L. G. Cançado, A. Jorio, E. H. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11(8), 3190–3196 (2011).
[Crossref]
[PubMed]
J. F. Li, J. R. Anema, T. Wandlowski, and Z. Q. Tian, “Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications,” Chem. Soc. Rev. 44(23), 8399–8409 (2015).
[Crossref]
[PubMed]
Y. P. Liu, Z. W. Lu, W. L. Hasi, H. Zhao, L. Bao, and F. Yang, “Self-assembled activated carbon nanoparticles for reliable time-discretized quantitative surface enhanced Raman spectroscopy,” Anal. Methods 9(47), 6622–6628 (2017).
[Crossref]
S. E. J. Bell and N. M. S. Sirimuthu, “Quantitative surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 37(5), 1012–1024 (2008).
[Crossref]
[PubMed]
L. G. Cançado, A. Jorio, E. H. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11(8), 3190–3196 (2011).
[Crossref]
[PubMed]
L. G. Cançado, A. Jorio, E. H. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11(8), 3190–3196 (2011).
[Crossref]
[PubMed]
X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref]
[PubMed]
J. Zhang, X. Zhang, S. Chen, T. Gong, and Y. Zhu, “Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles,” Carbon 100, 395–407 (2016).
[Crossref]
J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref]
[PubMed]
K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]
S. L. Kleinman, R. R. Frontiera, A.-I. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15(1), 21–36 (2013).
[Crossref]
[PubMed]
L. M. Malard, M. A. Mpimenta, and G. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5), 51–87 (2009).
X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref]
[PubMed]
E. C. Le Ru and P. G. Etchegoin, “Single-molecule surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem. 63(1), 65–87 (2012).
[Crossref]
[PubMed]
E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the [E](4) enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423(1–3), 63–66 (2006).
[Crossref]
K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]
L. G. Cançado, A. Jorio, E. H. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11(8), 3190–3196 (2011).
[Crossref]
[PubMed]
L. G. Cançado, A. Jorio, E. H. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11(8), 3190–3196 (2011).
[Crossref]
[PubMed]
S. L. Kleinman, R. R. Frontiera, A.-I. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15(1), 21–36 (2013).
[Crossref]
[PubMed]
P. Gao, N. Yao, C. T. Wang, Z. Y. Zhao, Y. F. Luo, Y. Q. Wang, G. H. Gao, K. P. Liu, C. W. Zhao, and X. G. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]
S. G. Zhang, X. W. Zhang, X. Liu, Z. G. Yin, H. L. Gao, and Y. J. Zhao, “Raman peak enhancement and shift of few-layer graphene induced by plasmonic coupling with silver nanoparticles,” Appl. Phys. Lett. 104(12), 121109 (2014).
[Crossref]
P. Gao, N. Yao, C. T. Wang, Z. Y. Zhao, Y. F. Luo, Y. Q. Wang, G. H. Gao, K. P. Liu, C. W. Zhao, and X. G. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]
Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]
[PubMed]
C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref]
[PubMed]
C. Zhang, C. H. Lia, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]
A. B. Serrano-Montes, D. Jimenez de Aberasturi, J. Langer, J. J. Giner-Casares, L. Scarabelli, A. Herrero, and L. M. Liz-Marzán, “A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers,” Langmuir 31(33), 9205–9213 (2015).
[Crossref]
[PubMed]
J. Zhang, X. Zhang, S. Chen, T. Gong, and Y. Zhu, “Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles,” Carbon 100, 395–407 (2016).
[Crossref]
T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. L. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]
T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]
Y. P. Liu, Z. W. Lu, W. L. Hasi, H. Zhao, L. Bao, and F. Yang, “Self-assembled activated carbon nanoparticles for reliable time-discretized quantitative surface enhanced Raman spectroscopy,” Anal. Methods 9(47), 6622–6628 (2017).
[Crossref]
J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref]
[PubMed]
Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, B. Man, and B. Y. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]
[PubMed]
S. L. Kleinman, R. R. Frontiera, A.-I. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15(1), 21–36 (2013).
[Crossref]
[PubMed]
A. B. Serrano-Montes, D. Jimenez de Aberasturi, J. Langer, J. J. Giner-Casares, L. Scarabelli, A. Herrero, and L. M. Liz-Marzán, “A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers,” Langmuir 31(33), 9205–9213 (2015).
