Abstract

The emerging fiber-optic two-photon endomicroscopy technology holds a strong promise for enabling translational applications of nonlinear optical imaging. Effective femtosecond pulse dispersion management is critical for achieving high-quality imaging. Here we report systematic analyses and performance characterization of a dual-fiber spectro-temporal dispersion management scheme involving a grating pair as the pulse stretcher. Compared with conventional linear-only compensation, the grating-based spectro-temporal compensation also takes into account nonlinear effects and enhances the two-photon signal by ~3-fold as experimentally demonstrated. Numerical simulations were carried out to systematically investigate the influence of several key design parameters on the overall compensation efficacy. Furthermore, comprehensive performance comparison with an ideal grism-pair counterpart reveals that a grating-pair stretcher affords much higher power throughput and thus is preferable for portable endomicroscopy systems with limited laser source power.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Characterization and application of chirped photonic crystal fiber in multiphoton imaging

Jiali Yu, Haishan Zeng, Harvey Lui, Julia S. Skibina, Günter Steinmeyer, and Shuo Tang
Opt. Express 22(9) 10366-10379 (2014)

High-fidelity, 160 fs, 5 μJ pulses from an integrated Yb-fiber laser system with a fiber stretcher matching a simple grating compressor

A. Fernández, K. Jespersen, L. Zhu, L. Grüner-Nielsen, A. Baltuška, A. Galvanauskas, and A. J. Verhoef
Opt. Lett. 37(5) 927-929 (2012)

