Abstract

The calibration-free laser-induced breakdown spectroscopy (CF-LIBS) and its variations are low cost, short time consumption, and high adaptability. However, seeking a more flexible and simple quantitative analysis method remains a challenge. A one-point and multi-line calibration (OP-MLC) was presented as a simple quantitative analysis method of LIBS. The results showed that OP-MLC-LIBS method can achieve quantitative analysis using only one standard sample, and the average relative errors (AREs) are 9, 22, 21 and 36% for Mn, Cr, Ni and Ti elements in six tested low-alloy steel samples, respectively. The method requires neither a large number of standard samples nor complicated calculations, which provides a flexible and low-cost quantitative analysis approach for development and application of LIBS.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative elemental analysis of steel using calibration-free laser-induced breakdown spectroscopy

M. L. Shah, A. K. Pulhani, G. P. Gupta, and B. M. Suri
Appl. Opt. 51(20) 4612-4621 (2012)

Multivariate quantitative analysis of metal elements in steel using laser-induced breakdown spectroscopy

Zhi Wang, Yanwu Chu, Feng Chen, Ziqian Sheng, and Lianbo Guo
Appl. Opt. 58(27) 7615-7620 (2019)

Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy

L.B. Guo, Z.Q. Hao, M. Shen, W. Xiong, X.N. He, Z.Q. Xie, M. Gao, X.Y. Li, X.Y. Zeng, and Y.F. Lu
Opt. Express 21(15) 18188-18195 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
    [Crossref] [PubMed]
  2. R. Noll, C. Fricke-Begemann, M. Brunk, S. Connemann, C. Meinhardt, M. Scharun, V. Sturm, J. Makowe, and C. Gehlen, “Laser-induced breakdown spectroscopy expands into industrial applications,” Spectrochim. Acta B At. Spectrosc. 93, 41–51 (2014).
    [Crossref]
  3. M. Yao, H. Yang, L. Huang, T. Chen, G. Rao, and M. Liu, “Detection of heavy metal Cd in polluted fresh leafy vegetables by laser-induced breakdown spectroscopy,” Appl. Opt. 56(14), 4070–4075 (2017).
    [Crossref] [PubMed]
  4. M. P. Casado-Gavalda, Y. Dixit, D. Geulen, R. Cama-Moncunill, X. Cama-Moncunill, M. Markiewicz-Keszycka, P. J. Cullen, and C. Sullivan, “Quantification of copper content with laser induced breakdown spectroscopy as a potential indicator of offal adulteration in beef,” Talanta 169, 123–129 (2017).
    [Crossref] [PubMed]
  5. M. Markiewicz-Keszycka, X. Cama-Moncunill, M. P. Casado-Gavalda, Y. Dixit, R. Cama-Moncunill, P. J. Cullen, and C. Sullivan, “Laser-induced breakdown spectroscopy (LIBS) for food analysis: A review,” Trends Food Sci. Technol. 65, 80–93 (2017).
    [Crossref]
  6. X. Y. Yang, Z. Q. Hao, C. M. Li, J. M. Li, R. X. Yi, M. Shen, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Sensitive determinations of Cu, Pb, Cd, and Cr elements in aqueous solutions using chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy,” Opt. Express 24(12), 13410–13417 (2016).
    [Crossref] [PubMed]
  7. X. Cheng, X. Yang, Z. Zhu, L. Guo, X. Li, Y. Lu, and X. Zeng, “On-stream analysis of iron ore slurry using laser-induced breakdown spectroscopy,” Appl. Opt. 56(33), 9144–9149 (2017).
    [Crossref] [PubMed]
  8. H. Hou, Y. Tian, Y. Li, and R. Zheng, “Study of pressure effects on laser induced plasma in bulk seawater,” J. Anal. At. Spectrom. 29(1), 169–175 (2014).
    [Crossref]
  9. B. Sallé, D. A. Cremers, S. Maurice, and R. C. Wiens, “Laser-induced breakdown spectroscopy for space exploration applications: Influence of the ambient pressure on the calibration curves prepared from soil and clay samples,” Spectrochim. Acta B At. Spectrosc. 60(4), 479–490 (2005).
    [Crossref]
  10. A. Giakoumaki, K. Melessanaki, and D. Anglos, “Laser-induced breakdown spectroscopy (LIBS) in archaeological science--applications and prospects,” Anal. Bioanal. Chem. 387(3), 749–760 (2007).
    [Crossref] [PubMed]
  11. Z. Q. Hao, C. M. Li, M. Shen, X. Y. Yang, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Acidity measurement of iron ore powders using laser-induced breakdown spectroscopy with partial least squares regression,” Opt. Express 23(6), 7795–7801 (2015).
    [Crossref] [PubMed]
  12. Z. Q. Hao, L. Liu, M. Shen, X. Y. Yang, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Investigation on self-absorption at reduced air pressure in quantitative analysis using laser-induced breakdown spectroscopy,” Opt. Express 24(23), 26521–26528 (2016).
    [Crossref] [PubMed]
  13. G. Galbács, “A critical review of recent progress in analytical laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 407(25), 7537–7562 (2015).
    [Crossref] [PubMed]
  14. K. Li, L. Guo, C. Li, X. Li, M. Shen, Z. Zheng, Y. Yu, R. Hao, Z. Hao, Q. Zeng, Y. Lu, and X. Zeng, “Analytical-performance improvement of laser-induced breakdown spectroscopy for steel using multi-spectral-line calibration with an artificial neural network,” J. Anal. At. Spectrom. 30(7), 1623–1628 (2015).
    [Crossref]
  15. A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53(8), 960–964 (1999).
    [Crossref]
  16. E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochim. Acta B At. Spectrosc. 65(1), 1–14 (2010).
    [Crossref]
  17. R. Gaudiuso, M. Dell’Aglio, O. De Pascale, S. Loperfido, A. Mangone, and A. De Giacomo, “Laser-induced breakdown spectroscopy of archaeological findings with calibration-free inverse method: comparison with classical laser-induced breakdown spectroscopy and conventional techniques,” Anal. Chim. Acta 813, 15–24 (2014).
    [Crossref] [PubMed]
  18. G. Cavalcanti, D. Teixeira, S. Legnaioli, G. Lorenzetti, L. Pardini, and V. Palleschi, “One-point calibration for calibration-free laser-induced breakdown spectroscopy quantitative analysis,” Spectrochim. Acta B At. Spectrosc. 87, 51–56 (2013).
    [Crossref]
  19. C. Aragón and J. Aguilera, “CSigma graphs: A new approach for plasma characterization in laser-induced breakdown spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 149, 90–102 (2014).
    [Crossref]
  20. J. Aguilera and C. Aragón, “Analysis of rocks by CSigma laser-induced breakdown spectroscopy with fused glass sample preparation,” J. Anal. At. Spectrom. 32(1), 144–152 (2017).
    [Crossref]
  21. C. Aragón and J. A. Aguilera, “Direct analysis of aluminum alloys by CSigma laser-induced breakdown spectroscopy,” Anal. Chim. Acta 1009, 12–19 (2018).
    [Crossref] [PubMed]
  22. J. Yang, X. Li, J. Xu, and X. Ma, “A Calibration-free laser-induced breakdown spectroscopy (CF-LIBS) quantitative analysis method based on the auto-selection of an internal reference line and optimized estimation of plasma temperature,” Appl. Spectrosc. 72(1), 129–140 (2018).
    [Crossref] [PubMed]
  23. R. X. Yi, L. B. Guo, X. H. Zou, J. M. Li, Z. Q. Hao, X. Y. Yang, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Background removal in soil analysis using laser- induced breakdown spectroscopy combined with standard addition method,” Opt. Express 24(3), 2607–2618 (2016).
    [Crossref] [PubMed]
  24. F. de Oliveira Borges, J. U. Ospina, G. de Holanda Cavalcanti, E. E. Farias, A. A. Rocha, P. I. Ferreira, G. C. Gomes, and A. Mello, “CF-LIBS analysis of frozen aqueous solution samples by using a standard internal reference and correcting the self-absorption effect,” J. Anal. At. Spectrom. 33(4), 629–641 (2018).
    [Crossref]
  25. Y. Tang, J. Li, Z. Hao, S. Tang, Z. Zhu, L. Guo, X. Li, X. Zeng, J. Duan, and Y. Lu, “Multielemental self-absorption reduction in laser-induced breakdown spectroscopy by using microwave-assisted excitation,” Opt. Express 26(9), 12121–12130 (2018).
    [Crossref] [PubMed]
  26. M. Burger, M. Skočić, and S. Bukvić, “Study of self-absorption in laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 101, 51–56 (2014).
    [Crossref]
  27. R. Yi, J. Li, X. Yang, R. Zhou, H. Yu, Z. Hao, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spectral interference elimination in soil analysis using laser-induced breakdown spectroscopy assisted by laser-induced fluorescence,” Anal. Chem. 89(4), 2334–2337 (2017).
    [Crossref] [PubMed]
  28. Y. Guo, L. Deng, X. Yang, J. Li, K. Li, Z. Zhu, L. Guo, X. Li, Y. Lu, and X. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
    [Crossref]
  29. G. Nicolodelli, B. S. Marangoni, J. S. Cabral, P. R. Villas-Boas, G. S. Senesi, C. H. Dos Santos, R. A. Romano, A. Segnini, Y. Lucas, C. R. Montes, and D. M. Milori, “Quantification of total carbon in soil using laser-induced breakdown spectroscopy: a method to correct interference lines,” Appl. Opt. 53(10), 2170–2176 (2014).
    [Crossref] [PubMed]

