellent Reproducibility,” ACS Nano 6(1), 249–255 (2012).
    [Crossref] [PubMed]
  7. D. Paria, K. Roy, H. J. Singh, S. Kumar, S. Raghavan, A. Ghosh, and A. Ghosh, “Ultrahigh Field Enhancement and Photoresponse in Atomically Separated Arrays of Plasmonic Dimers,” Adv. Mater. 27(10), 1751–1758 (2015).
    [Crossref] [PubMed]
  8. C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
    [Crossref] [PubMed]
  9. X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
    [Crossref] [PubMed]
  10. X. Wen, G. Li, J. Zhang, Q. Zhang, B. Peng, L. M. Wong, S. Wang, and Q. Xiong, “Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering,” Nanoscale 6(1), 132–139 (2014).
    [Crossref] [PubMed]
  11. G. Lu, H. Li, and H. Zhang, “Gold-Nanoparticle-Embedded Polydimethylsiloxane Elastomers for Highly Sensitive Raman Detection,” Small 8(9), 1336–1340 (2012).
    [Crossref] [PubMed]
  12. Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
    [Crossref] [PubMed]
  13. K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis,” Nano Lett. 16(6), 3675–3681 (2016).
    [Crossref] [PubMed]
  14. A. Shiohara, J. Langer, L. Polavarapu, and L. M. Liz-Marzán, “Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing,” Nanoscale 6(16), 9817–9823 (2014).
    [Crossref] [PubMed]
  15. S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  16. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  17. S. Si, W. Liang, Y. Sun, J. Huang, W. Ma, Z. Liang, Q. Bao, and L. Jiang, “Facile Fabrication of High-Density Sub-1-nm Gaps from Au Nanoparticle Monolayers as Reproducible SERS Substrates,” Adv. Funct. Mater. 26(44), 8137–8145 (2016).
    [Crossref]
  18. S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24(38), 5261–5266 (2012).
    [Crossref] [PubMed]
  19. K. D. Osberg, M. Rycenga, G. R. Bourret, K. A. Brown, and C. A. Mirkin, “Dispersible Surface-Enhanced Raman Scattering Nanosheets,” Adv. Mater. 24(45), 6065–6070 (2012).
    [Crossref] [PubMed]
  20. C. Gao, Y. Hu, M. Wang, M. Chi, and Y. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136(20), 7474–7479 (2014).
    [Crossref] [PubMed]
  21. C. L. Zhang, K. P. Lv, H. P. Cong, and S. H. Yu, “Controlled Assemblies of Gold Nanorods in PVA Nanofiber Matrix as Flexible Free-Standing SERS Substrates by Electrospinning,” Small 8(5), 647–653 (2012).
    [Crossref] [PubMed]
  22. S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al‐Sayari, D. E. Kim, and T. Lee, “Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics,” Adv. Funct. Mater. 25(21), 3114–3121 (2015).
    [Crossref]
  23. L. Scarabelli, M. Coronado-Puchau, J. J. Giner-Casares, J. Langer, and L. M. Liz-Marzán, “Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering,” ACS Nano 8(6), 5833–5842 (2014).
    [Crossref] [PubMed]
  24. H. M. Song, Q. Wei, Q. K. Ong, and A. Wei, “Plasmon-Resonant Nanoparticles and Nanostars With Magnetic Cores: Synthesis and Magnetomotive Imaging,” ACS Nano 4(9), 5163–5173 (2010).
    [Crossref] [PubMed]
  25. S. Park, J. Lee, and H. Ko, “Transparent and Flexible Surface-Enhanced Raman Scattering (SERS) Sensors Based on Gold Nanostar Arrays Embedded in Silicon Rubber Film,” ACS Appl. Mater. Interfaces 9(50), 44088–44095 (2017).
    [Crossref] [PubMed]
  26. J. E. Lee, C. Park, K. Chung, J. W. Lim, F. Marques Mota, U. Jeong, and D. H. Kim, “Viable stretchable plasmonics based on unidirectional nanoprisms,” Nanoscale 10(8), 4105–4112 (2018).
    [Crossref] [PubMed]
  27. B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
    [Crossref] [PubMed]
  28. J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, “Flexible and mechanical strain resistant large area SERS active substrates,” Nanoscale 4(11), 3410–3414 (2012).
    [Crossref] [PubMed]
  29. W. Zhang, B. Li, L. Chen, Y. Wang, D. Gao, X. Ma, and A. Wu, “Brushing, a simple way to fabricate SERS active paper substrates,” Anal. Methods 6(7), 2066–2071 (2014).
    [Crossref]
  30. L. Zhang, W. Yan, N. Gao, W. Luo, D. Zhang, X. Li, and D. Liu, “Reversible Strain-Dependent Properties of Wrinkled Au/PDMS Surface,” Mater. Lett. 218(1), 317–320 (2018).
    [Crossref]
  31. X. Xiu, Y. Guo, C. Li, Z. Li, D. Li, C. Zang, S. Jiang, A. Liu, B. Man, and C. Zhang, “High-performance 3D flexible SERS substrate based on graphene oxide/silver nanoparticles/pyramid PMMA,” Opt. Mater. Express 8(4), 844–857 (2018).
    [Crossref]
  32. P. Kumar, R. Khosla, M. Soni, D. Deva, and S. K. Sharma, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sens. Actuat. Biol. Chem. 246, 477–486 (2017).
  33. G. Lu, H. Li, and H. Zhang, “Nanoparticle-coated PDMS elastomers for enhancement of Raman scattering,” Chem. Commun. (Camb.) 47(30), 8560–8562 (2011).
    [Crossref] [PubMed]
  34. M. Y. Lv, H. Y. Teng, Z. Y. Chen, Y. M. Zhao, X. Zhang, L. Liu, Z. Wu, L. M. Liu, and H. J. Xu, “Low-cost Au nanoparticle-decorated cicada wing as sensitive and recyclable substrates for surface enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 209, 820–827 (2015).
  35. Y. Qian, G. Meng, Q. Huang, C. Zhu, Z. Huang, K. Sun, and B. Chen, “Flexible membranes of Ag-nanosheet-grafted polyamide-nanofibers as effective 3D SERS substrates,” Nanoscale 6(9), 4781–4788 (2014).
    [Crossref] [PubMed]
  36. L. L. Qu, D. W. Li, J. Q. Xue, W. L. Zhai, J. S. Fossey, and Y. T. Long, “Batch fabrication of disposable screen printed SERS arrays,” Lab Chip 12(5), 876–881 (2012).
    [Crossref] [PubMed]
  37. S. Y. Chou, C. C. Yu, Y. T. Yen, K. T. Lin, H. L. Chen, and W. F. Su, “Romantic Story or Raman Scattering? Rose Petals as Ecofriendly, Low-Cost Substrates for Ultrasensitive Surface-Enhanced Raman Scattering,” Anal. Chem. 87(12), 6017–6024 (2015).
    [Crossref] [PubMed]
  38. C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuat. Biol. Chem. 251, 127–133 (2017).
  39. U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Burgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(37), 7927–7933 (2014).
    [Crossref]
  40. J. Li, S. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96(26), 263103 (2010).
    [Crossref]
  41. F. Zhang, G. B. Braun, Y. Shi, Y. Zhang, X. Sun, N. O. Reich, D. Zhao, and G. Stucky, “Fabrication of Ag@SiO(2)@Y(2)O(3):Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles,” J. Am. Chem. Soc. 132(9), 2850–2851 (2010).
    [Crossref] [PubMed]

2018 (4)

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

J. E. Lee, C. Park, K. Chung, J. W. Lim, F. Marques Mota, U. Jeong, and D. H. Kim, “Viable stretchable plasmonics based on unidirectional nanoprisms,” Nanoscale 10(8), 4105–4112 (2018).
[Crossref] [PubMed]

L. Zhang, W. Yan, N. Gao, W. Luo, D. Zhang, X. Li, and D. Liu, “Reversible Strain-Dependent Properties of Wrinkled Au/PDMS Surface,” Mater. Lett. 218(1), 317–320 (2018).
[Crossref]

X. Xiu, Y. Guo, C. Li, Z. Li, D. Li, C. Zang, S. Jiang, A. Liu, B. Man, and C. Zhang, “High-performance 3D flexible SERS substrate based on graphene oxide/silver nanoparticles/pyramid PMMA,” Opt. Mater. Express 8(4), 844–857 (2018).
[Crossref]

2017 (6)

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

P. Kumar, R. Khosla, M. Soni, D. Deva, and S. K. Sharma, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sens. Actuat. Biol. Chem. 246, 477–486 (2017).

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuat. Biol. Chem. 251, 127–133 (2017).

Z. Zheng, S. Cong, W. Gong, J. Xuan, G. Li, W. Lu, F. Geng, and Z. Zhao, “Semiconductor SERS enhancement enabled by oxygen incorporation,” Nat. Commun. 8(1), 1993 (2017).
[Crossref] [PubMed]

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

S. Park, J. Lee, and H. Ko, “Transparent and Flexible Surface-Enhanced Raman Scattering (SERS) Sensors Based on Gold Nanostar Arrays Embedded in Silicon Rubber Film,” ACS Appl. Mater. Interfaces 9(50), 44088–44095 (2017).
[Crossref] [PubMed]

2016 (3)

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

S. Si, W. Liang, Y. Sun, J. Huang, W. Ma, Z. Liang, Q. Bao, and L. Jiang, “Facile Fabrication of High-Density Sub-1-nm Gaps from Au Nanoparticle Monolayers as Reproducible SERS Substrates,” Adv. Funct. Mater. 26(44), 8137–8145 (2016).
[Crossref]

K. J. Lee, D. Kim, B. C. Jang, D. J. Kim, H. Park, D. Y. Jung, W. Hong, T. K. Kim, Y. K. Choi, and S. Y. Choi, “Multilayer Graphene with a Rippled Structure as a Spacer for Improving Plasmonic Coupling,” Adv. Funct. Mater. 26(28), 5093–5101 (2016).
[Crossref]

2015 (5)

S. Y. Chou, C. C. Yu, Y. T. Yen, K. T. Lin, H. L. Chen, and W. F. Su, “Romantic Story or Raman Scattering? Rose Petals as Ecofriendly, Low-Cost Substrates for Ultrasensitive Surface-Enhanced Raman Scattering,” Anal. Chem. 87(12), 6017–6024 (2015).
[Crossref] [PubMed]

D. Paria, K. Roy, H. J. Singh, S. Kumar, S. Raghavan, A. Ghosh, and A. Ghosh, “Ultrahigh Field Enhancement and Photoresponse in Atomically Separated Arrays of Plasmonic Dimers,” Adv. Mater. 27(10), 1751–1758 (2015).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

M. Y. Lv, H. Y. Teng, Z. Y. Chen, Y. M. Zhao, X. Zhang, L. Liu, Z. Wu, L. M. Liu, and H. J. Xu, “Low-cost Au nanoparticle-decorated cicada wing as sensitive and recyclable substrates for surface enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 209, 820–827 (2015).