References

  • View by:
  • |
  • |
  • |

  1. F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A Miniature Head-Mounted Two-Photon Microscope. High-Resolution Brain Imaging in Freely Moving Animals,” Neuron 31(6), 903–912 (2001).
    [Crossref] [PubMed]
  2. M. T. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett. 31(8), 1076–1078 (2006).
    [Crossref] [PubMed]
  3. Y. Wu, Y. Leng, J. Xi, and X. Li, “Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues,” Opt. Express 17(10), 7907–7915 (2009).
    [Crossref] [PubMed]
  4. Y. Wu, J. Xi, M. J. Cobb, and X. Li, “Scanning fiber-optic nonlinear endomicroscopy with miniature aspherical compound lens and multimode fiber collector,” Opt. Lett. 34(7), 953–955 (2009).
    [Crossref] [PubMed]
  5. S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt. 14(3), 034005 (2009).
    [Crossref] [PubMed]
  6. Y. Zhao, H. Nakamura, and R. J. Gordon, “Development of a versatile two-photon endoscope for biological imaging,” Biomed. Opt. Express 1(4), 1159–1172 (2010).
    [Crossref] [PubMed]
  7. D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
    [Crossref] [PubMed]
  8. W. Liang, K. Murari, Y. Zhang, Y. Chen, M. J. Li, and X. Li, “Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy,” J. Biomed. Opt. 17(2), 021108 (2012).
    [Crossref] [PubMed]
  9. Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A. 109(32), 12878–12883 (2012).
    [Crossref] [PubMed]
  10. G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5(1), 18303 (2015).
    [Crossref] [PubMed]
  11. W. Liang, G. Hall, B. Messerschmidt, M.-J. Li, and X. Li, “Nonlinear optical endomicroscopy for label-free functional histology in vivo,” Light Sci. Appl. 6(11), e17082 (2017).
    [Crossref] [PubMed]
  12. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [Crossref] [PubMed]
  13. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, San Diego, 2001).
  14. E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
    [Crossref]
  15. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9(5), 150–152 (1984).
    [Crossref] [PubMed]
  16. M. Oberthaler and R. A. Hopfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63(8), 1017–1019 (1993).
    [Crossref]
  17. S. A. Planas, N. L. P. Mansur, C. H. B. Cruz, and H. L. Fragnito, “Spectral narrowing in the propagation of chirped pulses in single-mode fibers,” Opt. Lett. 18(9), 699–701 (1993).
    [Crossref] [PubMed]
  18. A. Weiner, Ultrafast Optics (John Wiley & Sons, 2011).
  19. S. W. Clark, F. Ö. Ilday, and F. W. Wise, “Fiber delivery of femtosecond pulses from a Ti:sapphire laser,” Opt. Lett. 26(17), 1320–1322 (2001).
    [Crossref] [PubMed]
  20. P. L. François, “Nonlinear propagation of ultrashort pulses in optical fibers: total field formulation in the frequency domain,” J. Opt. Soc. Am. B 8(2), 276–293 (1991).
    [Crossref]
  21. J. R. Dormand and P. J. Prince, “A family of embedded Runge-Kutta formulae,” J. Comput. Appl. Math. 6(1), 19–26 (1980).
    [Crossref]
  22. L. F. Shampine and M. W. Reichelt, “The MATLAB ODE Suite,” SIAM J. Sci. Comput. 18(1), 1–22 (1997).
    [Crossref]
  23. M. L. Akins, K. Luby-Phelps, and M. Mahendroo, “Second harmonic generation imaging as a potential tool for staging pregnancy and predicting preterm birth,” J. Biomed. Opt. 15(2), 026020 (2010).
    [Crossref] [PubMed]
  24. M. Lelek, E. Suran, F. Louradour, A. Barthelemy, B. Viellerobe, and F. Lacombe, “Coherent femtosecond pulse shaping for the optimization of a non-linear micro-endoscope,” Opt. Express 15(16), 10154–10162 (2007).
    [Crossref] [PubMed]
  25. E. A. Gibson, D. M. Gaudiosi, H. C. Kapteyn, R. Jimenez, S. Kane, R. Huff, C. Durfee, and J. Squier, “Efficient reflection grisms for pulse compression and dispersion compensation of femtosecond pulses,” Opt. Lett. 31(22), 3363–3365 (2006).
    [Crossref] [PubMed]
  26. C. Lefort, T. Mansuryan, F. Louradour, and A. Barthelemy, “Pulse compression and fiber delivery of 45 fs Fourier transform limited pulses at 830 nm,” Opt. Lett. 36(2), 292–294 (2011).
    [Crossref] [PubMed]
  27. M. Kalashyan, C. Lefort, L. Martínez-León, T. Mansuryan, L. Mouradian, and F. Louradour, “Ultrashort pulse fiber delivery with optimized dispersion control by reflection grisms at 800 nm,” Opt. Express 20(23), 25624–25635 (2012).
    [Crossref] [PubMed]
  28. C. Lefort, M. Kalashyan, G. Ducourthial, T. Mansuryan, R. P. O’Connor, and F. Louradour, “Sub-30-fs pulse compression and pulse shaping at the output of a 2-m-long optical fiber in the near-infrared range,” J. Opt. Soc. Am. B 31(10), 2317–2324 (2014).
    [Crossref]
  29. W. M. Lee and S. H. Yun, “Adaptive aberration correction of GRIN lenses for confocal endomicroscopy,” Opt. Lett. 36(23), 4608–4610 (2011).
    [Crossref] [PubMed]
  30. C. Wang and N. Ji, “Characterization and improvement of three-dimensional imaging performance of GRIN-lens-based two-photon fluorescence endomicroscopes with adaptive optics,” Opt. Express 21(22), 27142–27154 (2013).
    [Crossref] [PubMed]
  31. R. P. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
    [Crossref] [PubMed]
  32. J. Xi, A. Zhang, Z. Liu, W. Liang, L. Y. Lin, S. Yu, and X. Li, “Diffractive catheter for ultrahigh-resolution spectral-domain volumetric OCT imaging,” Opt. Lett. 39(7), 2016–2019 (2014).
    [Crossref] [PubMed]
  33. G. Matz, B. Messerschmidt, and H. Gross, “Design and evaluation of new color-corrected rigid endomicroscopic high NA GRIN-objectives with a sub-micron resolution and large field of view,” Opt. Express 24(10), 10987–11001 (2016).
    [Crossref] [PubMed]
  34. M. Tsang, D. Psaltis, and F. G. Omenetto, “Reverse propagation of femtosecond pulses in optical fibers,” Opt. Lett. 28(20), 1873–1875 (2003).
    [Crossref] [PubMed]
  35. M. Pawłowska, A. Patas, G. Achazi, and A. Lindinger, “Parametrically shaped femtosecond pulses in the nonlinear regime obtained by reverse propagation in an optical fiber,” Opt. Lett. 37(13), 2709–2711 (2012).
    [Crossref] [PubMed]
  36. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
    [Crossref] [PubMed]
  37. W. Fu, L. G. Wright, P. Sidorenko, S. Backus, and F. W. Wise, “Several new directions for ultrafast fiber lasers [Invited],” Opt. Express 26(8), 9432–9463 (2018).
    [Crossref] [PubMed]

2018 (1)

2017 (1)

W. Liang, G. Hall, B. Messerschmidt, M.-J. Li, and X. Li, “Nonlinear optical endomicroscopy for label-free functional histology in vivo,” Light Sci. Appl. 6(11), e17082 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (1)