2018 (4)

C. Aragón and J. A. Aguilera, “Direct analysis of aluminum alloys by CSigma laser-induced breakdown spectroscopy,” Anal. Chim. Acta 1009, 12–19 (2018).
[Crossref] [PubMed]

J. Yang, X. Li, J. Xu, and X. Ma, “A Calibration-free laser-induced breakdown spectroscopy (CF-LIBS) quantitative analysis method based on the auto-selection of an internal reference line and optimized estimation of plasma temperature,” Appl. Spectrosc. 72(1), 129–140 (2018).
[Crossref] [PubMed]

F. de Oliveira Borges, J. U. Ospina, G. de Holanda Cavalcanti, E. E. Farias, A. A. Rocha, P. I. Ferreira, G. C. Gomes, and A. Mello, “CF-LIBS analysis of frozen aqueous solution samples by using a standard internal reference and correcting the self-absorption effect,” J. Anal. At. Spectrom. 33(4), 629–641 (2018).
[Crossref]

Y. Tang, J. Li, Z. Hao, S. Tang, Z. Zhu, L. Guo, X. Li, X. Zeng, J. Duan, and Y. Lu, “Multielemental self-absorption reduction in laser-induced breakdown spectroscopy by using microwave-assisted excitation,” Opt. Express 26(9), 12121–12130 (2018).
[Crossref] [PubMed]

2017 (7)

R. Yi, J. Li, X. Yang, R. Zhou, H. Yu, Z. Hao, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spectral interference elimination in soil analysis using laser-induced breakdown spectroscopy assisted by laser-induced fluorescence,” Anal. Chem. 89(4), 2334–2337 (2017).
[Crossref] [PubMed]

Y. Guo, L. Deng, X. Yang, J. Li, K. Li, Z. Zhu, L. Guo, X. Li, Y. Lu, and X. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

J. Aguilera and C. Aragón, “Analysis of rocks by CSigma laser-induced breakdown spectroscopy with fused glass sample preparation,” J. Anal. At. Spectrom. 32(1), 144–152 (2017).
[Crossref]

M. Yao, H. Yang, L. Huang, T. Chen, G. Rao, and M. Liu, “Detection of heavy metal Cd in polluted fresh leafy vegetables by laser-induced breakdown spectroscopy,” Appl. Opt. 56(14), 4070–4075 (2017).
[Crossref] [PubMed]

M. P. Casado-Gavalda, Y. Dixit, D. Geulen, R. Cama-Moncunill, X. Cama-Moncunill, M. Markiewicz-Keszycka, P. J. Cullen, and C. Sullivan, “Quantification of copper content with laser induced breakdown spectroscopy as a potential indicator of offal adulteration in beef,” Talanta 169, 123–129 (2017).
[Crossref] [PubMed]

M. Markiewicz-Keszycka, X. Cama-Moncunill, M. P. Casado-Gavalda, Y. Dixit, R. Cama-Moncunill, P. J. Cullen, and C. Sullivan, “Laser-induced breakdown spectroscopy (LIBS) for food analysis: A review,” Trends Food Sci. Technol. 65, 80–93 (2017).
[Crossref]

X. Cheng, X. Yang, Z. Zhu, L. Guo, X. Li, Y. Lu, and X. Zeng, “On-stream analysis of iron ore slurry using laser-induced breakdown spectroscopy,” Appl. Opt. 56(33), 9144–9149 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (3)

G. Galbács, “A critical review of recent progress in analytical laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 407(25), 7537–7562 (2015).
[Crossref] [PubMed]

K. Li, L. Guo, C. Li, X. Li, M. Shen, Z. Zheng, Y. Yu, R. Hao, Z. Hao, Q. Zeng, Y. Lu, and X. Zeng, “Analytical-performance improvement of laser-induced breakdown spectroscopy for steel using multi-spectral-line calibration with an artificial neural network,” J. Anal. At. Spectrom. 30(7), 1623–1628 (2015).
[Crossref]

Z. Q. Hao, C. M. Li, M. Shen, X. Y. Yang, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Acidity measurement of iron ore powders using laser-induced breakdown spectroscopy with partial least squares regression,” Opt. Express 23(6), 7795–7801 (2015).
[Crossref] [PubMed]

2014 (6)

R. Gaudiuso, M. Dell’Aglio, O. De Pascale, S. Loperfido, A. Mangone, and A. De Giacomo, “Laser-induced breakdown spectroscopy of archaeological findings with calibration-free inverse method: comparison with classical laser-induced breakdown spectroscopy and conventional techniques,” Anal. Chim. Acta 813, 15–24 (2014).
[Crossref] [PubMed]

H. Hou, Y. Tian, Y. Li, and R. Zheng, “Study of pressure effects on laser induced plasma in bulk seawater,” J. Anal. At. Spectrom. 29(1), 169–175 (2014).
[Crossref]

R. Noll, C. Fricke-Begemann, M. Brunk, S. Connemann, C. Meinhardt, M. Scharun, V. Sturm, J. Makowe, and C. Gehlen, “Laser-induced breakdown spectroscopy expands into industrial applications,” Spectrochim. Acta B At. Spectrosc. 93, 41–51 (2014).
[Crossref]

C. Aragón and J. Aguilera, “CSigma graphs: A new approach for plasma characterization in laser-induced breakdown spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 149, 90–102 (2014).
[Crossref]