[Crossref]
[PubMed]
C. C. Ho, K. Zhao, and T.-Y. Lee, “Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere Lithography,” Nanoscale 6(15), 8606–8611 (2014).
[Crossref]
[PubMed]
W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, and B. Ren, “Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards,” Angew. Chem. Int. Ed. Engl. 54(25), 7308–7312 (2015).
[Crossref]
[PubMed]
J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref]
[PubMed]
Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, B. Man, and B. Y. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]
[PubMed]
C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref]
[PubMed]
X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]
K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]
W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, and B. Ren, “Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards,” Angew. Chem. Int. Ed. Engl. 54(25), 7308–7312 (2015).
[Crossref]
[PubMed]
Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, B. Man, and B. Y. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]
[PubMed]
C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref]
[PubMed]
C. Zhang, C. H. Lia, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]
C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref]
[PubMed]
A. B. Serrano-Montes, D. Jimenez de Aberasturi, J. Langer, J. J. Giner-Casares, L. Scarabelli, A. Herrero, and L. M. Liz-Marzán, “A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers,” Langmuir 31(33), 9205–9213 (2015).
[Crossref]
[PubMed]
L. G. Cançado, A. Jorio, E. H. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11(8), 3190–3196 (2011).
[Crossref]
[PubMed]
Y. Ryu, G. Kang, C.-W. Lee, and K. Kim, “Porous metallic nanocone arrays for high-density SERS hot spots via solvent-assisted nanoimprint lithography of block copolymer,” RSC Advances 5(93), 76085–76091 (2015).
[Crossref]
Y. Ryu, G. Kang, C.-W. Lee, and K. Kim, “Porous metallic nanocone arrays for high-density SERS hot spots via solvent-assisted nanoimprint lithography of block copolymer,” RSC Advances 5(93), 76085–76091 (2015).
[Crossref]
S. L. Kleinman, R. R. Frontiera, A.-I. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15(1), 21–36 (2013).
[Crossref]
[PubMed]
K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]
K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]
B. Radha, S. H. Lim, M. S. M. Saifullah, and G. U. Kulkarni, “Metal hierarchical patterning by direct nanoimprint lithography,” Sci. Rep. 3(1), 1078 (2013).
[Crossref]
[PubMed]
L. G. Cançado, A. Jorio, E. H. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11(8), 3190–3196 (2011).
[Crossref]
[PubMed]
A. B. Serrano-Montes, D. Jimenez de Aberasturi, J. Langer, J. J. Giner-Casares, L. Scarabelli, A. Herrero, and L. M. Liz-Marzán, “A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers,” Langmuir 31(33), 9205–9213 (2015).
[Crossref]
[PubMed]
E. C. Le Ru and P. G. Etchegoin, “Single-molecule surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem. 63(1), 65–87 (2012).
[Crossref]
[PubMed]
E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the [E](4) enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423(1–3), 63–66 (2006).
[Crossref]
Y. Ryu, G. Kang, C.-W. Lee, and K. Kim, “Porous metallic nanocone arrays for high-density SERS hot spots via solvent-assisted nanoimprint lithography of block copolymer,” RSC Advances 5(93), 76085–76091 (2015).
[Crossref]
J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref]
[PubMed]
R. H. Que, M. W. Shao, S. J. Zhuo, C. Y. Wen, S. D. Wang, and S.-T. Lee, “Highly reproducible surface-enhanced Raman scattering on a capillarity-assisted gold nanoparticle assembly,” Adv. Funct. Mater. 21(17), 3337–3343 (2011).
[Crossref]
C. C. Ho, K. Zhao, and T.-Y. Lee, “Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere Lithography,” Nanoscale 6(15), 8606–8611 (2014).
[Crossref]
[PubMed]
Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, B. Man, and B. Y. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]
[PubMed]
C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref]
[PubMed]
W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, and B. Ren, “Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards,” Angew. Chem. Int. Ed. Engl. 54(25), 7308–7312 (2015).
[Crossref]
[PubMed]
J. Quan, J. Zhang, X. Qi, J. Li, N. Wang, and Y. Zhu, “A study on the correlation between the dewetting temperature of Ag film and SERS intensity,” Sci. Rep. 7(1), 14771 (2017).
[Crossref]
[PubMed]
J. F. Li, J. R. Anema, T. Wandlowski, and Z. Q. Tian, “Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications,” Chem. Soc. Rev. 44(23), 8399–8409 (2015).