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5(1), 18303 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (1)

2012 (4)

M. Kalashyan, C. Lefort, L. Martínez-León, T. Mansuryan, L. Mouradian, and F. Louradour, “Ultrashort pulse fiber delivery with optimized dispersion control by reflection grisms at 800 nm,” Opt. Express 20(23), 25624–25635 (2012).
[Crossref] [PubMed]

M. Pawłowska, A. Patas, G. Achazi, and A. Lindinger, “Parametrically shaped femtosecond pulses in the nonlinear regime obtained by reverse propagation in an optical fiber,” Opt. Lett. 37(13), 2709–2711 (2012).
[Crossref] [PubMed]

W. Liang, K. Murari, Y. Zhang, Y. Chen, M. J. Li, and X. Li, “Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy,” J. Biomed. Opt. 17(2), 021108 (2012).
[Crossref] [PubMed]

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A. 109(32), 12878–12883 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (2)

M. L. Akins, K. Luby-Phelps, and M. Mahendroo, “Second harmonic generation imaging as a potential tool for staging pregnancy and predicting preterm birth,” J. Biomed. Opt. 15(2), 026020 (2010).
[Crossref] [PubMed]

Y. Zhao, H. Nakamura, and R. J. Gordon, “Development of a versatile two-photon endoscope for biological imaging,” Biomed. Opt. Express 1(4), 1159–1172 (2010).
[Crossref] [PubMed]

2009 (4)

Y. Wu, Y. Leng, J. Xi, and X. Li, “Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues,” Opt. Express 17(10), 7907–7915 (2009).
[Crossref] [PubMed]

Y. Wu, J. Xi, M. J. Cobb, and X. Li, “Scanning fiber-optic nonlinear endomicroscopy with miniature aspherical compound lens and multimode fiber collector,” Opt. Lett. 34(7), 953–955 (2009).
[Crossref] [PubMed]

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt. 14(3), 034005 (2009).
[Crossref] [PubMed]

R. P. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[Crossref] [PubMed]

2007 (1)

2006 (3)

2003 (2)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

M. Tsang, D. Psaltis, and F. G. Omenetto, “Reverse propagation of femtosecond pulses in optical fibers,” Opt. Lett. 28(20), 1873–1875 (2003).
[Crossref] [PubMed]

2001 (2)

S. W. Clark, F. Ö. Ilday, and F. W. Wise, “Fiber delivery of femtosecond pulses from a Ti:sapphire laser,” Opt. Lett. 26(17), 1320–1322 (2001).
[Crossref] [PubMed]

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A Miniature Head-Mounted Two-Photon Microscope. High-Resolution Brain Imaging in Freely Moving Animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

1997 (1)

L. F. Shampine and M. W. Reichelt, “The MATLAB ODE Suite,” SIAM J. Sci. Comput. 18(1), 1–22 (1997).
[Crossref]

1993 (2)

M. Oberthaler and R. A. Hopfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63(8), 1017–1019 (1993).
[Crossref]

S. A. Planas, N. L. P. Mansur, C. H. B. Cruz, and H. L. Fragnito, “Spectral narrowing in the propagation of chirped pulses in single-mode fibers,” Opt. Lett. 18(9), 699–701 (1993).
[Crossref] [PubMed]

1991 (1)

1984 (1)

1980 (1)

J. R. Dormand and P. J. Prince, “A family of embedded Runge-Kutta formulae,” J. Comput. Appl. Math. 6(1), 19–26 (1980).
[Crossref]

1969 (1)

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

Achazi, G.

Ahn, Y.-C.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt. 14(3), 034005 (2009).
[Crossref] [PubMed]

Akins, M. L.

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A. 109(32), 12878–12883 (2012).
[Crossref] [PubMed]

M. L. Akins, K. Luby-Phelps, and M. Mahendroo, “Second harmonic generation imaging as a potential tool for staging pregnancy and predicting preterm birth,” J. Biomed. Opt. 15(2), 026020 (2010).
[Crossref] [PubMed]

Backus, S.

Barretto, R. P.

R. P. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[Crossref] [PubMed]

Barthelemy, A.

Batrin, R.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5(1), 18303 (2015).
[Crossref] [PubMed]

Bourg-Heckly, G.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5(1), 18303 (2015).
[Crossref] [PubMed]

Braud, F.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5(1), 18303 (2015).
[Crossref] [PubMed]

Brevier, J.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5(1), 18303 (2015).
[Crossref] [PubMed]

Brown, C. M.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Buckley, J.

Chen, Y.