G. Nicolodelli, B. S. Marangoni, J. S. Cabral, P. R. Villas-Boas, G. S. Senesi, C. H. Dos Santos, R. A. Romano, A. Segnini, Y. Lucas, C. R. Montes, and D. M. Milori, “Quantification of total carbon in soil using laser-induced breakdown spectroscopy: a method to correct interference lines,” Appl. Opt. 53(10), 2170–2176 (2014).
[Crossref] [PubMed]

M. Burger, M. Skočić, and S. Bukvić, “Study of self-absorption in laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 101, 51–56 (2014).
[Crossref]

2013 (1)

G. Cavalcanti, D. Teixeira, S. Legnaioli, G. Lorenzetti, L. Pardini, and V. Palleschi, “One-point calibration for calibration-free laser-induced breakdown spectroscopy quantitative analysis,” Spectrochim. Acta B At. Spectrosc. 87, 51–56 (2013).
[Crossref]

2010 (2)

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochim. Acta B At. Spectrosc. 65(1), 1–14 (2010).
[Crossref]

2007 (1)

A. Giakoumaki, K. Melessanaki, and D. Anglos, “Laser-induced breakdown spectroscopy (LIBS) in archaeological science--applications and prospects,” Anal. Bioanal. Chem. 387(3), 749–760 (2007).
[Crossref] [PubMed]

2005 (1)

B. Sallé, D. A. Cremers, S. Maurice, and R. C. Wiens, “Laser-induced breakdown spectroscopy for space exploration applications: Influence of the ambient pressure on the calibration curves prepared from soil and clay samples,” Spectrochim. Acta B At. Spectrosc. 60(4), 479–490 (2005).
[Crossref]

1999 (1)

Aguilera, J.

J. Aguilera and C. Aragón, “Analysis of rocks by CSigma laser-induced breakdown spectroscopy with fused glass sample preparation,” J. Anal. At. Spectrom. 32(1), 144–152 (2017).
[Crossref]

C. Aragón and J. Aguilera, “CSigma graphs: A new approach for plasma characterization in laser-induced breakdown spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 149, 90–102 (2014).
[Crossref]

Aguilera, J. A.

C. Aragón and J. A. Aguilera, “Direct analysis of aluminum alloys by CSigma laser-induced breakdown spectroscopy,” Anal. Chim. Acta 1009, 12–19 (2018).
[Crossref] [PubMed]

Anglos, D.

A. Giakoumaki, K. Melessanaki, and D. Anglos, “Laser-induced breakdown spectroscopy (LIBS) in archaeological science--applications and prospects,” Anal. Bioanal. Chem. 387(3), 749–760 (2007).
[Crossref] [PubMed]

Aragón, C.

C. Aragón and J. A. Aguilera, “Direct analysis of aluminum alloys by CSigma laser-induced breakdown spectroscopy,” Anal. Chim. Acta 1009, 12–19 (2018).
[Crossref] [PubMed]

J. Aguilera and C. Aragón, “Analysis of rocks by CSigma laser-induced breakdown spectroscopy with fused glass sample preparation,” J. Anal. At. Spectrom. 32(1), 144–152 (2017).
[Crossref]

C. Aragón and J. Aguilera, “CSigma graphs: A new approach for plasma characterization in laser-induced breakdown spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 149, 90–102 (2014).
[Crossref]

Brunk, M.

R. Noll, C. Fricke-Begemann, M. Brunk, S. Connemann, C. Meinhardt, M. Scharun, V. Sturm, J. Makowe, and C. Gehlen, “Laser-induced breakdown spectroscopy expands into industrial applications,” Spectrochim. Acta B At. Spectrosc. 93, 41–51 (2014).
[Crossref]

Bukvic, S.

M. Burger, M. Skočić, and S. Bukvić, “Study of self-absorption in laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 101, 51–56 (2014).
[Crossref]

Burger, M.

M. Burger, M. Skočić, and S. Bukvić, “Study of self-absorption in laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 101, 51–56 (2014).
[Crossref]

Cabral, J. S.

Cama-Moncunill, R.

M. Markiewicz-Keszycka, X. Cama-Moncunill, M. P. Casado-Gavalda, Y. Dixit, R. Cama-Moncunill, P. J. Cullen, and C. Sullivan, “Laser-induced breakdown spectroscopy (LIBS) for food analysis: A review,” Trends Food Sci. Technol. 65, 80–93 (2017).
[Crossref]

M. P. Casado-Gavalda, Y. Dixit, D. Geulen, R. Cama-Moncunill, X. Cama-Moncunill, M. Markiewicz-Keszycka, P. J. Cullen, and C. Sullivan, “Quantification of copper content with laser induced breakdown spectroscopy as a potential indicator of offal adulteration in beef,” Talanta 169, 123–129 (2017).
[Crossref] [PubMed]

Cama-Moncunill, X.

M. P. Casado-Gavalda, Y. Dixit, D. Geulen, R. Cama-Moncunill, X. Cama-Moncunill, M. Markiewicz-Keszycka, P. J. Cullen, and C. Sullivan, “Quantification of copper content with laser induced breakdown spectroscopy as a potential indicator of offal adulteration in beef,” Talanta 169, 123–129 (2017).
[Crossref] [PubMed]

M. Markiewicz-Keszycka, X. Cama-Moncunill, M. P. Casado-Gavalda, Y. Dixit, R. Cama-Moncunill, P. J. Cullen, and C. Sullivan, “Laser-induced breakdown spectroscopy (LIBS) for food analysis: A review,” Trends Food Sci. Technol. 65, 80–93 (2017).
[Crossref]

Casado-Gavalda, M. P.

M. Markiewicz-Keszycka, X. Cama-Moncunill, M. P. Casado-Gavalda, Y. Dixit, R. Cama-Moncunill, P. J. Cullen, and C. Sullivan, “Laser-induced breakdown spectroscopy (LIBS) for food analysis: A review,” Trends Food Sci. Technol. 65, 80–93 (2017).
[Crossref]

M. P. Casado-Gavalda, Y. Dixit, D. Geulen, R. Cama-Moncunill, X. Cama-Moncunill, M. Markiewicz-Keszycka, P. J. Cullen, and C. Sullivan, “Quantification of copper content with laser induced breakdown spectroscopy as a potential indicator of offal adulteration in beef,” Talanta 169, 123–129 (2017).
[Crossref] [PubMed]

Cavalcanti, G.

G. Cavalcanti, D. Teixeira, S. Legnaioli, G. Lorenzetti, L. Pardini, and V. Palleschi, “One-point calibration for calibration-free laser-induced breakdown spectroscopy quantitative analysis,” Spectrochim. Acta B At. Spectrosc. 87, 51–56 (2013).
[Crossref]

Chen, T.

Cheng, X.

Ciucci, A.

Connemann, S.

R. Noll, C. Fricke-Begemann, M. Brunk, S. Connemann, C. Meinhardt, M. Scharun, V. Sturm, J. Makowe, and C. Gehlen, “Laser-induced breakdown spectroscopy expands into industrial applications,” Spectrochim. Acta B At. Spectrosc. 93, 41–51 (2014).
[Crossref]

Corsi, M.

Cremers, D. A.

B. Sallé, D. A. Cremers, S. Maurice, and R. C. Wiens, “Laser-induced breakdown spectroscopy for space exploration applications: Influence of the ambient pressure on the calibration curves prepared from soil and clay samples,” Spectrochim. Acta B At. Spectrosc. 60(4), 479–490 (2005).
[Crossref]

Cristoforetti, G.

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochim. Acta B At. Spectrosc. 65(1), 1–14 (2010).
[Crossref]

Cullen, P. J.