S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al‐Sayari, D. E. Kim, and T. Lee, “Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics,” Adv. Funct. Mater. 25(21), 3114–3121 (2015).
[Crossref]

2014 (7)

L. Scarabelli, M. Coronado-Puchau, J. J. Giner-Casares, J. Langer, and L. M. Liz-Marzán, “Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering,” ACS Nano 8(6), 5833–5842 (2014).
[Crossref] [PubMed]

C. Gao, Y. Hu, M. Wang, M. Chi, and Y. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136(20), 7474–7479 (2014).
[Crossref] [PubMed]

X. Wen, G. Li, J. Zhang, Q. Zhang, B. Peng, L. M. Wong, S. Wang, and Q. Xiong, “Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering,” Nanoscale 6(1), 132–139 (2014).
[Crossref] [PubMed]

A. Shiohara, J. Langer, L. Polavarapu, and L. M. Liz-Marzán, “Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing,” Nanoscale 6(16), 9817–9823 (2014).
[Crossref] [PubMed]

Y. Qian, G. Meng, Q. Huang, C. Zhu, Z. Huang, K. Sun, and B. Chen, “Flexible membranes of Ag-nanosheet-grafted polyamide-nanofibers as effective 3D SERS substrates,” Nanoscale 6(9), 4781–4788 (2014).
[Crossref] [PubMed]

U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Burgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(37), 7927–7933 (2014).
[Crossref]

W. Zhang, B. Li, L. Chen, Y. Wang, D. Gao, X. Ma, and A. Wu, “Brushing, a simple way to fabricate SERS active paper substrates,” Anal. Methods 6(7), 2066–2071 (2014).
[Crossref]

2012 (7)

W. J. Cho, Y. Kim, and J. K. Kim, “Ultrahigh-Density Array of Silver Nanoclusters for SERS Substrate with High Sensitivity and Excellent Reproducibility,” ACS Nano 6(1), 249–255 (2012).
[Crossref] [PubMed]

L. L. Qu, D. W. Li, J. Q. Xue, W. L. Zhai, J. S. Fossey, and Y. T. Long, “Batch fabrication of disposable screen printed SERS arrays,” Lab Chip 12(5), 876–881 (2012).
[Crossref] [PubMed]

G. Lu, H. Li, and H. Zhang, “Gold-Nanoparticle-Embedded Polydimethylsiloxane Elastomers for Highly Sensitive Raman Detection,” Small 8(9), 1336–1340 (2012).
[Crossref] [PubMed]

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24(38), 5261–5266 (2012).
[Crossref] [PubMed]

K. D. Osberg, M. Rycenga, G. R. Bourret, K. A. Brown, and C. A. Mirkin, “Dispersible Surface-Enhanced Raman Scattering Nanosheets,” Adv. Mater. 24(45), 6065–6070 (2012).
[Crossref] [PubMed]

C. L. Zhang, K. P. Lv, H. P. Cong, and S. H. Yu, “Controlled Assemblies of Gold Nanorods in PVA Nanofiber Matrix as Flexible Free-Standing SERS Substrates by Electrospinning,” Small 8(5), 647–653 (2012).
[Crossref] [PubMed]

J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, “Flexible and mechanical strain resistant large area SERS active substrates,” Nanoscale 4(11), 3410–3414 (2012).
[Crossref] [PubMed]

2011 (2)

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

G. Lu, H. Li, and H. Zhang, “Nanoparticle-coated PDMS elastomers for enhancement of Raman scattering,” Chem. Commun. (Camb.) 47(30), 8560–8562 (2011).
[Crossref] [PubMed]

2010 (4)

J. Li, S. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96(26), 263103 (2010).
[Crossref]

F. Zhang, G. B. Braun, Y. Shi, Y. Zhang, X. Sun, N. O. Reich, D. Zhao, and G. Stucky, “Fabrication of Ag@SiO(2)@Y(2)O(3):Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles,” J. Am. Chem. Soc. 132(9), 2850–2851 (2010).
[Crossref] [PubMed]

C. H. Lee, L. Tian, and S. Singamaneni, “Paper-based SERS swab for rapid trace detection on real-world surfaces,” ACS Appl. Mater. Interfaces 2(12), 3429–3435 (2010).
[Crossref] [PubMed]

H. M. Song, Q. Wei, Q. K. Ong, and A. Wei, “Plasmon-Resonant Nanoparticles and Nanostars With Magnetic Cores: Synthesis and Magnetomotive Imaging,” ACS Nano 4(9), 5163–5173 (2010).
[Crossref] [PubMed]

2009 (1)

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-Coded Gold Nanorods as a Multifunctional Platform for Densely Multiplexed Near-Infrared Imaging and Photothermal Heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

1997 (2)

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Abell, J.

J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, “Flexible and mechanical strain resistant large area SERS active substrates,” Nanoscale 4(11), 3410–3414 (2012).
[Crossref] [PubMed]

Ajayan, P. M.

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24(38), 5261–5266 (2012).
[Crossref] [PubMed]

Algadi, H.

S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al‐Sayari, D. E. Kim, and T. Lee, “Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics,” Adv. Funct. Mater. 25(21), 3114–3121 (2015).
[Crossref]

Al-Sayari, S.

S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al‐Sayari, D. E. Kim, and T. Lee, “Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics,” Adv. Funct. Mater. 25(21), 3114–3121 (2015).
[Crossref]

Bai, Y.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Bao, Q.

S. Si, W. Liang, Y. Sun, J. Huang, W. Ma, Z. Liang, Q. Bao, and L. Jiang, “Facile Fabrication of High-Density Sub-1-nm Gaps from Au Nanoparticle Monolayers as Reproducible SERS Substrates,” Adv. Funct. Mater. 26(44), 8137–8145 (2016).
[Crossref]

Bhatia, S. N.

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-Coded Gold Nanorods as a Multifunctional Platform for Densely Multiplexed Near-Infrared Imaging and Photothermal Heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

Bourret, G. R.

K. D. Osberg, M. Rycenga, G. R. Bourret, K. A. Brown, and C. A. Mirkin, “Dispersible Surface-Enhanced Raman Scattering Nanosheets,” Adv. Mater. 24(45), 6065–6070 (2012).
[Crossref] [PubMed]

Braun, G. B.

F. Zhang, G. B. Braun, Y. Shi, Y. Zhang, X. Sun, N. O. Reich, D. Zhao, and G. Stucky, “Fabrication of Ag@SiO(2)@Y(2)O(3):Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles,” J. Am. Chem. Soc. 132(9), 2850–2851 (2010).
[Crossref] [PubMed]

Brown, K. A.

K. D. Osberg, M. Rycenga, G. R. Bourret, K. A. Brown, and C. A. Mirkin, “Dispersible Surface-Enhanced Raman Scattering Nanosheets,” Adv. Mater. 24(45), 6065–6070 (2012).
[Crossref] [PubMed]

Burgi, T.

U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Burgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(37), 7927–7933 (2014).
[Crossref]

Caputo, R.

U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Burgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(37), 7927–7933 (2014).
[Crossref]

Cataldi, U.

U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Burgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(37), 7927–7933 (2014).
[Crossref]

Centrone, A.

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-Coded Gold Nanorods as a Multifunctional Platform for Densely Multiplexed Near-Infrared Imaging and Photothermal Heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

Chekini, M.

U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Burgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(37), 7927–7933 (2014).
[Crossref]

Chen, B.

Y. Qian, G. Meng, Q. Huang, C. Zhu, Z. Huang, K. Sun, and B. Chen, “Flexible membranes of Ag-nanosheet-grafted polyamide-nanofibers as effective 3D SERS substrates,” Nanoscale 6(9), 4781–4788 (2014).
[Crossref] [PubMed]

Chen, H. L.

S. Y. Chou, C. C. Yu, Y. T. Yen, K. T. Lin, H. L. Chen, and W. F. Su, “Romantic Story or Raman Scattering? Rose Petals as Ecofriendly, Low-Cost Substrates for Ultrasensitive Surface-Enhanced Raman Scattering,” Anal. Chem. 87(12), 6017–6024 (2015).
[Crossref] [PubMed]

Chen, L.

W. Zhang, B. Li, L. Chen, Y. Wang, D. Gao, X. Ma, and A. Wu, “Brushing, a simple way to fabricate SERS active paper substrates,” Anal. Methods 6(7), 2066–2071 (2014).
[Crossref]

Chen, Z. Y.

M. Y. Lv, H. Y. Teng, Z. Y. Chen, Y. M. Zhao, X. Zhang, L. Liu, Z. Wu, L. M. Liu, and H. J. Xu, “Low-cost Au nanoparticle-decorated cicada wing as sensitive and recyclable substrates for surface enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 209, 820–827 (2015).

Chi, M.