[Crossref]
[PubMed]
Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, B. Man, and B. Y. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]
[PubMed]
C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref]
[PubMed]
C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref]
[PubMed]
C. Zhang, C. H. Lia, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]
B. Radha, S. H. Lim, M. S. M. Saifullah, and G. U. Kulkarni, “Metal hierarchical patterning by direct nanoimprint lithography,” Sci. Rep. 3(1), 1078 (2013).
[Crossref]
[PubMed]
W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, and B. Ren, “Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards,” Angew. Chem. Int. Ed. Engl. 54(25), 7308–7312 (2015).
[Crossref]
[PubMed]
W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, and B. Ren, “Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards,” Angew. Chem. Int. Ed. Engl. 54(25), 7308–7312 (2015).
[Crossref]
[PubMed]
Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, B. Man, and B. Y. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]
[PubMed]
C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref]
[PubMed]
C. Zhang, C. H. Lia, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]
C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref]
[PubMed]
W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, and B. Ren, “Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards,” Angew. Chem. Int. Ed. Engl. 54(25), 7308–7312 (2015).
[Crossref]
[PubMed]
C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref]
[PubMed]
P. Gao, N. Yao, C. T. Wang, Z. Y. Zhao, Y. F. Luo, Y. Q. Wang, G. H. Gao, K. P. Liu, C. W. Zhao, and X. G. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]
C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref]
[PubMed]
S. G. Zhang, X. W. Zhang, X. Liu, Z. G. Yin, H. L. Gao, and Y. J. Zhao, “Raman peak enhancement and shift of few-layer graphene induced by plasmonic coupling with silver nanoparticles,” Appl. Phys. Lett. 104(12), 121109 (2014).
[Crossref]
C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref]
[PubMed]
C. Zhang, C. H. Lia, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]
Y. P. Liu, Z. W. Lu, W. L. Hasi, H. Zhao, L. Bao, and F. Yang, “Self-assembled activated carbon nanoparticles for reliable time-discretized quantitative surface enhanced Raman spectroscopy,” Anal. Methods 9(47), 6622–6628 (2017).
[Crossref]
A. B. Serrano-Montes, D. Jimenez de Aberasturi, J. Langer, J. J. Giner-Casares, L. Scarabelli, A. Herrero, and L. M. Liz-Marzán, “A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers,” Langmuir 31(33), 9205–9213 (2015).
[Crossref]
[PubMed]
L. G. Cançado, A. Jorio, E. H. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11(8), 3190–3196 (2011).
[Crossref]
[PubMed]
Y. P. Liu, Z. W. Lu, W. L. Hasi, H. Zhao, L. Bao, and F. Yang, “Self-assembled activated carbon nanoparticles for reliable time-discretized quantitative surface enhanced Raman spectroscopy,” Anal. Methods 9(47), 6622–6628 (2017).
[Crossref]
Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]
[PubMed]
C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref]
[PubMed]
P. Gao, N. Yao, C. T. Wang, Z. Y. Zhao, Y. F. Luo, Y. Q. Wang, G. H. Gao, K. P. Liu, C. W. Zhao, and X. G. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]
X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]
Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]
[PubMed]
P. Gao, N. Yao, C. T. Wang, Z. Y. Zhao, Y. F. Luo, Y. Q. Wang, G. H. Gao, K. P. Liu, C. W. Zhao, and X. G. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]
L. M. Malard, M. A. Mpimenta, and G. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5), 51–87 (2009).
Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, B. Man, and B. Y. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]
[PubMed]
C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref]
[PubMed]
Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, B. Man, and B. Y. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]
[PubMed]
C. Zhang, C. H. Lia, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]
C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref]
[PubMed]
H. Wei, A. McCarthy, J. Song, W. Zhou, and P. J. Vikesland, “Quantitative SERS by hot spot normalization - surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance,” Faraday Discuss. 205, 491–504 (2017).
[Crossref]
[PubMed]
L. G. Cançado, A. Jorio, E. H. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11(8), 3190–3196 (2011).
[Crossref]
[PubMed]
L. M. Malard, M. A. Mpimenta, and G. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5), 51–87 (2009).
Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, B. Man, and B. Y. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]
[PubMed]
K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]
Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]
[PubMed]
J. Quan, J. Zhang, X. Qi, J. Li, N. Wang, and Y. Zhu, “A study on the correlation between the dewetting temperature of Ag film and SERS intensity,” Sci. Rep. 7(1), 14771 (2017).