M. Markiewicz-Keszycka, X. Cama-Moncunill, M. P. Casado-Gavalda, Y. Dixit, R. Cama-Moncunill, P. J. Cullen, and C. Sullivan, “Laser-induced breakdown spectroscopy (LIBS) for food analysis: A review,” Trends Food Sci. Technol. 65, 80–93 (2017).
[Crossref]

M. P. Casado-Gavalda, Y. Dixit, D. Geulen, R. Cama-Moncunill, X. Cama-Moncunill, M. Markiewicz-Keszycka, P. J. Cullen, and C. Sullivan, “Quantification of copper content with laser induced breakdown spectroscopy as a potential indicator of offal adulteration in beef,” Talanta 169, 123–129 (2017).
[Crossref] [PubMed]

De Giacomo, A.

R. Gaudiuso, M. Dell’Aglio, O. De Pascale, S. Loperfido, A. Mangone, and A. De Giacomo, “Laser-induced breakdown spectroscopy of archaeological findings with calibration-free inverse method: comparison with classical laser-induced breakdown spectroscopy and conventional techniques,” Anal. Chim. Acta 813, 15–24 (2014).
[Crossref] [PubMed]

de Holanda Cavalcanti, G.

F. de Oliveira Borges, J. U. Ospina, G. de Holanda Cavalcanti, E. E. Farias, A. A. Rocha, P. I. Ferreira, G. C. Gomes, and A. Mello, “CF-LIBS analysis of frozen aqueous solution samples by using a standard internal reference and correcting the self-absorption effect,” J. Anal. At. Spectrom. 33(4), 629–641 (2018).
[Crossref]

de Oliveira Borges, F.

F. de Oliveira Borges, J. U. Ospina, G. de Holanda Cavalcanti, E. E. Farias, A. A. Rocha, P. I. Ferreira, G. C. Gomes, and A. Mello, “CF-LIBS analysis of frozen aqueous solution samples by using a standard internal reference and correcting the self-absorption effect,” J. Anal. At. Spectrom. 33(4), 629–641 (2018).
[Crossref]

De Pascale, O.

R. Gaudiuso, M. Dell’Aglio, O. De Pascale, S. Loperfido, A. Mangone, and A. De Giacomo, “Laser-induced breakdown spectroscopy of archaeological findings with calibration-free inverse method: comparison with classical laser-induced breakdown spectroscopy and conventional techniques,” Anal. Chim. Acta 813, 15–24 (2014).
[Crossref] [PubMed]

Dell’Aglio, M.

R. Gaudiuso, M. Dell’Aglio, O. De Pascale, S. Loperfido, A. Mangone, and A. De Giacomo, “Laser-induced breakdown spectroscopy of archaeological findings with calibration-free inverse method: comparison with classical laser-induced breakdown spectroscopy and conventional techniques,” Anal. Chim. Acta 813, 15–24 (2014).
[Crossref] [PubMed]

Deng, L.

Y. Guo, L. Deng, X. Yang, J. Li, K. Li, Z. Zhu, L. Guo, X. Li, Y. Lu, and X. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

Dixit, Y.

M. Markiewicz-Keszycka, X. Cama-Moncunill, M. P. Casado-Gavalda, Y. Dixit, R. Cama-Moncunill, P. J. Cullen, and C. Sullivan, “Laser-induced breakdown spectroscopy (LIBS) for food analysis: A review,” Trends Food Sci. Technol. 65, 80–93 (2017).
[Crossref]

M. P. Casado-Gavalda, Y. Dixit, D. Geulen, R. Cama-Moncunill, X. Cama-Moncunill, M. Markiewicz-Keszycka, P. J. Cullen, and C. Sullivan, “Quantification of copper content with laser induced breakdown spectroscopy as a potential indicator of offal adulteration in beef,” Talanta 169, 123–129 (2017).
[Crossref] [PubMed]

Dos Santos, C. H.

Duan, J.

Farias, E. E.

F. de Oliveira Borges, J. U. Ospina, G. de Holanda Cavalcanti, E. E. Farias, A. A. Rocha, P. I. Ferreira, G. C. Gomes, and A. Mello, “CF-LIBS analysis of frozen aqueous solution samples by using a standard internal reference and correcting the self-absorption effect,” J. Anal. At. Spectrom. 33(4), 629–641 (2018).
[Crossref]

Ferreira, P. I.

F. de Oliveira Borges, J. U. Ospina, G. de Holanda Cavalcanti, E. E. Farias, A. A. Rocha, P. I. Ferreira, G. C. Gomes, and A. Mello, “CF-LIBS analysis of frozen aqueous solution samples by using a standard internal reference and correcting the self-absorption effect,” J. Anal. At. Spectrom. 33(4), 629–641 (2018).
[Crossref]

Fricke-Begemann, C.

R. Noll, C. Fricke-Begemann, M. Brunk, S. Connemann, C. Meinhardt, M. Scharun, V. Sturm, J. Makowe, and C. Gehlen, “Laser-induced breakdown spectroscopy expands into industrial applications,” Spectrochim. Acta B At. Spectrosc. 93, 41–51 (2014).
[Crossref]

Galbács, G.

G. Galbács, “A critical review of recent progress in analytical laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 407(25), 7537–7562 (2015).
[Crossref] [PubMed]

Gaudiuso, R.

R. Gaudiuso, M. Dell’Aglio, O. De Pascale, S. Loperfido, A. Mangone, and A. De Giacomo, “Laser-induced breakdown spectroscopy of archaeological findings with calibration-free inverse method: comparison with classical laser-induced breakdown spectroscopy and conventional techniques,” Anal. Chim. Acta 813, 15–24 (2014).
[Crossref] [PubMed]

Gehlen, C.

R. Noll, C. Fricke-Begemann, M. Brunk, S. Connemann, C. Meinhardt, M. Scharun, V. Sturm, J. Makowe, and C. Gehlen, “Laser-induced breakdown spectroscopy expands into industrial applications,” Spectrochim. Acta B At. Spectrosc. 93, 41–51 (2014).
[Crossref]

Geulen, D.

M. P. Casado-Gavalda, Y. Dixit, D. Geulen, R. Cama-Moncunill, X. Cama-Moncunill, M. Markiewicz-Keszycka, P. J. Cullen, and C. Sullivan, “Quantification of copper content with laser induced breakdown spectroscopy as a potential indicator of offal adulteration in beef,” Talanta 169, 123–129 (2017).
[Crossref] [PubMed]

Giakoumaki, A.

A. Giakoumaki, K. Melessanaki, and D. Anglos, “Laser-induced breakdown spectroscopy (LIBS) in archaeological science--applications and prospects,” Anal. Bioanal. Chem. 387(3), 749–760 (2007).
[Crossref] [PubMed]

Gomes, G. C.

F. de Oliveira Borges, J. U. Ospina, G. de Holanda Cavalcanti, E. E. Farias, A. A. Rocha, P. I. Ferreira, G. C. Gomes, and A. Mello, “CF-LIBS analysis of frozen aqueous solution samples by using a standard internal reference and correcting the self-absorption effect,” J. Anal. At. Spectrom. 33(4), 629–641 (2018).
[Crossref]

Guo, L.