C. Gao, Y. Hu, M. Wang, M. Chi, and Y. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136(20), 7474–7479 (2014).
[Crossref] [PubMed]

Chipara, A. C.

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24(38), 5261–5266 (2012).
[Crossref] [PubMed]

Cho, H. J.

S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al‐Sayari, D. E. Kim, and T. Lee, “Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics,” Adv. Funct. Mater. 25(21), 3114–3121 (2015).
[Crossref]

Cho, W. J.

W. J. Cho, Y. Kim, and J. K. Kim, “Ultrahigh-Density Array of Silver Nanoclusters for SERS Substrate with High Sensitivity and Excellent Reproducibility,” ACS Nano 6(1), 249–255 (2012).
[Crossref] [PubMed]

Choi, S. Y.

K. J. Lee, D. Kim, B. C. Jang, D. J. Kim, H. Park, D. Y. Jung, W. Hong, T. K. Kim, Y. K. Choi, and S. Y. Choi, “Multilayer Graphene with a Rippled Structure as a Spacer for Improving Plasmonic Coupling,” Adv. Funct. Mater. 26(28), 5093–5101 (2016).
[Crossref]

Choi, Y. K.

K. J. Lee, D. Kim, B. C. Jang, D. J. Kim, H. Park, D. Y. Jung, W. Hong, T. K. Kim, Y. K. Choi, and S. Y. Choi, “Multilayer Graphene with a Rippled Structure as a Spacer for Improving Plasmonic Coupling,” Adv. Funct. Mater. 26(28), 5093–5101 (2016).
[Crossref]

Chou, S. Y.

S. Y. Chou, C. C. Yu, Y. T. Yen, K. T. Lin, H. L. Chen, and W. F. Su, “Romantic Story or Raman Scattering? Rose Petals as Ecofriendly, Low-Cost Substrates for Ultrasensitive Surface-Enhanced Raman Scattering,” Anal. Chem. 87(12), 6017–6024 (2015).
[Crossref] [PubMed]

Chu, H.

J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, “Flexible and mechanical strain resistant large area SERS active substrates,” Nanoscale 4(11), 3410–3414 (2012).
[Crossref] [PubMed]

Chung, K.

J. E. Lee, C. Park, K. Chung, J. W. Lim, F. Marques Mota, U. Jeong, and D. H. Kim, “Viable stretchable plasmonics based on unidirectional nanoprisms,” Nanoscale 10(8), 4105–4112 (2018).
[Crossref] [PubMed]

Cong, H. P.

C. L. Zhang, K. P. Lv, H. P. Cong, and S. H. Yu, “Controlled Assemblies of Gold Nanorods in PVA Nanofiber Matrix as Flexible Free-Standing SERS Substrates by Electrospinning,” Small 8(5), 647–653 (2012).
[Crossref] [PubMed]

Cong, S.

Z. Zheng, S. Cong, W. Gong, J. Xuan, G. Li, W. Lu, F. Geng, and Z. Zhao, “Semiconductor SERS enhancement enabled by oxygen incorporation,” Nat. Commun. 8(1), 1993 (2017).
[Crossref] [PubMed]

Coronado-Puchau, M.

L. Scarabelli, M. Coronado-Puchau, J. J. Giner-Casares, J. Langer, and L. M. Liz-Marzán, “Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering,” ACS Nano 8(6), 5833–5842 (2014).
[Crossref] [PubMed]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Deva, D.

P. Kumar, R. Khosla, M. Soni, D. Deva, and S. K. Sharma, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sens. Actuat. Biol. Chem. 246, 477–486 (2017).

Emory, S. R.

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Fan, Q.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Fortuni, B.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

Fossey, J. S.

L. L. Qu, D. W. Li, J. Q. Xue, W. L. Zhai, J. S. Fossey, and Y. T. Long, “Batch fabrication of disposable screen printed SERS arrays,” Lab Chip 12(5), 876–881 (2012).
[Crossref] [PubMed]

Fujita, Y.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

Gao, C.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

C. Gao, Y. Hu, M. Wang, M. Chi, and Y. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136(20), 7474–7479 (2014).
[Crossref] [PubMed]

Gao, D.

W. Zhang, B. Li, L. Chen, Y. Wang, D. Gao, X. Ma, and A. Wu, “Brushing, a simple way to fabricate SERS active paper substrates,” Anal. Methods 6(7), 2066–2071 (2014).
[Crossref]

Gao, N.

L. Zhang, W. Yan, N. Gao, W. Luo, D. Zhang, X. Li, and D. Liu, “Reversible Strain-Dependent Properties of Wrinkled Au/PDMS Surface,” Mater. Lett. 218(1), 317–320 (2018).
[Crossref]

Geng, F.

Z. Zheng, S. Cong, W. Gong, J. Xuan, G. Li, W. Lu, F. Geng, and Z. Zhao, “Semiconductor SERS enhancement enabled by oxygen incorporation,” Nat. Commun. 8(1), 1993 (2017).
[Crossref] [PubMed]

Ghosh, A.

D. Paria, K. Roy, H. J. Singh, S. Kumar, S. Raghavan, A. Ghosh, and A. Ghosh, “Ultrahigh Field Enhancement and Photoresponse in Atomically Separated Arrays of Plasmonic Dimers,” Adv. Mater. 27(10), 1751–1758 (2015).
[Crossref] [PubMed]

D. Paria, K. Roy, H. J. Singh, S. Kumar, S. Raghavan, A. Ghosh, and A. Ghosh, “Ultrahigh Field Enhancement and Photoresponse in Atomically Separated Arrays of Plasmonic Dimers,” Adv. Mater. 27(10), 1751–1758 (2015).
[Crossref] [PubMed]

Giner-Casares, J. J.

L. Scarabelli, M. Coronado-Puchau, J. J. Giner-Casares, J. Langer, and L. M. Liz-Marzán, “Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering,” ACS Nano 8(6), 5833–5842 (2014).
[Crossref] [PubMed]

Gong, W.

Z. Zheng, S. Cong, W. Gong, J. Xuan, G. Li, W. Lu, F. Geng, and Z. Zhao, “Semiconductor SERS enhancement enabled by oxygen incorporation,” Nat. Commun. 8(1), 1993 (2017).
[Crossref] [PubMed]

Guo, Y.

Hafner, J. H.

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24(38), 5261–5266 (2012).
[Crossref] [PubMed]

Hahm, M. G.

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24(38), 5261–5266 (2012).
[Crossref] [PubMed]

Hashim, D. P.

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24(38), 5261–5266 (2012).
[Crossref] [PubMed]

Hatton, T. A.

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-Coded Gold Nanorods as a Multifunctional Platform for Densely Multiplexed Near-Infrared Imaging and Photothermal Heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

He, Y.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

Hong, W.

K. J. Lee, D. Kim, B. C. Jang, D. J. Kim, H. Park, D. Y. Jung, W. Hong, T. K. Kim, Y. K. Choi, and S. Y. Choi, “Multilayer Graphene with a Rippled Structure as a Spacer for Improving Plasmonic Coupling,” Adv. Funct. Mater. 26(28), 5093–5101 (2016).
[Crossref]

Hu, Y.

C. Gao, Y. Hu, M. Wang, M. Chi, and Y. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136(20), 7474–7479 (2014).
[Crossref] [PubMed]

Huang, J.

S. Si, W. Liang, Y. Sun, J. Huang, W. Ma, Z. Liang, Q. Bao, and L. Jiang, “Facile Fabrication of High-Density Sub-1-nm Gaps from Au Nanoparticle Monolayers as Reproducible SERS Substrates,” Adv. Funct. Mater. 26(44), 8137–8145 (2016).
[Crossref]

Huang, Q.

Y. Qian, G. Meng, Q. Huang, C. Zhu, Z. Huang, K. Sun, and B. Chen, “Flexible membranes of Ag-nanosheet-grafted polyamide-nanofibers as effective 3D SERS substrates,” Nanoscale 6(9), 4781–4788 (2014).
[Crossref] [PubMed]

Huang, Z.

Y. Qian, G. Meng, Q. Huang, C. Zhu, Z. Huang, K. Sun, and B. Chen, “Flexible membranes of Ag-nanosheet-grafted polyamide-nanofibers as effective 3D SERS substrates,” Nanoscale 6(9), 4781–4788 (2014).
[Crossref] [PubMed]

Huo, Y.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

Huo, Y. Y.

Hutchison, J. A.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

Inose, T.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Jang, B. C.

K. J. Lee, D. Kim, B. C. Jang, D. J. Kim, H. Park, D. Y. Jung, W. Hong, T. K. Kim, Y. K. Choi, and S. Y. Choi, “Multilayer Graphene with a Rippled Structure as a Spacer for Improving Plasmonic Coupling,” Adv. Funct. Mater. 26(28), 5093–5101 (2016).
[Crossref]

Jeong, U.

J. E. Lee, C. Park, K. Chung, J. W. Lim, F. Marques Mota, U. Jeong, and D. H. Kim, “Viable stretchable plasmonics based on unidirectional nanoprisms,” Nanoscale 10(8), 4105–4112 (2018).
[Crossref] [PubMed]

Jiang, L.

S. Si, W. Liang, Y. Sun, J. Huang, W. Ma, Z. Liang, Q. Bao, and L. Jiang, “Facile Fabrication of High-Density Sub-1-nm Gaps from Au Nanoparticle Monolayers as Reproducible SERS Substrates,” Adv. Funct. Mater. 26(44), 8137–8145 (2016).
[Crossref]

Jiang, S.

Jiang, S. Z.

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuat. Biol. Chem. 251, 127–133 (2017).

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Jung, D. Y.

K. J. Lee, D. Kim, B. C. Jang, D. J. Kim, H. Park, D. Y. Jung, W. Hong, T. K. Kim, Y. K. Choi, and S. Y. Choi, “Multilayer Graphene with a Rippled Structure as a Spacer for Improving Plasmonic Coupling,” Adv. Funct. Mater. 26(28), 5093–5101 (2016).
[Crossref]

Khosla, R.