W. Liang, K. Murari, Y. Zhang, Y. Chen, M. J. Li, and X. Li, “Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy,” J. Biomed. Opt. 17(2), 021108 (2012).
[Crossref] [PubMed]

Chen, Z.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt. 14(3), 034005 (2009).
[Crossref] [PubMed]

Chong, A.

Clark, S. W.

Cobb, M. J.

Cruz, C. H. B.

Denk, W.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A Miniature Head-Mounted Two-Photon Microscope. High-Resolution Brain Imaging in Freely Moving Animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

Dormand, J. R.

J. R. Dormand and P. J. Prince, “A family of embedded Runge-Kutta formulae,” J. Comput. Appl. Math. 6(1), 19–26 (1980).
[Crossref]

Druilhe, A.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5(1), 18303 (2015).
[Crossref] [PubMed]

Ducourthial, G.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5(1), 18303 (2015).
[Crossref] [PubMed]

C. Lefort, M. Kalashyan, G. Ducourthial, T. Mansuryan, R. P. O’Connor, and F. Louradour, “Sub-30-fs pulse compression and pulse shaping at the output of a 2-m-long optical fiber in the near-infrared range,” J. Opt. Soc. Am. B 31(10), 2317–2324 (2014).
[Crossref]

Durfee, C.

Fabert, M.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5(1), 18303 (2015).
[Crossref] [PubMed]

Fee, M. S.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A Miniature Head-Mounted Two-Photon Microscope. High-Resolution Brain Imaging in Freely Moving Animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

Fork, R. L.

Fragnito, H. L.

François, P. L.

Fu, W.

Gaudiosi, D. M.

Gibson, E. A.

Gordon, J. P.

Gordon, R. J.

Gross, H.

Habert, R.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5(1), 18303 (2015).
[Crossref] [PubMed]

Hall, G.

W. Liang, G. Hall, B. Messerschmidt, M.-J. Li, and X. Li, “Nonlinear optical endomicroscopy for label-free functional histology in vivo,” Light Sci. Appl. 6(11), e17082 (2017).
[Crossref] [PubMed]

Helmchen, F.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A Miniature Head-Mounted Two-Photon Microscope. High-Resolution Brain Imaging in Freely Moving Animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

Hopfel, R. A.

M. Oberthaler and R. A. Hopfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63(8), 1017–1019 (1993).
[Crossref]

Huff, R.

Ilday, F. Ö.

Ji, N.

Jimenez, R.

Jung, W.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt. 14(3), 034005 (2009).
[Crossref] [PubMed]

Kalashyan, M.

Kane, S.

Kapteyn, H. C.

Kobat, D.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Kudlinski, A.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5(1), 18303 (2015).
[Crossref] [PubMed]

Lacombe, F.

Leclerc, P.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5(1), 18303 (2015).
[Crossref] [PubMed]

Lee, W. M.

Lefort, C.

Lelek, M.

Leng, Y.

Li, M. J.

W. Liang, K. Murari, Y. Zhang, Y. Chen, M. J. Li, and X. Li, “Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy,” J. Biomed. Opt. 17(2), 021108 (2012).
[Crossref] [PubMed]

Li, M.-J.

W. Liang, G. Hall, B. Messerschmidt, M.-J. Li, and X. Li, “Nonlinear optical endomicroscopy for label-free functional histology in vivo,” Light Sci. Appl. 6(11), e17082 (2017).
[Crossref] [PubMed]

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A. 109(32), 12878–12883 (2012).
[Crossref] [PubMed]

Li, X.

W. Liang, G. Hall, B. Messerschmidt, M.-J. Li, and X. Li, “Nonlinear optical endomicroscopy for label-free functional histology in vivo,” Light Sci. Appl. 6(11), e17082 (2017).
[Crossref] [PubMed]

J. Xi, A. Zhang, Z. Liu, W. Liang, L. Y. Lin, S. Yu, and X. Li, “Diffractive catheter for ultrahigh-resolution spectral-domain volumetric OCT imaging,” Opt. Lett. 39(7), 2016–2019 (2014).
[Crossref] [PubMed]

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A. 109(32), 12878–12883 (2012).
[Crossref] [PubMed]

W. Liang, K. Murari, Y. Zhang, Y. Chen, M. J. Li, and X. Li, “Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy,” J. Biomed. Opt. 17(2), 021108 (2012).
[Crossref] [PubMed]

Y. Wu, J. Xi, M. J. Cobb, and X. Li, “Scanning fiber-optic nonlinear endomicroscopy with miniature aspherical compound lens and multimode fiber collector,” Opt. Lett. 34(7), 953–955 (2009).
[Crossref] [PubMed]

Y. Wu, Y. Leng, J. Xi, and X. Li, “Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues,” Opt. Express 17(10), 7907–7915 (2009).
[Crossref] [PubMed]

M. T. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett. 31(8), 1076–1078 (2006).
[Crossref] [PubMed]

Liang, W.