Y. Tang, J. Li, Z. Hao, S. Tang, Z. Zhu, L. Guo, X. Li, X. Zeng, J. Duan, and Y. Lu, “Multielemental self-absorption reduction in laser-induced breakdown spectroscopy by using microwave-assisted excitation,” Opt. Express 26(9), 12121–12130 (2018).
[Crossref] [PubMed]

X. Cheng, X. Yang, Z. Zhu, L. Guo, X. Li, Y. Lu, and X. Zeng, “On-stream analysis of iron ore slurry using laser-induced breakdown spectroscopy,” Appl. Opt. 56(33), 9144–9149 (2017).
[Crossref] [PubMed]

R. Yi, J. Li, X. Yang, R. Zhou, H. Yu, Z. Hao, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spectral interference elimination in soil analysis using laser-induced breakdown spectroscopy assisted by laser-induced fluorescence,” Anal. Chem. 89(4), 2334–2337 (2017).
[Crossref] [PubMed]

Y. Guo, L. Deng, X. Yang, J. Li, K. Li, Z. Zhu, L. Guo, X. Li, Y. Lu, and X. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

K. Li, L. Guo, C. Li, X. Li, M. Shen, Z. Zheng, Y. Yu, R. Hao, Z. Hao, Q. Zeng, Y. Lu, and X. Zeng, “Analytical-performance improvement of laser-induced breakdown spectroscopy for steel using multi-spectral-line calibration with an artificial neural network,” J. Anal. At. Spectrom. 30(7), 1623–1628 (2015).
[Crossref]

Guo, L. B.

Guo, Y.

Y. Guo, L. Deng, X. Yang, J. Li, K. Li, Z. Zhu, L. Guo, X. Li, Y. Lu, and X. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

Hahn, D. W.

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

Hao, R.

K. Li, L. Guo, C. Li, X. Li, M. Shen, Z. Zheng, Y. Yu, R. Hao, Z. Hao, Q. Zeng, Y. Lu, and X. Zeng, “Analytical-performance improvement of laser-induced breakdown spectroscopy for steel using multi-spectral-line calibration with an artificial neural network,” J. Anal. At. Spectrom. 30(7), 1623–1628 (2015).
[Crossref]

Hao, Z.

Y. Tang, J. Li, Z. Hao, S. Tang, Z. Zhu, L. Guo, X. Li, X. Zeng, J. Duan, and Y. Lu, “Multielemental self-absorption reduction in laser-induced breakdown spectroscopy by using microwave-assisted excitation,” Opt. Express 26(9), 12121–12130 (2018).
[Crossref] [PubMed]

R. Yi, J. Li, X. Yang, R. Zhou, H. Yu, Z. Hao, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spectral interference elimination in soil analysis using laser-induced breakdown spectroscopy assisted by laser-induced fluorescence,” Anal. Chem. 89(4), 2334–2337 (2017).
[Crossref] [PubMed]

K. Li, L. Guo, C. Li, X. Li, M. Shen, Z. Zheng, Y. Yu, R. Hao, Z. Hao, Q. Zeng, Y. Lu, and X. Zeng, “Analytical-performance improvement of laser-induced breakdown spectroscopy for steel using multi-spectral-line calibration with an artificial neural network,” J. Anal. At. Spectrom. 30(7), 1623–1628 (2015).
[Crossref]

Hao, Z. Q.

Hou, H.

H. Hou, Y. Tian, Y. Li, and R. Zheng, “Study of pressure effects on laser induced plasma in bulk seawater,” J. Anal. At. Spectrom. 29(1), 169–175 (2014).
[Crossref]

Huang, L.

Legnaioli, S.

G. Cavalcanti, D. Teixeira, S. Legnaioli, G. Lorenzetti, L. Pardini, and V. Palleschi, “One-point calibration for calibration-free laser-induced breakdown spectroscopy quantitative analysis,” Spectrochim. Acta B At. Spectrosc. 87, 51–56 (2013).
[Crossref]

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochim. Acta B At. Spectrosc. 65(1), 1–14 (2010).
[Crossref]

Li, C.

K. Li, L. Guo, C. Li, X. Li, M. Shen, Z. Zheng, Y. Yu, R. Hao, Z. Hao, Q. Zeng, Y. Lu, and X. Zeng, “Analytical-performance improvement of laser-induced breakdown spectroscopy for steel using multi-spectral-line calibration with an artificial neural network,” J. Anal. At. Spectrom. 30(7), 1623–1628 (2015).
[Crossref]

Li, C. M.

Li, J.

Y. Tang, J. Li, Z. Hao, S. Tang, Z. Zhu, L. Guo, X. Li, X. Zeng, J. Duan, and Y. Lu, “Multielemental self-absorption reduction in laser-induced breakdown spectroscopy by using microwave-assisted excitation,” Opt. Express 26(9), 12121–12130 (2018).
[Crossref] [PubMed]

Y. Guo, L. Deng, X. Yang, J. Li, K. Li, Z. Zhu, L. Guo, X. Li, Y. Lu, and X. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

R. Yi, J. Li, X. Yang, R. Zhou, H. Yu, Z. Hao, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spectral interference elimination in soil analysis using laser-induced breakdown spectroscopy assisted by laser-induced fluorescence,” Anal. Chem. 89(4), 2334–2337 (2017).
[Crossref] [PubMed]

Li, J. M.

Li, K.

Y. Guo, L. Deng, X. Yang, J. Li, K. Li, Z. Zhu, L. Guo, X. Li, Y. Lu, and X. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

K. Li, L. Guo, C. Li, X. Li, M. Shen, Z. Zheng, Y. Yu, R. Hao, Z. Hao, Q. Zeng, Y. Lu, and X. Zeng, “Analytical-performance improvement of laser-induced breakdown spectroscopy for steel using multi-spectral-line calibration with an artificial neural network,” J. Anal. At. Spectrom. 30(7), 1623–1628 (2015).
[Crossref]

Li, K. H.

Li, X.

Y. Tang, J. Li, Z. Hao, S. Tang, Z. Zhu, L. Guo, X. Li, X. Zeng, J. Duan, and Y. Lu, “Multielemental self-absorption reduction in laser-induced breakdown spectroscopy by using microwave-assisted excitation,” Opt. Express 26(9), 12121–12130 (2018).
[Crossref] [PubMed]

J. Yang, X. Li, J. Xu, and X. Ma, “A Calibration-free laser-induced breakdown spectroscopy (CF-LIBS) quantitative analysis method based on the auto-selection of an internal reference line and optimized estimation of plasma temperature,” Appl. Spectrosc. 72(1), 129–140 (2018).
[Crossref] [PubMed]

X. Cheng, X. Yang, Z. Zhu, L. Guo, X. Li, Y. Lu, and X. Zeng, “On-stream analysis of iron ore slurry using laser-induced breakdown spectroscopy,” Appl. Opt. 56(33), 9144–9149 (2017).
[Crossref] [PubMed]

Y. Guo, L. Deng, X. Yang, J. Li, K. Li, Z. Zhu, L. Guo, X. Li, Y. Lu, and X. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

R. Yi, J. Li, X. Yang, R. Zhou, H. Yu, Z. Hao, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spectral interference elimination in soil analysis using laser-induced breakdown spectroscopy assisted by laser-induced fluorescence,” Anal. Chem. 89(4), 2334–2337 (2017).
[Crossref] [PubMed]

K. Li, L. Guo, C. Li, X. Li, M. Shen, Z. Zheng, Y. Yu, R. Hao, Z. Hao, Q. Zeng, Y. Lu, and X. Zeng, “Analytical-performance improvement of laser-induced breakdown spectroscopy for steel using multi-spectral-line calibration with an artificial neural network,” J. Anal. At. Spectrom. 30(7), 1623–1628 (2015).
[Crossref]

Li, X. Y.

Li, Y.