P. Kumar, R. Khosla, M. Soni, D. Deva, and S. K. Sharma, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sens. Actuat. Biol. Chem. 246, 477–486 (2017).

Kim, D.

K. J. Lee, D. Kim, B. C. Jang, D. J. Kim, H. Park, D. Y. Jung, W. Hong, T. K. Kim, Y. K. Choi, and S. Y. Choi, “Multilayer Graphene with a Rippled Structure as a Spacer for Improving Plasmonic Coupling,” Adv. Funct. Mater. 26(28), 5093–5101 (2016).
[Crossref]

Kim, D. E.

S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al‐Sayari, D. E. Kim, and T. Lee, “Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics,” Adv. Funct. Mater. 25(21), 3114–3121 (2015).
[Crossref]

Kim, D. H.

J. E. Lee, C. Park, K. Chung, J. W. Lim, F. Marques Mota, U. Jeong, and D. H. Kim, “Viable stretchable plasmonics based on unidirectional nanoprisms,” Nanoscale 10(8), 4105–4112 (2018).
[Crossref] [PubMed]

Kim, D. J.

K. J. Lee, D. Kim, B. C. Jang, D. J. Kim, H. Park, D. Y. Jung, W. Hong, T. K. Kim, Y. K. Choi, and S. Y. Choi, “Multilayer Graphene with a Rippled Structure as a Spacer for Improving Plasmonic Coupling,” Adv. Funct. Mater. 26(28), 5093–5101 (2016).
[Crossref]

Kim, J. K.

W. J. Cho, Y. Kim, and J. K. Kim, “Ultrahigh-Density Array of Silver Nanoclusters for SERS Substrate with High Sensitivity and Excellent Reproducibility,” ACS Nano 6(1), 249–255 (2012).
[Crossref] [PubMed]

Kim, T. K.

K. J. Lee, D. Kim, B. C. Jang, D. J. Kim, H. Park, D. Y. Jung, W. Hong, T. K. Kim, Y. K. Choi, and S. Y. Choi, “Multilayer Graphene with a Rippled Structure as a Spacer for Improving Plasmonic Coupling,” Adv. Funct. Mater. 26(28), 5093–5101 (2016).
[Crossref]

Kim, Y.

W. J. Cho, Y. Kim, and J. K. Kim, “Ultrahigh-Density Array of Silver Nanoclusters for SERS Substrate with High Sensitivity and Excellent Reproducibility,” ACS Nano 6(1), 249–255 (2012).
[Crossref] [PubMed]

Klein, G.

U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Burgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(37), 7927–7933 (2014).
[Crossref]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Ko, H.

S. Park, J. Lee, and H. Ko, “Transparent and Flexible Surface-Enhanced Raman Scattering (SERS) Sensors Based on Gold Nanostar Arrays Embedded in Silicon Rubber Film,” ACS Appl. Mater. Interfaces 9(50), 44088–44095 (2017).
[Crossref] [PubMed]

Kumar, P.

P. Kumar, R. Khosla, M. Soni, D. Deva, and S. K. Sharma, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sens. Actuat. Biol. Chem. 246, 477–486 (2017).

Kumar, S.

D. Paria, K. Roy, H. J. Singh, S. Kumar, S. Raghavan, A. Ghosh, and A. Ghosh, “Ultrahigh Field Enhancement and Photoresponse in Atomically Separated Arrays of Plasmonic Dimers,” Adv. Mater. 27(10), 1751–1758 (2015).
[Crossref] [PubMed]

Kurylyak, Y.

U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Burgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(37), 7927–7933 (2014).
[Crossref]

Langer, J.

L. Scarabelli, M. Coronado-Puchau, J. J. Giner-Casares, J. Langer, and L. M. Liz-Marzán, “Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering,” ACS Nano 8(6), 5833–5842 (2014).
[Crossref] [PubMed]

A. Shiohara, J. Langer, L. Polavarapu, and L. M. Liz-Marzán, “Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing,” Nanoscale 6(16), 9817–9823 (2014).
[Crossref] [PubMed]

Latterini, L.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

Lee, C. H.

C. H. Lee, L. Tian, and S. Singamaneni, “Paper-based SERS swab for rapid trace detection on real-world surfaces,” ACS Appl. Mater. Interfaces 2(12), 3429–3435 (2010).
[Crossref] [PubMed]

Lee, J.

S. Park, J. Lee, and H. Ko, “Transparent and Flexible Surface-Enhanced Raman Scattering (SERS) Sensors Based on Gold Nanostar Arrays Embedded in Silicon Rubber Film,” ACS Appl. Mater. Interfaces 9(50), 44088–44095 (2017).
[Crossref] [PubMed]

S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al‐Sayari, D. E. Kim, and T. Lee, “Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics,” Adv. Funct. Mater. 25(21), 3114–3121 (2015).
[Crossref]

Lee, J. E.

J. E. Lee, C. Park, K. Chung, J. W. Lim, F. Marques Mota, U. Jeong, and D. H. Kim, “Viable stretchable plasmonics based on unidirectional nanoprisms,” Nanoscale 10(8), 4105–4112 (2018).
[Crossref] [PubMed]

Lee, K. J.

K. J. Lee, D. Kim, B. C. Jang, D. J. Kim, H. Park, D. Y. Jung, W. Hong, T. K. Kim, Y. K. Choi, and S. Y. Choi, “Multilayer Graphene with a Rippled Structure as a Spacer for Improving Plasmonic Coupling,” Adv. Funct. Mater. 26(28), 5093–5101 (2016).
[Crossref]

Lee, S.

S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al‐Sayari, D. E. Kim, and T. Lee, “Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics,” Adv. Funct. Mater. 25(21), 3114–3121 (2015).
[Crossref]

S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al‐Sayari, D. E. Kim, and T. Lee, “Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics,” Adv. Funct. Mater. 25(21), 3114–3121 (2015).
[Crossref]

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24(38), 5261–5266 (2012).
[Crossref] [PubMed]

Lee, T.

S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al‐Sayari, D. E. Kim, and T. Lee, “Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics,” Adv. Funct. Mater. 25(21), 3114–3121 (2015).
[Crossref]

Li, B.

W. Zhang, B. Li, L. Chen, Y. Wang, D. Gao, X. Ma, and A. Wu, “Brushing, a simple way to fabricate SERS active paper substrates,” Anal. Methods 6(7), 2066–2071 (2014).
[Crossref]

Li, C.

Li, C. H.

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuat. Biol. Chem. 251, 127–133 (2017).

Li, D.

X. Xiu, Y. Guo, C. Li, Z. Li, D. Li, C. Zang, S. Jiang, A. Liu, B. Man, and C. Zhang, “High-performance 3D flexible SERS substrate based on graphene oxide/silver nanoparticles/pyramid PMMA,” Opt. Mater. Express 8(4), 844–857 (2018).
[Crossref]

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Li, D. W.

L. L. Qu, D. W. Li, J. Q. Xue, W. L. Zhai, J. S. Fossey, and Y. T. Long, “Batch fabrication of disposable screen printed SERS arrays,” Lab Chip 12(5), 876–881 (2012).
[Crossref] [PubMed]

Li, G.

Z. Zheng, S. Cong, W. Gong, J. Xuan, G. Li, W. Lu, F. Geng, and Z. Zhao, “Semiconductor SERS enhancement enabled by oxygen incorporation,” Nat. Commun. 8(1), 1993 (2017).
[Crossref] [PubMed]

X. Wen, G. Li, J. Zhang, Q. Zhang, B. Peng, L. M. Wong, S. Wang, and Q. Xiong, “Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering,” Nanoscale 6(1), 132–139 (2014).
[Crossref] [PubMed]

Li, H.

G. Lu, H. Li, and H. Zhang, “Gold-Nanoparticle-Embedded Polydimethylsiloxane Elastomers for Highly Sensitive Raman Detection,” Small 8(9), 1336–1340 (2012).
[Crossref] [PubMed]

G. Lu, H. Li, and H. Zhang, “Nanoparticle-coated PDMS elastomers for enhancement of Raman scattering,” Chem. Commun. (Camb.) 47(30), 8560–8562 (2011).
[Crossref] [PubMed]

Li, J.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96(26), 263103 (2010).
[Crossref]

Li, X.

L. Zhang, W. Yan, N. Gao, W. Luo, D. Zhang, X. Li, and D. Liu, “Reversible Strain-Dependent Properties of Wrinkled Au/PDMS Surface,” Mater. Lett. 218(1), 317–320 (2018).
[Crossref]

Li, Z.

X. Xiu, Y. Guo, C. Li, Z. Li, D. Li, C. Zang, S. Jiang, A. Liu, B. Man, and C. Zhang, “High-performance 3D flexible SERS substrate based on graphene oxide/silver nanoparticles/pyramid PMMA,” Opt. Mater. Express 8(4), 844–857 (2018).
[Crossref]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuat. Biol. Chem. 251, 127–133 (2017).

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuat. Biol. Chem. 251, 127–133 (2017).

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Li, Z. Y.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96(26), 263103 (2010).
[Crossref]

Liang, W.

S. Si, W. Liang, Y. Sun, J. Huang, W. Ma, Z. Liang, Q. Bao, and L. Jiang, “Facile Fabrication of High-Density Sub-1-nm Gaps from Au Nanoparticle Monolayers as Reproducible SERS Substrates,” Adv. Funct. Mater. 26(44), 8137–8145 (2016).
[Crossref]

Liang, Z.

S. Si, W. Liang, Y. Sun, J. Huang, W. Ma, Z. Liang, Q. Bao, and L. Jiang, “Facile Fabrication of High-Density Sub-1-nm Gaps from Au Nanoparticle Monolayers as Reproducible SERS Substrates,” Adv. Funct. Mater. 26(44), 8137–8145 (2016).
[Crossref]

Lim, J. W.