W. Liang, G. Hall, B. Messerschmidt, M.-J. Li, and X. Li, “Nonlinear optical endomicroscopy for label-free functional histology in vivo,” Light Sci. Appl. 6(11), e17082 (2017).
[Crossref] [PubMed]

J. Xi, A. Zhang, Z. Liu, W. Liang, L. Y. Lin, S. Yu, and X. Li, “Diffractive catheter for ultrahigh-resolution spectral-domain volumetric OCT imaging,” Opt. Lett. 39(7), 2016–2019 (2014).
[Crossref] [PubMed]

W. Liang, K. Murari, Y. Zhang, Y. Chen, M. J. Li, and X. Li, “Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy,” J. Biomed. Opt. 17(2), 021108 (2012).
[Crossref] [PubMed]

Lin, L. Y.

Lindinger, A.

Liu, Z.

Louradour, F.

Luby-Phelps, K.

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A. 109(32), 12878–12883 (2012).
[Crossref] [PubMed]

M. L. Akins, K. Luby-Phelps, and M. Mahendroo, “Second harmonic generation imaging as a potential tool for staging pregnancy and predicting preterm birth,” J. Biomed. Opt. 15(2), 026020 (2010).
[Crossref] [PubMed]

MacDonald, D. J.

Mahendroo, M.

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A. 109(32), 12878–12883 (2012).
[Crossref] [PubMed]

M. L. Akins, K. Luby-Phelps, and M. Mahendroo, “Second harmonic generation imaging as a potential tool for staging pregnancy and predicting preterm birth,” J. Biomed. Opt. 15(2), 026020 (2010).
[Crossref] [PubMed]

Mansur, N. L. P.

Mansuryan, T.

Martinez, O. E.

Martínez-León, L.

Matz, G.

McCormick, D.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt. 14(3), 034005 (2009).
[Crossref] [PubMed]

Messerschmidt, B.

W. Liang, G. Hall, B. Messerschmidt, M.-J. Li, and X. Li, “Nonlinear optical endomicroscopy for label-free functional histology in vivo,” Light Sci. Appl. 6(11), e17082 (2017).
[Crossref] [PubMed]

G. Matz, B. Messerschmidt, and H. Gross, “Design and evaluation of new color-corrected rigid endomicroscopic high NA GRIN-objectives with a sub-micron resolution and large field of view,” Opt. Express 24(10), 10987–11001 (2016).
[Crossref] [PubMed]

R. P. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[Crossref] [PubMed]

Mouradian, L.

Murari, K.

W. Liang, K. Murari, Y. Zhang, Y. Chen, M. J. Li, and X. Li, “Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy,” J. Biomed. Opt. 17(2), 021108 (2012).
[Crossref] [PubMed]

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A. 109(32), 12878–12883 (2012).
[Crossref] [PubMed]

Myaing, M. T.

Nakamura, H.

O’Connor, R. P.

Oberthaler, M.

M. Oberthaler and R. A. Hopfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63(8), 1017–1019 (1993).
[Crossref]

Omenetto, F. G.

Ouzounov, D. G.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Patas, A.

Pavlova, I.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Pawlowska, M.

Planas, S. A.

Prince, P. J.

J. R. Dormand and P. J. Prince, “A family of embedded Runge-Kutta formulae,” J. Comput. Appl. Math. 6(1), 19–26 (1980).
[Crossref]

Psaltis, D.

Reichelt, M. W.

L. F. Shampine and M. W. Reichelt, “The MATLAB ODE Suite,” SIAM J. Sci. Comput. 18(1), 1–22 (1997).
[Crossref]

Renninger, W.

Rivera, D. R.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Schnitzer, M. J.

R. P. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[Crossref] [PubMed]

Shampine, L. F.

L. F. Shampine and M. W. Reichelt, “The MATLAB ODE Suite,” SIAM J. Sci. Comput. 18(1), 1–22 (1997).
[Crossref]

Sidorenko, P.

Squier, J.

Su, J.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt. 14(3), 034005 (2009).
[Crossref] [PubMed]

Suran, E.