[Crossref]
[PubMed]
J. Quan, J. Zhang, X. Qi, J. Li, N. Wang, and Y. Zhu, “A study on the correlation between the dewetting temperature of Ag film and SERS intensity,” Sci. Rep. 7(1), 14771 (2017).
[Crossref]
[PubMed]
T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]
R. H. Que, M. W. Shao, S. J. Zhuo, C. Y. Wen, S. D. Wang, and S.-T. Lee, “Highly reproducible surface-enhanced Raman scattering on a capillarity-assisted gold nanoparticle assembly,” Adv. Funct. Mater. 21(17), 3337–3343 (2011).
[Crossref]
B. Radha, S. H. Lim, M. S. M. Saifullah, and G. U. Kulkarni, “Metal hierarchical patterning by direct nanoimprint lithography,” Sci. Rep. 3(1), 1078 (2013).
[Crossref]
[PubMed]
W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, and B. Ren, “Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards,” Angew. Chem. Int. Ed. Engl. 54(25), 7308–7312 (2015).
[Crossref]
[PubMed]
T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]
Y. Ryu, G. Kang, C.-W. Lee, and K. Kim, “Porous metallic nanocone arrays for high-density SERS hot spots via solvent-assisted nanoimprint lithography of block copolymer,” RSC Advances 5(93), 76085–76091 (2015).
[Crossref]
B. Radha, S. H. Lim, M. S. M. Saifullah, and G. U. Kulkarni, “Metal hierarchical patterning by direct nanoimprint lithography,” Sci. Rep. 3(1), 1078 (2013).
[Crossref]
[PubMed]
A. B. Serrano-Montes, D. Jimenez de Aberasturi, J. Langer, J. J. Giner-Casares, L. Scarabelli, A. Herrero, and L. M. Liz-Marzán, “A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers,” Langmuir 31(33), 9205–9213 (2015).
[Crossref]
[PubMed]
A. B. Serrano-Montes, D. Jimenez de Aberasturi, J. Langer, J. J. Giner-Casares, L. Scarabelli, A. Herrero, and L. M. Liz-Marzán, “A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers,” Langmuir 31(33), 9205–9213 (2015).
[Crossref]
[PubMed]
R. H. Que, M. W. Shao, S. J. Zhuo, C. Y. Wen, S. D. Wang, and S.-T. Lee, “Highly reproducible surface-enhanced Raman scattering on a capillarity-assisted gold nanoparticle assembly,” Adv. Funct. Mater. 21(17), 3337–3343 (2011).
[Crossref]
W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, and B. Ren, “Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards,” Angew. Chem. Int. Ed. Engl. 54(25), 7308–7312 (2015).
[Crossref]
[PubMed]
S. E. J. Bell and N. M. S. Sirimuthu, “Quantitative surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 37(5), 1012–1024 (2008).
[Crossref]
[PubMed]
H. Wei, A. McCarthy, J. Song, W. Zhou, and P. J. Vikesland, “Quantitative SERS by hot spot normalization - surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance,” Faraday Discuss. 205, 491–504 (2017).
[Crossref]
[PubMed]
L. G. Cançado, A. Jorio, E. H. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11(8), 3190–3196 (2011).
[Crossref]
[PubMed]
C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref]
[PubMed]
H. H. Tian, N. Zhang, L. M. Tong, and J. Zhang, “In situ quantitative graphene-based surface-enhanced Raman spectroscopy,” Small Methods 1(6), 1700126 (2017).
[Crossref]
J. F. Li, J. R. Anema, T. Wandlowski, and Z. Q. Tian, “Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications,” Chem. Soc. Rev. 44(23), 8399–8409 (2015).
[Crossref]
[PubMed]
H. H. Tian, N. Zhang, L. M. Tong, and J. Zhang, “In situ quantitative graphene-based surface-enhanced Raman spectroscopy,” Small Methods 1(6), 1700126 (2017).
[Crossref]
S. L. Kleinman, R. R. Frontiera, A.-I. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15(1), 21–36 (2013).
[Crossref]
[PubMed]
H. Wei, A. McCarthy, J. Song, W. Zhou, and P. J. Vikesland, “Quantitative SERS by hot spot normalization - surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance,” Faraday Discuss. 205, 491–504 (2017).