H. Hou, Y. Tian, Y. Li, and R. Zheng, “Study of pressure effects on laser induced plasma in bulk seawater,” J. Anal. At. Spectrom. 29(1), 169–175 (2014).
[Crossref]

Liu, L.

Liu, M.

Loperfido, S.

R. Gaudiuso, M. Dell’Aglio, O. De Pascale, S. Loperfido, A. Mangone, and A. De Giacomo, “Laser-induced breakdown spectroscopy of archaeological findings with calibration-free inverse method: comparison with classical laser-induced breakdown spectroscopy and conventional techniques,” Anal. Chim. Acta 813, 15–24 (2014).
[Crossref] [PubMed]

Lorenzetti, G.

G. Cavalcanti, D. Teixeira, S. Legnaioli, G. Lorenzetti, L. Pardini, and V. Palleschi, “One-point calibration for calibration-free laser-induced breakdown spectroscopy quantitative analysis,” Spectrochim. Acta B At. Spectrosc. 87, 51–56 (2013).
[Crossref]

Lu, Y.

Y. Tang, J. Li, Z. Hao, S. Tang, Z. Zhu, L. Guo, X. Li, X. Zeng, J. Duan, and Y. Lu, “Multielemental self-absorption reduction in laser-induced breakdown spectroscopy by using microwave-assisted excitation,” Opt. Express 26(9), 12121–12130 (2018).
[Crossref] [PubMed]

X. Cheng, X. Yang, Z. Zhu, L. Guo, X. Li, Y. Lu, and X. Zeng, “On-stream analysis of iron ore slurry using laser-induced breakdown spectroscopy,” Appl. Opt. 56(33), 9144–9149 (2017).
[Crossref] [PubMed]

R. Yi, J. Li, X. Yang, R. Zhou, H. Yu, Z. Hao, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spectral interference elimination in soil analysis using laser-induced breakdown spectroscopy assisted by laser-induced fluorescence,” Anal. Chem. 89(4), 2334–2337 (2017).
[Crossref] [PubMed]

Y. Guo, L. Deng, X. Yang, J. Li, K. Li, Z. Zhu, L. Guo, X. Li, Y. Lu, and X. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

K. Li, L. Guo, C. Li, X. Li, M. Shen, Z. Zheng, Y. Yu, R. Hao, Z. Hao, Q. Zeng, Y. Lu, and X. Zeng, “Analytical-performance improvement of laser-induced breakdown spectroscopy for steel using multi-spectral-line calibration with an artificial neural network,” J. Anal. At. Spectrom. 30(7), 1623–1628 (2015).
[Crossref]

Lu, Y. F.

Lucas, Y.

Ma, X.

Makowe, J.

R. Noll, C. Fricke-Begemann, M. Brunk, S. Connemann, C. Meinhardt, M. Scharun, V. Sturm, J. Makowe, and C. Gehlen, “Laser-induced breakdown spectroscopy expands into industrial applications,” Spectrochim. Acta B At. Spectrosc. 93, 41–51 (2014).
[Crossref]

Mangone, A.

R. Gaudiuso, M. Dell’Aglio, O. De Pascale, S. Loperfido, A. Mangone, and A. De Giacomo, “Laser-induced breakdown spectroscopy of archaeological findings with calibration-free inverse method: comparison with classical laser-induced breakdown spectroscopy and conventional techniques,” Anal. Chim. Acta 813, 15–24 (2014).
[Crossref] [PubMed]

Marangoni, B. S.

Markiewicz-Keszycka, M.

M. Markiewicz-Keszycka, X. Cama-Moncunill, M. P. Casado-Gavalda, Y. Dixit, R. Cama-Moncunill, P. J. Cullen, and C. Sullivan, “Laser-induced breakdown spectroscopy (LIBS) for food analysis: A review,” Trends Food Sci. Technol. 65, 80–93 (2017).
[Crossref]

M. P. Casado-Gavalda, Y. Dixit, D. Geulen, R. Cama-Moncunill, X. Cama-Moncunill, M. Markiewicz-Keszycka, P. J. Cullen, and C. Sullivan, “Quantification of copper content with laser induced breakdown spectroscopy as a potential indicator of offal adulteration in beef,” Talanta 169, 123–129 (2017).
[Crossref] [PubMed]

Maurice, S.

B. Sallé, D. A. Cremers, S. Maurice, and R. C. Wiens, “Laser-induced breakdown spectroscopy for space exploration applications: Influence of the ambient pressure on the calibration curves prepared from soil and clay samples,” Spectrochim. Acta B At. Spectrosc. 60(4), 479–490 (2005).
[Crossref]

Meinhardt, C.

R. Noll, C. Fricke-Begemann, M. Brunk, S. Connemann, C. Meinhardt, M. Scharun, V. Sturm, J. Makowe, and C. Gehlen, “Laser-induced breakdown spectroscopy expands into industrial applications,” Spectrochim. Acta B At. Spectrosc. 93, 41–51 (2014).
[Crossref]

Melessanaki, K.

A. Giakoumaki, K. Melessanaki, and D. Anglos, “Laser-induced breakdown spectroscopy (LIBS) in archaeological science--applications and prospects,” Anal. Bioanal. Chem. 387(3), 749–760 (2007).
[Crossref] [PubMed]

Mello, A.

F. de Oliveira Borges, J. U. Ospina, G. de Holanda Cavalcanti, E. E. Farias, A. A. Rocha, P. I. Ferreira, G. C. Gomes, and A. Mello, “CF-LIBS analysis of frozen aqueous solution samples by using a standard internal reference and correcting the self-absorption effect,” J. Anal. At. Spectrom. 33(4), 629–641 (2018).
[Crossref]

Milori, D. M.

Montes, C. R.

Nicolodelli, G.

Noll, R.

R. Noll, C. Fricke-Begemann, M. Brunk, S. Connemann, C. Meinhardt, M. Scharun, V. Sturm, J. Makowe, and C. Gehlen, “Laser-induced breakdown spectroscopy expands into industrial applications,” Spectrochim. Acta B At. Spectrosc. 93, 41–51 (2014).
[Crossref]

Omenetto, N.

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

Ospina, J. U.

F. de Oliveira Borges, J. U. Ospina, G. de Holanda Cavalcanti, E. E. Farias, A. A. Rocha, P. I. Ferreira, G. C. Gomes, and A. Mello, “CF-LIBS analysis of frozen aqueous solution samples by using a standard internal reference and correcting the self-absorption effect,” J. Anal. At. Spectrom. 33(4), 629–641 (2018).
[Crossref]

Palleschi, V.

G. Cavalcanti, D. Teixeira, S. Legnaioli, G. Lorenzetti, L. Pardini, and V. Palleschi, “One-point calibration for calibration-free laser-induced breakdown spectroscopy quantitative analysis,” Spectrochim. Acta B At. Spectrosc. 87, 51–56 (2013).
[Crossref]

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochim. Acta B At. Spectrosc. 65(1), 1–14 (2010).
[Crossref]

A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53(8), 960–964 (1999).
[Crossref]

Pardini, L.

G. Cavalcanti, D. Teixeira, S. Legnaioli, G. Lorenzetti, L. Pardini, and V. Palleschi, “One-point calibration for calibration-free laser-induced breakdown spectroscopy quantitative analysis,” Spectrochim. Acta B At. Spectrosc. 87, 51–56 (2013).
[Crossref]

Rao, G.

Rastelli, S.

Rocha, A. A.