Tang, S.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt. 14(3), 034005 (2009).
[Crossref] [PubMed]

Tank, D. W.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A Miniature Head-Mounted Two-Photon Microscope. High-Resolution Brain Imaging in Freely Moving Animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

Thiberville, L.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5(1), 18303 (2015).
[Crossref] [PubMed]

Treacy, E.

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

Tromberg, B. J.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt. 14(3), 034005 (2009).
[Crossref] [PubMed]

Tsang, M.

Vever-Bizet, C.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5(1), 18303 (2015).
[Crossref] [PubMed]

Viellerobe, B.

Wang, C.

Webb, W. W.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Wise, F.

Wise, F. W.

Wright, L. G.

Wu, Y.

Xi, J.

Xie, T.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt. 14(3), 034005 (2009).
[Crossref] [PubMed]

Xu, C.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Yu, S.

Yun, S. H.

Zhang, A.

Zhang, Y.

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A. 109(32), 12878–12883 (2012).
[Crossref] [PubMed]

W. Liang, K. Murari, Y. Zhang, Y. Chen, M. J. Li, and X. Li, “Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy,” J. Biomed. Opt. 17(2), 021108 (2012).
[Crossref] [PubMed]

Zhao, Y.

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

M. Oberthaler and R. A. Hopfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63(8), 1017–1019 (1993).
[Crossref]

Biomed. Opt. Express (1)

IEEE J. Quantum Electron. (1)

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

J. Biomed. Opt. (3)

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt. 14(3), 034005 (2009).
[Crossref] [PubMed]

W. Liang, K. Murari, Y. Zhang, Y. Chen, M. J. Li, and X. Li, “Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy,” J. Biomed. Opt. 17(2), 021108 (2012).
[Crossref] [PubMed]

M. L. Akins, K. Luby-Phelps, and M. Mahendroo, “Second harmonic generation imaging as a potential tool for staging pregnancy and predicting preterm birth,” J. Biomed. Opt. 15(2), 026020 (2010).
[Crossref] [PubMed]

J. Comput. Appl. Math. (1)

J. R. Dormand and P. J. Prince, “A family of embedded Runge-Kutta formulae,” J. Comput. Appl. Math. 6(1), 19–26 (1980).
[Crossref]

J. Opt. Soc. Am. B (2)

Light Sci. Appl. (1)

W. Liang, G. Hall, B. Messerschmidt, M.-J. Li, and X. Li, “Nonlinear optical endomicroscopy for label-free functional histology in vivo,” Light Sci. Appl. 6(11), e17082 (2017).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Nat. Methods (1)

R. P. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[Crossref] [PubMed]

Neuron (1)

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A Miniature Head-Mounted Two-Photon Microscope. High-Resolution Brain Imaging in Freely Moving Animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

Opt. Express (7)

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
[Crossref] [PubMed]

M. Lelek, E. Suran, F. Louradour, A. Barthelemy, B. Viellerobe, and F. Lacombe, “Coherent femtosecond pulse shaping for the optimization of a non-linear micro-endoscope,” Opt. Express 15(16), 10154–10162 (2007).
[Crossref] [PubMed]

G. Matz, B. Messerschmidt, and H. Gross, “Design and evaluation of new color-corrected rigid endomicroscopic high NA GRIN-objectives with a sub-micron resolution and large field of view,” Opt. Express 24(10), 10987–11001 (2016).
[Crossref] [PubMed]

W. Fu, L. G. Wright, P. Sidorenko, S. Backus, and F. W. Wise, “Several new directions for ultrafast fiber lasers [Invited],” Opt. Express 26(8), 9432–9463 (2018).
[Crossref] [PubMed]

M. Kalashyan, C. Lefort, L. Martínez-León, T. Mansuryan, L. Mouradian, and F. Louradour, “Ultrashort pulse fiber delivery with optimized dispersion control by reflection grisms at 800 nm,” Opt. Express 20(23), 25624–25635 (2012).
[Crossref] [PubMed]

C. Wang and N. Ji, “Characterization and improvement of three-dimensional imaging performance of GRIN-lens-based two-photon fluorescence endomicroscopes with adaptive optics,” Opt. Express 21(22), 27142–27154 (2013).
[Crossref] [PubMed]

Y. Wu, Y. Leng, J. Xi, and X. Li, “Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues,” Opt. Express 17(10), 7907–7915 (2009).
[Crossref] [PubMed]

Opt. Lett. (11)

J. Xi, A. Zhang, Z. Liu, W. Liang, L. Y. Lin, S. Yu, and X. Li, “Diffractive catheter for ultrahigh-resolution spectral-domain volumetric OCT imaging,” Opt. Lett. 39(7), 2016–2019 (2014).
[Crossref] [PubMed]