[Crossref]
[PubMed]
J. F. Li, J. R. Anema, T. Wandlowski, and Z. Q. Tian, “Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications,” Chem. Soc. Rev. 44(23), 8399–8409 (2015).
[Crossref]
[PubMed]
Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]
[PubMed]
C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref]
[PubMed]
P. Gao, N. Yao, C. T. Wang, Z. Y. Zhao, Y. F. Luo, Y. Q. Wang, G. H. Gao, K. P. Liu, C. W. Zhao, and X. G. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]
X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref]
[PubMed]
Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, B. Man, and B. Y. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]
[PubMed]
C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref]
[PubMed]
J. Quan, J. Zhang, X. Qi, J. Li, N. Wang, and Y. Zhu, “A study on the correlation between the dewetting temperature of Ag film and SERS intensity,” Sci. Rep. 7(1), 14771 (2017).
[Crossref]
[PubMed]
W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, and B. Ren, “Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards,” Angew. Chem. Int. Ed. Engl. 54(25), 7308–7312 (2015).
[Crossref]
[PubMed]
R. H. Que, M. W. Shao, S. J. Zhuo, C. Y. Wen, S. D. Wang, and S.-T. Lee, “Highly reproducible surface-enhanced Raman scattering on a capillarity-assisted gold nanoparticle assembly,” Adv. Funct. Mater. 21(17), 3337–3343 (2011).
[Crossref]
T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. L. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]
X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref]
[PubMed]
Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]
[PubMed]
C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref]
[PubMed]
K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]
P. Gao, N. Yao, C. T. Wang, Z. Y. Zhao, Y. F. Luo, Y. Q. Wang, G. H. Gao, K. P. Liu, C. W. Zhao, and X. G. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]
H. Wei, A. McCarthy, J. Song, W. Zhou, and P. J. Vikesland, “Quantitative SERS by hot spot normalization - surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance,” Faraday Discuss. 205, 491–504 (2017).
[Crossref]
[PubMed]
R. H. Que, M. W. Shao, S. J. Zhuo, C. Y. Wen, S. D. Wang, and S.-T. Lee, “Highly reproducible surface-enhanced Raman scattering on a capillarity-assisted gold nanoparticle assembly,” Adv. Funct. Mater. 21(17), 3337–3343 (2011).
[Crossref]
X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref]
[PubMed]
J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref]
[PubMed]
T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]
C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref]
[PubMed]
C. Zhang, C. H. Lia, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]
C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref]
[PubMed]
C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref]
[PubMed]
W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, and B. Ren, “Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards,” Angew. Chem. Int. Ed. Engl. 54(25), 7308–7312 (2015).
[Crossref]
[PubMed]
C. Zhang, C. H. Lia, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]
C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref]
[PubMed]
Y. P. Liu, Z. W. Lu, W. L. Hasi, H. Zhao, L. Bao, and F. Yang, “Self-assembled activated carbon nanoparticles for reliable time-discretized quantitative surface enhanced Raman spectroscopy,” Anal. Methods 9(47), 6622–6628 (2017).
[Crossref]
X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref]
[PubMed]
Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]
[PubMed]
P. Gao, N. Yao, C. T. Wang, Z. Y. Zhao, Y. F. Luo, Y. Q. Wang, G. H. Gao, K. P. Liu, C. W. Zhao, and X. G. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]
C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref]
[PubMed]
S. G. Zhang, X. W. Zhang, X. Liu, Z. G. Yin, H. L. Gao, and Y. J. Zhao, “Raman peak enhancement and shift of few-layer graphene induced by plasmonic coupling with silver nanoparticles,” Appl. Phys. Lett. 104(12), 121109 (2014).
[Crossref]
C. Zhang, C. H. Lia, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]
C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref]
[PubMed]
C. Zhang, C. H. Lia, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]
Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, B. Man, and B. Y. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]
[PubMed]
C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref]
[PubMed]
C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref]
[PubMed]
J. Quan, J. Zhang, X. Qi, J. Li, N. Wang, and Y. Zhu, “A study on the correlation between the dewetting temperature of Ag film and SERS intensity,” Sci. Rep. 7(1), 14771 (2017).
[Crossref]
[PubMed]
H. H. Tian, N. Zhang, L. M. Tong, and J. Zhang, “In situ quantitative graphene-based surface-enhanced Raman spectroscopy,” Small Methods 1(6), 1700126 (2017).