F. de Oliveira Borges, J. U. Ospina, G. de Holanda Cavalcanti, E. E. Farias, A. A. Rocha, P. I. Ferreira, G. C. Gomes, and A. Mello, “CF-LIBS analysis of frozen aqueous solution samples by using a standard internal reference and correcting the self-absorption effect,” J. Anal. At. Spectrom. 33(4), 629–641 (2018).
[Crossref]

Romano, R. A.

Sallé, B.

B. Sallé, D. A. Cremers, S. Maurice, and R. C. Wiens, “Laser-induced breakdown spectroscopy for space exploration applications: Influence of the ambient pressure on the calibration curves prepared from soil and clay samples,” Spectrochim. Acta B At. Spectrosc. 60(4), 479–490 (2005).
[Crossref]

Salvetti, A.

Scharun, M.

R. Noll, C. Fricke-Begemann, M. Brunk, S. Connemann, C. Meinhardt, M. Scharun, V. Sturm, J. Makowe, and C. Gehlen, “Laser-induced breakdown spectroscopy expands into industrial applications,” Spectrochim. Acta B At. Spectrosc. 93, 41–51 (2014).
[Crossref]

Segnini, A.

Senesi, G. S.

Shen, M.

Skocic, M.

M. Burger, M. Skočić, and S. Bukvić, “Study of self-absorption in laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 101, 51–56 (2014).
[Crossref]

Sturm, V.

R. Noll, C. Fricke-Begemann, M. Brunk, S. Connemann, C. Meinhardt, M. Scharun, V. Sturm, J. Makowe, and C. Gehlen, “Laser-induced breakdown spectroscopy expands into industrial applications,” Spectrochim. Acta B At. Spectrosc. 93, 41–51 (2014).
[Crossref]

Sullivan, C.

M. Markiewicz-Keszycka, X. Cama-Moncunill, M. P. Casado-Gavalda, Y. Dixit, R. Cama-Moncunill, P. J. Cullen, and C. Sullivan, “Laser-induced breakdown spectroscopy (LIBS) for food analysis: A review,” Trends Food Sci. Technol. 65, 80–93 (2017).
[Crossref]

M. P. Casado-Gavalda, Y. Dixit, D. Geulen, R. Cama-Moncunill, X. Cama-Moncunill, M. Markiewicz-Keszycka, P. J. Cullen, and C. Sullivan, “Quantification of copper content with laser induced breakdown spectroscopy as a potential indicator of offal adulteration in beef,” Talanta 169, 123–129 (2017).
[Crossref] [PubMed]

Tang, S.

Tang, Y.

Teixeira, D.

G. Cavalcanti, D. Teixeira, S. Legnaioli, G. Lorenzetti, L. Pardini, and V. Palleschi, “One-point calibration for calibration-free laser-induced breakdown spectroscopy quantitative analysis,” Spectrochim. Acta B At. Spectrosc. 87, 51–56 (2013).
[Crossref]

Tian, Y.

H. Hou, Y. Tian, Y. Li, and R. Zheng, “Study of pressure effects on laser induced plasma in bulk seawater,” J. Anal. At. Spectrom. 29(1), 169–175 (2014).
[Crossref]

Tognoni, E.

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochim. Acta B At. Spectrosc. 65(1), 1–14 (2010).
[Crossref]

A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53(8), 960–964 (1999).
[Crossref]

Villas-Boas, P. R.

Wiens, R. C.

B. Sallé, D. A. Cremers, S. Maurice, and R. C. Wiens, “Laser-induced breakdown spectroscopy for space exploration applications: Influence of the ambient pressure on the calibration curves prepared from soil and clay samples,” Spectrochim. Acta B At. Spectrosc. 60(4), 479–490 (2005).
[Crossref]

Xu, J.

Yang, H.

Yang, J.

Yang, X.

X. Cheng, X. Yang, Z. Zhu, L. Guo, X. Li, Y. Lu, and X. Zeng, “On-stream analysis of iron ore slurry using laser-induced breakdown spectroscopy,” Appl. Opt. 56(33), 9144–9149 (2017).
[Crossref] [PubMed]

R. Yi, J. Li, X. Yang, R. Zhou, H. Yu, Z. Hao, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spectral interference elimination in soil analysis using laser-induced breakdown spectroscopy assisted by laser-induced fluorescence,” Anal. Chem. 89(4), 2334–2337 (2017).
[Crossref] [PubMed]

Y. Guo, L. Deng, X. Yang, J. Li, K. Li, Z. Zhu, L. Guo, X. Li, Y. Lu, and X. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

Yang, X. Y.

Yao, M.

Yi, R.

R. Yi, J. Li, X. Yang, R. Zhou, H. Yu, Z. Hao, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spectral interference elimination in soil analysis using laser-induced breakdown spectroscopy assisted by laser-induced fluorescence,” Anal. Chem. 89(4), 2334–2337 (2017).
[Crossref] [PubMed]

Yi, R. X.

Yu, H.

R. Yi, J. Li, X. Yang, R. Zhou, H. Yu, Z. Hao, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spectral interference elimination in soil analysis using laser-induced breakdown spectroscopy assisted by laser-induced fluorescence,” Anal. Chem. 89(4), 2334–2337 (2017).
[Crossref] [PubMed]

Yu, Y.

K. Li, L. Guo, C. Li, X. Li, M. Shen, Z. Zheng, Y. Yu, R. Hao, Z. Hao, Q. Zeng, Y. Lu, and X. Zeng, “Analytical-performance improvement of laser-induced breakdown spectroscopy for steel using multi-spectral-line calibration with an artificial neural network,” J. Anal. At. Spectrom. 30(7), 1623–1628 (2015).
[Crossref]

Zeng, Q.

K. Li, L. Guo, C. Li, X. Li, M. Shen, Z. Zheng, Y. Yu, R. Hao, Z. Hao, Q. Zeng, Y. Lu, and X. Zeng, “Analytical-performance improvement of laser-induced breakdown spectroscopy for steel using multi-spectral-line calibration with an artificial neural network,” J. Anal. At. Spectrom. 30(7), 1623–1628 (2015).
[Crossref]

Zeng, X.

Y. Tang, J. Li, Z. Hao, S. Tang, Z. Zhu, L. Guo, X. Li, X. Zeng, J. Duan, and Y. Lu, “Multielemental self-absorption reduction in laser-induced breakdown spectroscopy by using microwave-assisted excitation,” Opt. Express 26(9), 12121–12130 (2018).
[Crossref] [PubMed]

X. Cheng, X. Yang, Z. Zhu, L. Guo, X. Li, Y. Lu, and X. Zeng, “On-stream analysis of iron ore slurry using laser-induced breakdown spectroscopy,” Appl. Opt. 56(33), 9144–9149 (2017).
[Crossref] [PubMed]

R. Yi, J. Li, X. Yang, R. Zhou, H. Yu, Z. Hao, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spectral interference elimination in soil analysis using laser-induced breakdown spectroscopy assisted by laser-induced fluorescence,” Anal. Chem. 89(4), 2334–2337 (2017).
[Crossref] [PubMed]

Y. Guo, L. Deng, X. Yang, J. Li, K. Li, Z. Zhu, L. Guo, X. Li, Y. Lu, and X. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

K. Li, L. Guo, C. Li, X. Li, M. Shen, Z. Zheng, Y. Yu, R. Hao, Z. Hao, Q. Zeng, Y. Lu, and X. Zeng, “Analytical-performance improvement of laser-induced breakdown spectroscopy for steel using multi-spectral-line calibration with an artificial neural network,” J. Anal. At. Spectrom. 30(7), 1623–1628 (2015).
[Crossref]

Zeng, X. Y.