C. Lefort, T. Mansuryan, F. Louradour, and A. Barthelemy, “Pulse compression and fiber delivery of 45 fs Fourier transform limited pulses at 830 nm,” Opt. Lett. 36(2), 292–294 (2011).
[Crossref] [PubMed]

W. M. Lee and S. H. Yun, “Adaptive aberration correction of GRIN lenses for confocal endomicroscopy,” Opt. Lett. 36(23), 4608–4610 (2011).
[Crossref] [PubMed]

M. Pawłowska, A. Patas, G. Achazi, and A. Lindinger, “Parametrically shaped femtosecond pulses in the nonlinear regime obtained by reverse propagation in an optical fiber,” Opt. Lett. 37(13), 2709–2711 (2012).
[Crossref] [PubMed]

Y. Wu, J. Xi, M. J. Cobb, and X. Li, “Scanning fiber-optic nonlinear endomicroscopy with miniature aspherical compound lens and multimode fiber collector,” Opt. Lett. 34(7), 953–955 (2009).
[Crossref] [PubMed]

E. A. Gibson, D. M. Gaudiosi, H. C. Kapteyn, R. Jimenez, S. Kane, R. Huff, C. Durfee, and J. Squier, “Efficient reflection grisms for pulse compression and dispersion compensation of femtosecond pulses,” Opt. Lett. 31(22), 3363–3365 (2006).
[Crossref] [PubMed]

S. W. Clark, F. Ö. Ilday, and F. W. Wise, “Fiber delivery of femtosecond pulses from a Ti:sapphire laser,” Opt. Lett. 26(17), 1320–1322 (2001).
[Crossref] [PubMed]

M. Tsang, D. Psaltis, and F. G. Omenetto, “Reverse propagation of femtosecond pulses in optical fibers,” Opt. Lett. 28(20), 1873–1875 (2003).
[Crossref] [PubMed]

M. T. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett. 31(8), 1076–1078 (2006).
[Crossref] [PubMed]

R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9(5), 150–152 (1984).
[Crossref] [PubMed]

S. A. Planas, N. L. P. Mansur, C. H. B. Cruz, and H. L. Fragnito, “Spectral narrowing in the propagation of chirped pulses in single-mode fibers,” Opt. Lett. 18(9), 699–701 (1993).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A. 109(32), 12878–12883 (2012).
[Crossref] [PubMed]

Sci. Rep. (1)

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5(1), 18303 (2015).
[Crossref] [PubMed]

SIAM J. Sci. Comput. (1)

L. F. Shampine and M. W. Reichelt, “The MATLAB ODE Suite,” SIAM J. Sci. Comput. 18(1), 1–22 (1997).
[Crossref]

Other (2)