[Crossref]
J. Zhang, X. Zhang, S. Chen, T. Gong, and Y. Zhu, “Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles,” Carbon 100, 395–407 (2016).
[Crossref]
T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. L. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]
T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. L. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]
T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]
X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref]
[PubMed]
H. H. Tian, N. Zhang, L. M. Tong, and J. Zhang, “In situ quantitative graphene-based surface-enhanced Raman spectroscopy,” Small Methods 1(6), 1700126 (2017).
[Crossref]
S. G. Zhang, X. W. Zhang, X. Liu, Z. G. Yin, H. L. Gao, and Y. J. Zhao, “Raman peak enhancement and shift of few-layer graphene induced by plasmonic coupling with silver nanoparticles,” Appl. Phys. Lett. 104(12), 121109 (2014).
[Crossref]
Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]
[PubMed]
J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref]
[PubMed]
J. Zhang, X. Zhang, S. Chen, T. Gong, and Y. Zhu, “Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles,” Carbon 100, 395–407 (2016).
[Crossref]
J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref]
[PubMed]
T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. L. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]
S. G. Zhang, X. W. Zhang, X. Liu, Z. G. Yin, H. L. Gao, and Y. J. Zhao, “Raman peak enhancement and shift of few-layer graphene induced by plasmonic coupling with silver nanoparticles,” Appl. Phys. Lett. 104(12), 121109 (2014).
[Crossref]
X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref]
[PubMed]
Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]
[PubMed]
P. Gao, N. Yao, C. T. Wang, Z. Y. Zhao, Y. F. Luo, Y. Q. Wang, G. H. Gao, K. P. Liu, C. W. Zhao, and X. G. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]
Y. P. Liu, Z. W. Lu, W. L. Hasi, H. Zhao, L. Bao, and F. Yang, “Self-assembled activated carbon nanoparticles for reliable time-discretized quantitative surface enhanced Raman spectroscopy,” Anal. Methods 9(47), 6622–6628 (2017).
[Crossref]
C. C. Ho, K. Zhao, and T.-Y. Lee, “Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere Lithography,” Nanoscale 6(15), 8606–8611 (2014).
[Crossref]
[PubMed]
X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, “Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography,” ACS Appl. Mater. Interfaces 9(8), 7710–7716 (2017).
[Crossref]
[PubMed]
S. G. Zhang, X. W. Zhang, X. Liu, Z. G. Yin, H. L. Gao, and Y. J. Zhao, “Raman peak enhancement and shift of few-layer graphene induced by plasmonic coupling with silver nanoparticles,” Appl. Phys. Lett. 104(12), 121109 (2014).
[Crossref]
J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref]
[PubMed]
Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]
[PubMed]
C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref]
[PubMed]
P. Gao, N. Yao, C. T. Wang, Z. Y. Zhao, Y. F. Luo, Y. Q. Wang, G. H. Gao, K. P. Liu, C. W. Zhao, and X. G. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]
W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, and B. Ren, “Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards,” Angew. Chem. Int. Ed. Engl. 54(25), 7308–7312 (2015).
[Crossref]
[PubMed]
H. Wei, A. McCarthy, J. Song, W. Zhou, and P. J. Vikesland, “Quantitative SERS by hot spot normalization - surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance,” Faraday Discuss. 205, 491–504 (2017).
[Crossref]
[PubMed]
J. Quan, J. Zhang, X. Qi, J. Li, N. Wang, and Y. Zhu, “A study on the correlation between the dewetting temperature of Ag film and SERS intensity,” Sci. Rep. 7(1), 14771 (2017).
[Crossref]
[PubMed]
J. Zhang, X. Zhang, S. Chen, T. Gong, and Y. Zhu, “Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles,” Carbon 100, 395–407 (2016).
[Crossref]
T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. L. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]
T. C. Gong, Y. Zhu, J. Zhang, W. B. Xie, W. J. Ren, and J. M. Quan, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]
R. H. Que, M. W. Shao, S. J. Zhuo, C. Y. Wen, S. D. Wang, and S.-T. Lee, “Highly reproducible surface-enhanced Raman scattering on a capillarity-assisted gold nanoparticle assembly,” Adv. Funct. Mater. 21(17), 3337–3343 (2011).
[Crossref]