J. E. Lee, C. Park, K. Chung, J. W. Lim, F. Marques Mota, U. Jeong, and D. H. Kim, “Viable stretchable plasmonics based on unidirectional nanoprisms,” Nanoscale 10(8), 4105–4112 (2018).
[Crossref] [PubMed]

Lin, K. T.

S. Y. Chou, C. C. Yu, Y. T. Yen, K. T. Lin, H. L. Chen, and W. F. Su, “Romantic Story or Raman Scattering? Rose Petals as Ecofriendly, Low-Cost Substrates for Ultrasensitive Surface-Enhanced Raman Scattering,” Anal. Chem. 87(12), 6017–6024 (2015).
[Crossref] [PubMed]

Liu, A.

Liu, A. H.

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuat. Biol. Chem. 251, 127–133 (2017).

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Liu, D.

L. Zhang, W. Yan, N. Gao, W. Luo, D. Zhang, X. Li, and D. Liu, “Reversible Strain-Dependent Properties of Wrinkled Au/PDMS Surface,” Mater. Lett. 218(1), 317–320 (2018).
[Crossref]

Liu, K.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Liu, L.

M. Y. Lv, H. Y. Teng, Z. Y. Chen, Y. M. Zhao, X. Zhang, L. Liu, Z. Wu, L. M. Liu, and H. J. Xu, “Low-cost Au nanoparticle-decorated cicada wing as sensitive and recyclable substrates for surface enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 209, 820–827 (2015).

Liu, L. M.

M. Y. Lv, H. Y. Teng, Z. Y. Chen, Y. M. Zhao, X. Zhang, L. Liu, Z. Wu, L. M. Liu, and H. J. Xu, “Low-cost Au nanoparticle-decorated cicada wing as sensitive and recyclable substrates for surface enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 209, 820–827 (2015).

Liu, S.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96(26), 263103 (2010).
[Crossref]

Liu, X. Y.

Liu, Y.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96(26), 263103 (2010).
[Crossref]

Liz-Marzán, L. M.

L. Scarabelli, M. Coronado-Puchau, J. J. Giner-Casares, J. Langer, and L. M. Liz-Marzán, “Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering,” ACS Nano 8(6), 5833–5842 (2014).
[Crossref] [PubMed]

A. Shiohara, J. Langer, L. Polavarapu, and L. M. Liz-Marzán, “Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing,” Nanoscale 6(16), 9817–9823 (2014).
[Crossref] [PubMed]

Long, Y. T.

L. L. Qu, D. W. Li, J. Q. Xue, W. L. Zhai, J. S. Fossey, and Y. T. Long, “Batch fabrication of disposable screen printed SERS arrays,” Lab Chip 12(5), 876–881 (2012).
[Crossref] [PubMed]

Lu, G.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

G. Lu, H. Li, and H. Zhang, “Gold-Nanoparticle-Embedded Polydimethylsiloxane Elastomers for Highly Sensitive Raman Detection,” Small 8(9), 1336–1340 (2012).
[Crossref] [PubMed]

G. Lu, H. Li, and H. Zhang, “Nanoparticle-coated PDMS elastomers for enhancement of Raman scattering,” Chem. Commun. (Camb.) 47(30), 8560–8562 (2011).
[Crossref] [PubMed]

Lu, W.

Z. Zheng, S. Cong, W. Gong, J. Xuan, G. Li, W. Lu, F. Geng, and Z. Zhao, “Semiconductor SERS enhancement enabled by oxygen incorporation,” Nat. Commun. 8(1), 1993 (2017).
[Crossref] [PubMed]

Luo, W.

L. Zhang, W. Yan, N. Gao, W. Luo, D. Zhang, X. Li, and D. Liu, “Reversible Strain-Dependent Properties of Wrinkled Au/PDMS Surface,” Mater. Lett. 218(1), 317–320 (2018).
[Crossref]

Lv, K. P.

C. L. Zhang, K. P. Lv, H. P. Cong, and S. H. Yu, “Controlled Assemblies of Gold Nanorods in PVA Nanofiber Matrix as Flexible Free-Standing SERS Substrates by Electrospinning,” Small 8(5), 647–653 (2012).
[Crossref] [PubMed]

Lv, M. Y.

M. Y. Lv, H. Y. Teng, Z. Y. Chen, Y. M. Zhao, X. Zhang, L. Liu, Z. Wu, L. M. Liu, and H. J. Xu, “Low-cost Au nanoparticle-decorated cicada wing as sensitive and recyclable substrates for surface enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 209, 820–827 (2015).

Ma, W.

S. Si, W. Liang, Y. Sun, J. Huang, W. Ma, Z. Liang, Q. Bao, and L. Jiang, “Facile Fabrication of High-Density Sub-1-nm Gaps from Au Nanoparticle Monolayers as Reproducible SERS Substrates,” Adv. Funct. Mater. 26(44), 8137–8145 (2016).
[Crossref]

Ma, X.

W. Zhang, B. Li, L. Chen, Y. Wang, D. Gao, X. Ma, and A. Wu, “Brushing, a simple way to fabricate SERS active paper substrates,” Anal. Methods 6(7), 2066–2071 (2014).
[Crossref]

Man, B.

Man, B. Y.

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuat. Biol. Chem. 251, 127–133 (2017).

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Marques Mota, F.

J. E. Lee, C. Park, K. Chung, J. W. Lim, F. Marques Mota, U. Jeong, and D. H. Kim, “Viable stretchable plasmonics based on unidirectional nanoprisms,” Nanoscale 10(8), 4105–4112 (2018).
[Crossref] [PubMed]

Masuhara, A.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

Meng, G.

Y. Qian, G. Meng, Q. Huang, C. Zhu, Z. Huang, K. Sun, and B. Chen, “Flexible membranes of Ag-nanosheet-grafted polyamide-nanofibers as effective 3D SERS substrates,” Nanoscale 6(9), 4781–4788 (2014).
[Crossref] [PubMed]

Mirkin, C. A.

K. D. Osberg, M. Rycenga, G. R. Bourret, K. A. Brown, and C. A. Mirkin, “Dispersible Surface-Enhanced Raman Scattering Nanosheets,” Adv. Mater. 24(45), 6065–6070 (2012).
[Crossref] [PubMed]

Nie, S.

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Ning, T.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

Ong, Q. K.

H. M. Song, Q. Wei, Q. K. Ong, and A. Wei, “Plasmon-Resonant Nanoparticles and Nanostars With Magnetic Cores: Synthesis and Magnetomotive Imaging,” ACS Nano 4(9), 5163–5173 (2010).
[Crossref] [PubMed]

Osberg, K. D.

K. D. Osberg, M. Rycenga, G. R. Bourret, K. A. Brown, and C. A. Mirkin, “Dispersible Surface-Enhanced Raman Scattering Nanosheets,” Adv. Mater. 24(45), 6065–6070 (2012).
[Crossref] [PubMed]

Paria, D.

D. Paria, K. Roy, H. J. Singh, S. Kumar, S. Raghavan, A. Ghosh, and A. Ghosh, “Ultrahigh Field Enhancement and Photoresponse in Atomically Separated Arrays of Plasmonic Dimers,” Adv. Mater. 27(10), 1751–1758 (2015).
[Crossref] [PubMed]

Park, C.

J. E. Lee, C. Park, K. Chung, J. W. Lim, F. Marques Mota, U. Jeong, and D. H. Kim, “Viable stretchable plasmonics based on unidirectional nanoprisms,” Nanoscale 10(8), 4105–4112 (2018).
[Crossref] [PubMed]

Park, H.

K. J. Lee, D. Kim, B. C. Jang, D. J. Kim, H. Park, D. Y. Jung, W. Hong, T. K. Kim, Y. K. Choi, and S. Y. Choi, “Multilayer Graphene with a Rippled Structure as a Spacer for Improving Plasmonic Coupling,” Adv. Funct. Mater. 26(28), 5093–5101 (2016).
[Crossref]

Park, J. H.

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-Coded Gold Nanorods as a Multifunctional Platform for Densely Multiplexed Near-Infrared Imaging and Photothermal Heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

Park, S.

S. Park, J. Lee, and H. Ko, “Transparent and Flexible Surface-Enhanced Raman Scattering (SERS) Sensors Based on Gold Nanostar Arrays Embedded in Silicon Rubber Film,” ACS Appl. Mater. Interfaces 9(50), 44088–44095 (2017).
[Crossref] [PubMed]

Peng, B.

X. Wen, G. Li, J. Zhang, Q. Zhang, B. Peng, L. M. Wong, S. Wang, and Q. Xiong, “Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering,” Nanoscale 6(1), 132–139 (2014).
[Crossref] [PubMed]

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Polavarapu, L.

A. Shiohara, J. Langer, L. Polavarapu, and L. M. Liz-Marzán, “Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing,” Nanoscale 6(16), 9817–9823 (2014).
[Crossref] [PubMed]

Qian, Y.

Y. Qian, G. Meng, Q. Huang, C. Zhu, Z. Huang, K. Sun, and B. Chen, “Flexible membranes of Ag-nanosheet-grafted polyamide-nanofibers as effective 3D SERS substrates,” Nanoscale 6(9), 4781–4788 (2014).
[Crossref] [PubMed]

Qu, L. L.

L. L. Qu, D. W. Li, J. Q. Xue, W. L. Zhai, J. S. Fossey, and Y. T. Long, “Batch fabrication of disposable screen printed SERS arrays,” Lab Chip 12(5), 876–881 (2012).
[Crossref] [PubMed]

Raghavan, S.

D. Paria, K. Roy, H. J. Singh, S. Kumar, S. Raghavan, A. Ghosh, and A. Ghosh, “Ultrahigh Field Enhancement and Photoresponse in Atomically Separated Arrays of Plasmonic Dimers,” Adv. Mater. 27(10), 1751–1758 (2015).
[Crossref] [PubMed]

Ramanathan, R.