A. Weiner, Ultrafast Optics (John Wiley & Sons, 2011).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, San Diego, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 System schematic and experimental configurations. The spectral broadening (SB) module is bypassed for single-fiber linear-only dispersion compensation. BP: band-pass filter; CL: collimating lens; DM: dichroic mirror; L: collection lens; M: mirror; OL: objective lens; PM: pick-up mirror; PMT: photomultiplier; SP: short-pass optical filter.
Fig. 2
Fig. 2 Characterization of dual-fiber spectro-temporal dispersion compensation. (a) Evolution of pulse spectra through the entire system for both single-fiber (SF) linear-only and dual-fiber (DF) spectro-temporal dispersion compensation schemes. The curves were measured at an 890-nm central wavelength with an ~180 mW average power in the SMF and an ~48 mW power in the DCF. SPM-induced spectral narrowing of negatively-chirped pulses is manifest both in single-fiber scheme by comparing the DCF output spectrum (black curve) to the Ti:Sapphire laser spectrum (blue curve), and in dual-fiber scheme by comparing the DCF output spectrum (red curve) to the SMF output spectrum (green). (b) Intensity auto-correlation function of laser pulses out of the DCF with different dispersion compensation schemes. The FWHM of the two ACFs are ~660 fs and ~100 fs, respectively.
Fig. 3
Fig. 3 SHG imaging-based comparison between single- and dual-fiber compensation schemes. Juxtaposed here for comparison are SHG images of an ex vivo mouse cervical tissue section acquired with dual-fiber spectro-temporal (a-c) and single-fiber linear-only (d-f) dispersion compensation schemes, respectively, both with ~40 mW incident power at 890 nm center wavelength on the sample. Scale bars: 10 µm.
Fig. 4
Fig. 4 Dependence of dispersion compensation efficacy on key operational parameters (i.e., the SMF length and laser power) of the grating pair-based spectro-temporal dispersion management scheme. The evolution of final rms bandwidth (a), rms pulsewidth (b), and normalized 2PE efficiency (c) with varying SMF length are compared at different power configurations. Different DCF powers are indicated by different types of markers, while the SMF-to-DCF power ratio is color-coded. The rms bandwidth and rms pulsewidth for the initial transform-limited pulse (890-nm center wavelength, 80 MHz repetition rate), ~2.16 THz and ~154 fs, are indicated in subfigure (a) and (b) respectively. The best SMF length (see the main text for definition) for each power configuration is provided in the legend. The grating groove density used for the simulation is 600 lpmm.
Fig. 5
Fig. 5 The influence of grating density on the final dispersion compensation efficacy for the grating pair-based spectro-temporal dispersion management scheme. With SMF length fixed at 40 cm, the final rms bandwidth (a), rms pulsewidth (b), and normalized 2PE efficiency (c) at different power configurations are compared between the 600-lpmm and 900-lpmm grating pairs. The rms bandwidth and rms pulsewidth for the initial transform-limited pulse (890-nm center wavelength, 80-MHz repetition rate), ~2.16 THz and ~154 fs, are indicated in subfigures (a) and (b) respectively.
Fig. 6
Fig. 6 Efficacy comparison between the grism- and grating-based spectro-temporal dispersion compensation schemes. The dependence of final rms bandwidth and pulsewidth (a), and normalized 2PE efficiency (b) on varying SMF lengths and DCF powers are plotted with the SMF-to-DCF power ratio fixed to 4 (which corresponds to the best practical scenario). Different DCF powers are represented by different marker types, and the best SMF length for each power configuration is listed in the legend. (c) Comparison of the normalized 2PE efficiency between the grism- and grating-based compensation methods at various DCF powers and SMF-to-DCF power ratios. (d) Comparison of the final absolute two-photon signal strength between the grism- and grating-based compensation methods at various input SMF powers. Here the grating density is fixed to 600 lpmm, and the center wavelength is 890 nm.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E( z,t,r )ψ( r )Re{ A( z,τ ) e j[ ω 0 tβ( ω 0 )z ] } ,
P( z,τ )= n 0 2 μ 0 c | E( z,t,r ) | 2 dxdy P scale | A( z,τ ) | 2 .
E pulse = P scale sech 2 ( τ/ τ 0 )dτ=2 τ 0 P scale .
  L NL = λ A eff 2π n 2 I P scale = λ MFD 2 8 n 2 I P scale .
Ψ( ω )=2ω( Λ+Gcos θ d )/c,
GDD(ω)= 2 Ψ ω 2 = 8 π 2 cG ω 3 d 2 cos 3 θ d .
TOD( ω )= 3 Ψ ω 3 = 3 ω ( 1+ λ d sin θ d cos 2 θ d ) 2 Ψ ω 2 .
A ˜ grating (out,Ω)= A ˜ (in,Ω) e j[ Ψ( ω 0 +Ω)]Ψ( ω 0 ) Ψ( ω 0 ) ω Ω ] A ˜ (in,Ω) e j[ 2 Ψ( ω 0 ) ω 2 Ω 2 2 + 3 Ψ( ω 0 ) ω 3 Ω 3 6 ] .
A ˜ grism (out,Ω)= A ˜ (in,Ω) e j[ β 0 (2) Ω 2 2 + β 0 (3) Ω 3 6 ] L total ,
Δ τ rms ( z )=2 τ 2 | A ( z,τ ) | 2 dτ | A ( z,τ ) | 2 dτ ( τ | A ( z,τ ) | 2 dτ | A ( z,τ ) | 2 dτ ) 2 ,
Δ ν rms (z)= 1 π Ω 2 | A ̃ ( z,Ω ) | 2 | A ̃ ( z,Ω ) | 2 ( Ω | A ̃ ( z,Ω ) | 2 | A ̃ ( z,Ω ) | 2 ) 2 .
I 2PF P 2 ( z,τ ) dτ= P scale 2 | A( DCF output,τ ) | 4 dτ.
I 2PF P scale 2 = | A(DCF output,τ) | 4 dτ.
TOD GDD ( ω, d )= 3 ω ( 1+ λ d sin θ d cos 2 θ d ) = L.C. 3 ω 1+ ( λ 2d ) 2 1 ( λ 2d ) 2  ,

Metrics