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-Coded Gold Nanorods as a Multifunctional Platform for Densely Multiplexed Near-Infrared Imaging and Photothermal Heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

Reich, N. O.

F. Zhang, G. B. Braun, Y. Shi, Y. Zhang, X. Sun, N. O. Reich, D. Zhao, and G. Stucky, “Fabrication of Ag@SiO(2)@Y(2)O(3):Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles,” J. Am. Chem. Soc. 132(9), 2850–2851 (2010).
[Crossref] [PubMed]

Ricci, M.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

Roy, K.

D. Paria, K. Roy, H. J. Singh, S. Kumar, S. Raghavan, A. Ghosh, and A. Ghosh, “Ultrahigh Field Enhancement and Photoresponse in Atomically Separated Arrays of Plasmonic Dimers,” Adv. Mater. 27(10), 1751–1758 (2015).
[Crossref] [PubMed]

Rycenga, M.

K. D. Osberg, M. Rycenga, G. R. Bourret, K. A. Brown, and C. A. Mirkin, “Dispersible Surface-Enhanced Raman Scattering Nanosheets,” Adv. Mater. 24(45), 6065–6070 (2012).
[Crossref] [PubMed]

Sailor, M. J.

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-Coded Gold Nanorods as a Multifunctional Platform for Densely Multiplexed Near-Infrared Imaging and Photothermal Heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

Scarabelli, L.

L. Scarabelli, M. Coronado-Puchau, J. J. Giner-Casares, J. Langer, and L. M. Liz-Marzán, “Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering,” ACS Nano 8(6), 5833–5842 (2014).
[Crossref] [PubMed]

Sekine, S.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

Seo, J.

S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al‐Sayari, D. E. Kim, and T. Lee, “Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics,” Adv. Funct. Mater. 25(21), 3114–3121 (2015).
[Crossref]

Sharma, S. K.

P. Kumar, R. Khosla, M. Soni, D. Deva, and S. K. Sharma, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sens. Actuat. Biol. Chem. 246, 477–486 (2017).

Shi, Y.

F. Zhang, G. B. Braun, Y. Shi, Y. Zhang, X. Sun, N. O. Reich, D. Zhao, and G. Stucky, “Fabrication of Ag@SiO(2)@Y(2)O(3):Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles,” J. Am. Chem. Soc. 132(9), 2850–2851 (2010).
[Crossref] [PubMed]

Shin, S.

S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al‐Sayari, D. E. Kim, and T. Lee, “Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics,” Adv. Funct. Mater. 25(21), 3114–3121 (2015).
[Crossref]

Shiohara, A.

A. Shiohara, J. Langer, L. Polavarapu, and L. M. Liz-Marzán, “Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing,” Nanoscale 6(16), 9817–9823 (2014).
[Crossref] [PubMed]

Si, S.

S. Si, W. Liang, Y. Sun, J. Huang, W. Ma, Z. Liang, Q. Bao, and L. Jiang, “Facile Fabrication of High-Density Sub-1-nm Gaps from Au Nanoparticle Monolayers as Reproducible SERS Substrates,” Adv. Funct. Mater. 26(44), 8137–8145 (2016).
[Crossref]

Singamaneni, S.

C. H. Lee, L. Tian, and S. Singamaneni, “Paper-based SERS swab for rapid trace detection on real-world surfaces,” ACS Appl. Mater. Interfaces 2(12), 3429–3435 (2010).
[Crossref] [PubMed]

Singh, H. J.

D. Paria, K. Roy, H. J. Singh, S. Kumar, S. Raghavan, A. Ghosh, and A. Ghosh, “Ultrahigh Field Enhancement and Photoresponse in Atomically Separated Arrays of Plasmonic Dimers,” Adv. Mater. 27(10), 1751–1758 (2015).
[Crossref] [PubMed]

Singh, J. P.

J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, “Flexible and mechanical strain resistant large area SERS active substrates,” Nanoscale 4(11), 3410–3414 (2012).
[Crossref] [PubMed]

Son, S.

S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al‐Sayari, D. E. Kim, and T. Lee, “Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics,” Adv. Funct. Mater. 25(21), 3114–3121 (2015).
[Crossref]

Song, H. M.

H. M. Song, Q. Wei, Q. K. Ong, and A. Wei, “Plasmon-Resonant Nanoparticles and Nanostars With Magnetic Cores: Synthesis and Magnetomotive Imaging,” ACS Nano 4(9), 5163–5173 (2010).
[Crossref] [PubMed]

Soni, M.

P. Kumar, R. Khosla, M. Soni, D. Deva, and S. K. Sharma, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sens. Actuat. Biol. Chem. 246, 477–486 (2017).

Stucky, G.

F. Zhang, G. B. Braun, Y. Shi, Y. Zhang, X. Sun, N. O. Reich, D. Zhao, and G. Stucky, “Fabrication of Ag@SiO(2)@Y(2)O(3):Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles,” J. Am. Chem. Soc. 132(9), 2850–2851 (2010).
[Crossref] [PubMed]

Su, W. F.

S. Y. Chou, C. C. Yu, Y. T. Yen, K. T. Lin, H. L. Chen, and W. F. Su, “Romantic Story or Raman Scattering? Rose Petals as Ecofriendly, Low-Cost Substrates for Ultrasensitive Surface-Enhanced Raman Scattering,” Anal. Chem. 87(12), 6017–6024 (2015).
[Crossref] [PubMed]

Sun, K.

Y. Qian, G. Meng, Q. Huang, C. Zhu, Z. Huang, K. Sun, and B. Chen, “Flexible membranes of Ag-nanosheet-grafted polyamide-nanofibers as effective 3D SERS substrates,” Nanoscale 6(9), 4781–4788 (2014).
[Crossref] [PubMed]

Sun, X.

F. Zhang, G. B. Braun, Y. Shi, Y. Zhang, X. Sun, N. O. Reich, D. Zhao, and G. Stucky, “Fabrication of Ag@SiO(2)@Y(2)O(3):Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles,” J. Am. Chem. Soc. 132(9), 2850–2851 (2010).
[Crossref] [PubMed]

Sun, Y.

S. Si, W. Liang, Y. Sun, J. Huang, W. Ma, Z. Liang, Q. Bao, and L. Jiang, “Facile Fabrication of High-Density Sub-1-nm Gaps from Au Nanoparticle Monolayers as Reproducible SERS Substrates,” Adv. Funct. Mater. 26(44), 8137–8145 (2016).
[Crossref]

Sun, Z. C.

Teng, H. Y.

M. Y. Lv, H. Y. Teng, Z. Y. Chen, Y. M. Zhao, X. Zhang, L. Liu, Z. Wu, L. M. Liu, and H. J. Xu, “Low-cost Au nanoparticle-decorated cicada wing as sensitive and recyclable substrates for surface enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 209, 820–827 (2015).

Thurakitseree, T.

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24(38), 5261–5266 (2012).
[Crossref] [PubMed]

Tian, L.

C. H. Lee, L. Tian, and S. Singamaneni, “Paper-based SERS swab for rapid trace detection on real-world surfaces,” ACS Appl. Mater. Interfaces 2(12), 3429–3435 (2010).
[Crossref] [PubMed]

Toyouchi, S.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

Tripp, R. A.

J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, “Flexible and mechanical strain resistant large area SERS active substrates,” Nanoscale 4(11), 3410–3414 (2012).
[Crossref] [PubMed]

Uezono, S.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

Uji-I, H.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

Umemoto, K.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

Umeton, C.

U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Burgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(37), 7927–7933 (2014).
[Crossref]

Vajtai, R.

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24(38), 5261–5266 (2012).
[Crossref] [PubMed]

von Maltzahn, G.

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-Coded Gold Nanorods as a Multifunctional Platform for Densely Multiplexed Near-Infrared Imaging and Photothermal Heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

Wang, M.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

C. Gao, Y. Hu, M. Wang, M. Chi, and Y. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136(20), 7474–7479 (2014).
[Crossref] [PubMed]

Wang, M. H.

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuat. Biol. Chem. 251, 127–133 (2017).

Wang, S.

X. Wen, G. Li, J. Zhang, Q. Zhang, B. Peng, L. M. Wong, S. Wang, and Q. Xiong, “Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering,” Nanoscale 6(1), 132–139 (2014).
[Crossref] [PubMed]

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Wang, Y.

W. Zhang, B. Li, L. Chen, Y. Wang, D. Gao, X. Ma, and A. Wu, “Brushing, a simple way to fabricate SERS active paper substrates,” Anal. Methods 6(7), 2066–2071 (2014).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Wei, A.

H. M. Song, Q. Wei, Q. K. Ong, and A. Wei, “Plasmon-Resonant Nanoparticles and Nanostars With Magnetic Cores: Synthesis and Magnetomotive Imaging,” ACS Nano 4(9), 5163–5173 (2010).
[Crossref] [PubMed]

Wei, Q.

H. M. Song, Q. Wei, Q. K. Ong, and A. Wei, “Plasmon-Resonant Nanoparticles and Nanostars With Magnetic Cores: Synthesis and Magnetomotive Imaging,” ACS Nano 4(9), 5163–5173 (2010).
[Crossref] [PubMed]

Wen, X.

X. Wen, G. Li, J. Zhang, Q. Zhang, B. Peng, L. M. Wong, S. Wang, and Q. Xiong, “Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering,” Nanoscale 6(1), 132–139 (2014).
[Crossref] [PubMed]

Wong, L. M.

X. Wen, G. Li, J. Zhang, Q. Zhang, B. Peng, L. M. Wong, S. Wang, and Q. Xiong, “Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering,” Nanoscale 6(1), 132–139 (2014).
[Crossref] [PubMed]

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Wu, A.

W. Zhang, B. Li, L. Chen, Y. Wang, D. Gao, X. Ma, and A. Wu, “Brushing, a simple way to fabricate SERS active paper substrates,” Anal. Methods 6(7), 2066–2071 (2014).
[Crossref]

Wu, Z.

M. Y. Lv, H. Y. Teng, Z. Y. Chen, Y. M. Zhao, X. Zhang, L. Liu, Z. Wu, L. M. Liu, and H. J. Xu, “Low-cost Au nanoparticle-decorated cicada wing as sensitive and recyclable substrates for surface enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 209, 820–827 (2015).

Xiong, Q.

X. Wen, G. Li, J. Zhang, Q. Zhang, B. Peng, L. M. Wong, S. Wang, and Q. Xiong, “Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering,” Nanoscale 6(1), 132–139 (2014).
[Crossref] [PubMed]

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Xiu, X.

Xu, H. J.

M. Y. Lv, H. Y. Teng, Z. Y. Chen, Y. M. Zhao, X. Zhang, L. Liu, Z. Wu, L. M. Liu, and H. J. Xu, “Low-cost Au nanoparticle-decorated cicada wing as sensitive and recyclable substrates for surface enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 209, 820–827 (2015).

Xu, S.

Xu, S. C.

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuat. Biol. Chem. 251, 127–133 (2017).

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Xu, X.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Xu, Y. Y.

Xuan, J.

Z. Zheng, S. Cong, W. Gong, J. Xuan, G. Li, W. Lu, F. Geng, and Z. Zhao, “Semiconductor SERS enhancement enabled by oxygen incorporation,” Nat. Commun. 8(1), 1993 (2017).
[Crossref] [PubMed]

Xue, J. Q.

L. L. Qu, D. W. Li, J. Q. Xue, W. L. Zhai, J. S. Fossey, and Y. T. Long, “Batch fabrication of disposable screen printed SERS arrays,” Lab Chip 12(5), 876–881 (2012).
[Crossref] [PubMed]

Yan, W.

L. Zhang, W. Yan, N. Gao, W. Luo, D. Zhang, X. Li, and D. Liu, “Reversible Strain-Dependent Properties of Wrinkled Au/PDMS Surface,” Mater. Lett. 218(1), 317–320 (2018).
[Crossref]

Yang, C.

Yang, Z.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Yen, Y. T.

S. Y. Chou, C. C. Yu, Y. T. Yen, K. T. Lin, H. L. Chen, and W. F. Su, “Romantic Story or Raman Scattering? Rose Petals as Ecofriendly, Low-Cost Substrates for Ultrasensitive Surface-Enhanced Raman Scattering,” Anal. Chem. 87(12), 6017–6024 (2015).
[Crossref] [PubMed]

Yin, Y.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

C. Gao, Y. Hu, M. Wang, M. Chi, and Y. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136(20), 7474–7479 (2014).
[Crossref] [PubMed]

Yu, C. C.

S. Y. Chou, C. C. Yu, Y. T. Yen, K. T. Lin, H. L. Chen, and W. F. Su, “Romantic Story or Raman Scattering? Rose Petals as Ecofriendly, Low-Cost Substrates for Ultrasensitive Surface-Enhanced Raman Scattering,” Anal. Chem. 87(12), 6017–6024 (2015).
[Crossref] [PubMed]

Yu, J.

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuat. Biol. Chem. 251, 127–133 (2017).

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

Yu, S. H.

C. L. Zhang, K. P. Lv, H. P. Cong, and S. H. Yu, “Controlled Assemblies of Gold Nanorods in PVA Nanofiber Matrix as Flexible Free-Standing SERS Substrates by Electrospinning,” Small 8(5), 647–653 (2012).
[Crossref] [PubMed]

Zang, C.

Zhai, W. L.

L. L. Qu, D. W. Li, J. Q. Xue, W. L. Zhai, J. S. Fossey, and Y. T. Long, “Batch fabrication of disposable screen printed SERS arrays,” Lab Chip 12(5), 876–881 (2012).
[Crossref] [PubMed]

Zhang, C.

Zhang, C. L.

C. L. Zhang, K. P. Lv, H. P. Cong, and S. H. Yu, “Controlled Assemblies of Gold Nanorods in PVA Nanofiber Matrix as Flexible Free-Standing SERS Substrates by Electrospinning,” Small 8(5), 647–653 (2012).
[Crossref] [PubMed]

Zhang, D.

L. Zhang, W. Yan, N. Gao, W. Luo, D. Zhang, X. Li, and D. Liu, “Reversible Strain-Dependent Properties of Wrinkled Au/PDMS Surface,” Mater. Lett. 218(1), 317–320 (2018).
[Crossref]

Zhang, F.

F. Zhang, G. B. Braun, Y. Shi, Y. Zhang, X. Sun, N. O. Reich, D. Zhao, and G. Stucky, “Fabrication of Ag@SiO(2)@Y(2)O(3):Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles,” J. Am. Chem. Soc. 132(9), 2850–2851 (2010).
[Crossref] [PubMed]

Zhang, H.

G. Lu, H. Li, and H. Zhang, “Gold-Nanoparticle-Embedded Polydimethylsiloxane Elastomers for Highly Sensitive Raman Detection,” Small 8(9), 1336–1340 (2012).
[Crossref] [PubMed]

G. Lu, H. Li, and H. Zhang, “Nanoparticle-coated PDMS elastomers for enhancement of Raman scattering,” Chem. Commun. (Camb.) 47(30), 8560–8562 (2011).
[Crossref] [PubMed]

Zhang, J.

X. Wen, G. Li, J. Zhang, Q. Zhang, B. Peng, L. M. Wong, S. Wang, and Q. Xiong, “Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering,” Nanoscale 6(1), 132–139 (2014).
[Crossref] [PubMed]

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, W. Yan, N. Gao, W. Luo, D. Zhang, X. Li, and D. Liu, “Reversible Strain-Dependent Properties of Wrinkled Au/PDMS Surface,” Mater. Lett. 218(1), 317–320 (2018).
[Crossref]

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Zhang, Q.

X. Wen, G. Li, J. Zhang, Q. Zhang, B. Peng, L. M. Wong, S. Wang, and Q. Xiong, “Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering,” Nanoscale 6(1), 132–139 (2014).
[Crossref] [PubMed]

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Zhang, W.

W. Zhang, B. Li, L. Chen, Y. Wang, D. Gao, X. Ma, and A. Wu, “Brushing, a simple way to fabricate SERS active paper substrates,” Anal. Methods 6(7), 2066–2071 (2014).
[Crossref]

Zhang, X.

M. Y. Lv, H. Y. Teng, Z. Y. Chen, Y. M. Zhao, X. Zhang, L. Liu, Z. Wu, L. M. Liu, and H. J. Xu, “Low-cost Au nanoparticle-decorated cicada wing as sensitive and recyclable substrates for surface enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 209, 820–827 (2015).

Zhang, Y.

F. Zhang, G. B. Braun, Y. Shi, Y. Zhang, X. Sun, N. O. Reich, D. Zhao, and G. Stucky, “Fabrication of Ag@SiO(2)@Y(2)O(3):Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles,” J. Am. Chem. Soc. 132(9), 2850–2851 (2010).
[Crossref] [PubMed]

Zhao, D.

F. Zhang, G. B. Braun, Y. Shi, Y. Zhang, X. Sun, N. O. Reich, D. Zhao, and G. Stucky, “Fabrication of Ag@SiO(2)@Y(2)O(3):Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles,” J. Am. Chem. Soc. 132(9), 2850–2851 (2010).
[Crossref] [PubMed]

Zhao, Y.

J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, “Flexible and mechanical strain resistant large area SERS active substrates,” Nanoscale 4(11), 3410–3414 (2012).
[Crossref] [PubMed]

Zhao, Y. M.

M. Y. Lv, H. Y. Teng, Z. Y. Chen, Y. M. Zhao, X. Zhang, L. Liu, Z. Wu, L. M. Liu, and H. J. Xu, “Low-cost Au nanoparticle-decorated cicada wing as sensitive and recyclable substrates for surface enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 209, 820–827 (2015).

Zhao, Z.

Z. Zheng, S. Cong, W. Gong, J. Xuan, G. Li, W. Lu, F. Geng, and Z. Zhao, “Semiconductor SERS enhancement enabled by oxygen incorporation,” Nat. Commun. 8(1), 1993 (2017).
[Crossref] [PubMed]

Zheng, H.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Zheng, Z.

Z. Zheng, S. Cong, W. Gong, J. Xuan, G. Li, W. Lu, F. Geng, and Z. Zhao, “Semiconductor SERS enhancement enabled by oxygen incorporation,” Nat. Commun. 8(1), 1993 (2017).
[Crossref] [PubMed]

Zhou, F.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96(26), 263103 (2010).
[Crossref]

Zhu, C.

Y. Qian, G. Meng, Q. Huang, C. Zhu, Z. Huang, K. Sun, and B. Chen, “Flexible membranes of Ag-nanosheet-grafted polyamide-nanofibers as effective 3D SERS substrates,” Nanoscale 6(9), 4781–4788 (2014).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (2)

C. H. Lee, L. Tian, and S. Singamaneni, “Paper-based SERS swab for rapid trace detection on real-world surfaces,” ACS Appl. Mater. Interfaces 2(12), 3429–3435 (2010).
[Crossref] [PubMed]

S. Park, J. Lee, and H. Ko, “Transparent and Flexible Surface-Enhanced Raman Scattering (SERS) Sensors Based on Gold Nanostar Arrays Embedded in Silicon Rubber Film,” ACS Appl. Mater. Interfaces 9(50), 44088–44095 (2017).
[Crossref] [PubMed]

ACS Nano (3)

L. Scarabelli, M. Coronado-Puchau, J. J. Giner-Casares, J. Langer, and L. M. Liz-Marzán, “Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering,” ACS Nano 8(6), 5833–5842 (2014).
[Crossref] [PubMed]

H. M. Song, Q. Wei, Q. K. Ong, and A. Wei, “Plasmon-Resonant Nanoparticles and Nanostars With Magnetic Cores: Synthesis and Magnetomotive Imaging,” ACS Nano 4(9), 5163–5173 (2010).
[Crossref] [PubMed]

W. J. Cho, Y. Kim, and J. K. Kim, “Ultrahigh-Density Array of Silver Nanoclusters for SERS Substrate with High Sensitivity and Excellent Reproducibility,” ACS Nano 6(1), 249–255 (2012).
[Crossref] [PubMed]

Adv. Funct. Mater. (3)

K. J. Lee, D. Kim, B. C. Jang, D. J. Kim, H. Park, D. Y. Jung, W. Hong, T. K. Kim, Y. K. Choi, and S. Y. Choi, “Multilayer Graphene with a Rippled Structure as a Spacer for Improving Plasmonic Coupling,” Adv. Funct. Mater. 26(28), 5093–5101 (2016).
[Crossref]

S. Si, W. Liang, Y. Sun, J. Huang, W. Ma, Z. Liang, Q. Bao, and L. Jiang, “Facile Fabrication of High-Density Sub-1-nm Gaps from Au Nanoparticle Monolayers as Reproducible SERS Substrates,” Adv. Funct. Mater. 26(44), 8137–8145 (2016).
[Crossref]

S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al‐Sayari, D. E. Kim, and T. Lee, “Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics,” Adv. Funct. Mater. 25(21), 3114–3121 (2015).
[Crossref]

Adv. Mater. (4)

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24(38), 5261–5266 (2012).
[Crossref] [PubMed]

K. D. Osberg, M. Rycenga, G. R. Bourret, K. A. Brown, and C. A. Mirkin, “Dispersible Surface-Enhanced Raman Scattering Nanosheets,” Adv. Mater. 24(45), 6065–6070 (2012).
[Crossref] [PubMed]

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-Coded Gold Nanorods as a Multifunctional Platform for Densely Multiplexed Near-Infrared Imaging and Photothermal Heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

D. Paria, K. Roy, H. J. Singh, S. Kumar, S. Raghavan, A. Ghosh, and A. Ghosh, “Ultrahigh Field Enhancement and Photoresponse in Atomically Separated Arrays of Plasmonic Dimers,” Adv. Mater. 27(10), 1751–1758 (2015).
[Crossref] [PubMed]

Anal. Chem. (1)

S. Y. Chou, C. C. Yu, Y. T. Yen, K. T. Lin, H. L. Chen, and W. F. Su, “Romantic Story or Raman Scattering? Rose Petals as Ecofriendly, Low-Cost Substrates for Ultrasensitive Surface-Enhanced Raman Scattering,” Anal. Chem. 87(12), 6017–6024 (2015).
[Crossref] [PubMed]

Anal. Methods (1)

W. Zhang, B. Li, L. Chen, Y. Wang, D. Gao, X. Ma, and A. Wu, “Brushing, a simple way to fabricate SERS active paper substrates,” Anal. Methods 6(7), 2066–2071 (2014).
[Crossref]

Appl. Phys. Lett. (1)

J. Li, S. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96(26), 263103 (2010).
[Crossref]

Chem. Commun. (Camb.) (2)

G. Lu, H. Li, and H. Zhang, “Nanoparticle-coated PDMS elastomers for enhancement of Raman scattering,” Chem. Commun. (Camb.) 47(30), 8560–8562 (2011).
[Crossref] [PubMed]

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

J. Am. Chem. Soc. (2)

C. Gao, Y. Hu, M. Wang, M. Chi, and Y. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136(20), 7474–7479 (2014).
[Crossref] [PubMed]

F. Zhang, G. B. Braun, Y. Shi, Y. Zhang, X. Sun, N. O. Reich, D. Zhao, and G. Stucky, “Fabrication of Ag@SiO(2)@Y(2)O(3):Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles,” J. Am. Chem. Soc. 132(9), 2850–2851 (2010).
[Crossref] [PubMed]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Burgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(37), 7927–7933 (2014).
[Crossref]

Lab Chip (1)

L. L. Qu, D. W. Li, J. Q. Xue, W. L. Zhai, J. S. Fossey, and Y. T. Long, “Batch fabrication of disposable screen printed SERS arrays,” Lab Chip 12(5), 876–881 (2012).
[Crossref] [PubMed]

Mater. Lett. (1)

L. Zhang, W. Yan, N. Gao, W. Luo, D. Zhang, X. Li, and D. Liu, “Reversible Strain-Dependent Properties of Wrinkled Au/PDMS Surface,” Mater. Lett. 218(1), 317–320 (2018).
[Crossref]

Nano Lett. (2)

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Nanoscale (6)

X. Wen, G. Li, J. Zhang, Q. Zhang, B. Peng, L. M. Wong, S. Wang, and Q. Xiong, “Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering,” Nanoscale 6(1), 132–139 (2014).
[Crossref] [PubMed]

A. Shiohara, J. Langer, L. Polavarapu, and L. M. Liz-Marzán, “Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing,” Nanoscale 6(16), 9817–9823 (2014).
[Crossref] [PubMed]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

Y. Qian, G. Meng, Q. Huang, C. Zhu, Z. Huang, K. Sun, and B. Chen, “Flexible membranes of Ag-nanosheet-grafted polyamide-nanofibers as effective 3D SERS substrates,” Nanoscale 6(9), 4781–4788 (2014).
[Crossref] [PubMed]

J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, “Flexible and mechanical strain resistant large area SERS active substrates,” Nanoscale 4(11), 3410–3414 (2012).
[Crossref] [PubMed]

J. E. Lee, C. Park, K. Chung, J. W. Lim, F. Marques Mota, U. Jeong, and D. H. Kim, “Viable stretchable plasmonics based on unidirectional nanoprisms,” Nanoscale 10(8), 4105–4112 (2018).
[Crossref] [PubMed]

Nat. Commun. (1)

Z. Zheng, S. Cong, W. Gong, J. Xuan, G. Li, W. Lu, F. Geng, and Z. Zhao, “Semiconductor SERS enhancement enabled by oxygen incorporation,” Nat. Commun. 8(1), 1993 (2017).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Science (1)

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Sens. Actuat. Biol. Chem. (3)

P. Kumar, R. Khosla, M. Soni, D. Deva, and S. K. Sharma, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sens. Actuat. Biol. Chem. 246, 477–486 (2017).

M. Y. Lv, H. Y. Teng, Z. Y. Chen, Y. M. Zhao, X. Zhang, L. Liu, Z. Wu, L. M. Liu, and H. J. Xu, “Low-cost Au nanoparticle-decorated cicada wing as sensitive and recyclable substrates for surface enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 209, 820–827 (2015).

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuat. Biol. Chem. 251, 127–133 (2017).

Small (2)

C. L. Zhang, K. P. Lv, H. P. Cong, and S. H. Yu, “Controlled Assemblies of Gold Nanorods in PVA Nanofiber Matrix as Flexible Free-Standing SERS Substrates by Electrospinning,” Small 8(5), 647–653 (2012).
[Crossref] [PubMed]

G. Lu, H. Li, and H. Zhang, “Gold-Nanoparticle-Embedded Polydimethylsiloxane Elastomers for Highly Sensitive Raman Detection,” Small 8(9), 1336–1340 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic illustration of the fabrication of the AgNPs/AgNPs-PDMS substrate.
Fig. 2
Fig. 2 (a) SEM image of Ag nanoparticles deposited on the silicon wafer. Insert of (a) is the size distribution of AgNPs. (b) and (c) are respectively the photograph of R6G solution droplets on the surface of the AgNPs-PDMS substrate and AgNPs/AgNPs-PDMS substrate. (d) and (f) are respectively the SEM image of the surface of the AgNPs-PDMS substrate and AgNPs/AgNPs-PDMS substrate. Insert of (d) is the cross section of the AgNPs-PDMS substrate. (e) is the corresponding EDS spectrum of the AgNPs-PDMS substrate.
Fig. 3
Fig. 3 (a) SERS spectra of R6G with concentrations from 10−9 to 10−12 M on the AgNPs-PDMS substrate. Insert of (a) is the Raman spectra of 10−2 M and 0 M R6G on the pure PDMS substrate. (b) SERS spectra of R6G with concentrations from 10−9 to 10−13 M on the AgNPs/AgNPs-PDMS substrate.
Fig. 4
Fig. 4 (a) Schematic illustration of the stretching deformation. (b) SERS spectra of R6G (10−7 M) adsorbed on the flexible substrate after the stretching to 40% with various stretching cycles. (c) Average value of the intensity of R6G peaks at 613 cm−1 with various stretching cycles. (d) The variation of Raman intensity at 613 cm−1 under the different tensile strains.
Fig. 5
Fig. 5 (a) Schematic illustration of the bending deformation. (b) SERS spectra of R6G (10−7 M) adsorbed on the flexible substrate after the bending with various bending cycles. (c) Average value of the intensity of R6G peaks at 613 cm−1 with various bending cycles.
Fig. 6
Fig. 6 (a) The Raman spectra of R6G molecules (10−7 M) adsorbed on the flexible substrate with undergoing various tensile strains. (b) The average value of the I613 and the enhancement ratio of the I613 changes as a function of tensile strain.
Fig. 7
Fig. 7 (a) SERS spectra of R6G molecules (10−7 M) adsorbed on the flexible substrate with tensile strain to 80% from 16 random spots. (b) Intensity distribution of the peaks at 613 cm−1 corresponding to (a) with the RSD of 6.1%.
Fig. 8
Fig. 8 (a)-(d) The simulated electric field distributions of pure PDMS substrate, AgNPs-PDMS substrate and AgNPs/AgNPs-PDMS substrate. (e)-(f) The simulated electric field distributions of the AgNPs/AgNPs-PDMS substrate at the state of being stretched. (d) and (f) are the corresponding details of (c) and (e) at different scale bar.

Tables (1)

Tables Icon

Table 1 Comparing the sensitivity of different flexible SERS substrates.

Metrics