Zheng, R.

H. Hou, Y. Tian, Y. Li, and R. Zheng, “Study of pressure effects on laser induced plasma in bulk seawater,” J. Anal. At. Spectrom. 29(1), 169–175 (2014).
[Crossref]

Zheng, Z.

K. Li, L. Guo, C. Li, X. Li, M. Shen, Z. Zheng, Y. Yu, R. Hao, Z. Hao, Q. Zeng, Y. Lu, and X. Zeng, “Analytical-performance improvement of laser-induced breakdown spectroscopy for steel using multi-spectral-line calibration with an artificial neural network,” J. Anal. At. Spectrom. 30(7), 1623–1628 (2015).
[Crossref]

Zhou, R.

R. Yi, J. Li, X. Yang, R. Zhou, H. Yu, Z. Hao, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spectral interference elimination in soil analysis using laser-induced breakdown spectroscopy assisted by laser-induced fluorescence,” Anal. Chem. 89(4), 2334–2337 (2017).
[Crossref] [PubMed]

Zhu, Z.

Zou, X. H.

Anal. Bioanal. Chem. (2)

A. Giakoumaki, K. Melessanaki, and D. Anglos, “Laser-induced breakdown spectroscopy (LIBS) in archaeological science--applications and prospects,” Anal. Bioanal. Chem. 387(3), 749–760 (2007).
[Crossref] [PubMed]

G. Galbács, “A critical review of recent progress in analytical laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 407(25), 7537–7562 (2015).
[Crossref] [PubMed]

Anal. Chem. (1)

R. Yi, J. Li, X. Yang, R. Zhou, H. Yu, Z. Hao, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spectral interference elimination in soil analysis using laser-induced breakdown spectroscopy assisted by laser-induced fluorescence,” Anal. Chem. 89(4), 2334–2337 (2017).
[Crossref] [PubMed]

Anal. Chim. Acta (2)

C. Aragón and J. A. Aguilera, “Direct analysis of aluminum alloys by CSigma laser-induced breakdown spectroscopy,” Anal. Chim. Acta 1009, 12–19 (2018).
[Crossref] [PubMed]

R. Gaudiuso, M. Dell’Aglio, O. De Pascale, S. Loperfido, A. Mangone, and A. De Giacomo, “Laser-induced breakdown spectroscopy of archaeological findings with calibration-free inverse method: comparison with classical laser-induced breakdown spectroscopy and conventional techniques,” Anal. Chim. Acta 813, 15–24 (2014).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Spectrosc. (3)

J. Anal. At. Spectrom. (5)

K. Li, L. Guo, C. Li, X. Li, M. Shen, Z. Zheng, Y. Yu, R. Hao, Z. Hao, Q. Zeng, Y. Lu, and X. Zeng, “Analytical-performance improvement of laser-induced breakdown spectroscopy for steel using multi-spectral-line calibration with an artificial neural network,” J. Anal. At. Spectrom. 30(7), 1623–1628 (2015).
[Crossref]

H. Hou, Y. Tian, Y. Li, and R. Zheng, “Study of pressure effects on laser induced plasma in bulk seawater,” J. Anal. At. Spectrom. 29(1), 169–175 (2014).
[Crossref]

F. de Oliveira Borges, J. U. Ospina, G. de Holanda Cavalcanti, E. E. Farias, A. A. Rocha, P. I. Ferreira, G. C. Gomes, and A. Mello, “CF-LIBS analysis of frozen aqueous solution samples by using a standard internal reference and correcting the self-absorption effect,” J. Anal. At. Spectrom. 33(4), 629–641 (2018).
[Crossref]

J. Aguilera and C. Aragón, “Analysis of rocks by CSigma laser-induced breakdown spectroscopy with fused glass sample preparation,” J. Anal. At. Spectrom. 32(1), 144–152 (2017).
[Crossref]

Y. Guo, L. Deng, X. Yang, J. Li, K. Li, Z. Zhu, L. Guo, X. Li, Y. Lu, and X. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

C. Aragón and J. Aguilera, “CSigma graphs: A new approach for plasma characterization in laser-induced breakdown spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 149, 90–102 (2014).
[Crossref]

Opt. Express (5)

X. Y. Yang, Z. Q. Hao, C. M. Li, J. M. Li, R. X. Yi, M. Shen, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Sensitive determinations of Cu, Pb, Cd, and Cr elements in aqueous solutions using chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy,” Opt. Express 24(12), 13410–13417 (2016).
[Crossref] [PubMed]

Z. Q. Hao, C. M. Li, M. Shen, X. Y. Yang, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Acidity measurement of iron ore powders using laser-induced breakdown spectroscopy with partial least squares regression,” Opt. Express 23(6), 7795–7801 (2015).
[Crossref] [PubMed]

Z. Q. Hao, L. Liu, M. Shen, X. Y. Yang, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Investigation on self-absorption at reduced air pressure in quantitative analysis using laser-induced breakdown spectroscopy,” Opt. Express 24(23), 26521–26528 (2016).
[Crossref] [PubMed]

Y. Tang, J. Li, Z. Hao, S. Tang, Z. Zhu, L. Guo, X. Li, X. Zeng, J. Duan, and Y. Lu, “Multielemental self-absorption reduction in laser-induced breakdown spectroscopy by using microwave-assisted excitation,” Opt. Express 26(9), 12121–12130 (2018).
[Crossref] [PubMed]

R. X. Yi, L. B. Guo, X. H. Zou, J. M. Li, Z. Q. Hao, X. Y. Yang, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Background removal in soil analysis using laser- induced breakdown spectroscopy combined with standard addition method,” Opt. Express 24(3), 2607–2618 (2016).
[Crossref] [PubMed]

Spectrochim. Acta B At. Spectrosc. (5)

M. Burger, M. Skočić, and S. Bukvić, “Study of self-absorption in laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 101, 51–56 (2014).
[Crossref]

B. Sallé, D. A. Cremers, S. Maurice, and R. C. Wiens, “Laser-induced breakdown spectroscopy for space exploration applications: Influence of the ambient pressure on the calibration curves prepared from soil and clay samples,” Spectrochim. Acta B At. Spectrosc. 60(4), 479–490 (2005).
[Crossref]

R. Noll, C. Fricke-Begemann, M. Brunk, S. Connemann, C. Meinhardt, M. Scharun, V. Sturm, J. Makowe, and C. Gehlen, “Laser-induced breakdown spectroscopy expands into industrial applications,” Spectrochim. Acta B At. Spectrosc. 93, 41–51 (2014).
[Crossref]

G. Cavalcanti, D. Teixeira, S. Legnaioli, G. Lorenzetti, L. Pardini, and V. Palleschi, “One-point calibration for calibration-free laser-induced breakdown spectroscopy quantitative analysis,” Spectrochim. Acta B At. Spectrosc. 87, 51–56 (2013).
[Crossref]

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochim. Acta B At. Spectrosc. 65(1), 1–14 (2010).
[Crossref]

Talanta (1)

M. P. Casado-Gavalda, Y. Dixit, D. Geulen, R. Cama-Moncunill, X. Cama-Moncunill, M. Markiewicz-Keszycka, P. J. Cullen, and C. Sullivan, “Quantification of copper content with laser induced breakdown spectroscopy as a potential indicator of offal adulteration in beef,” Talanta 169, 123–129 (2017).
[Crossref] [PubMed]

Trends Food Sci. Technol. (1)

M. Markiewicz-Keszycka, X. Cama-Moncunill, M. P. Casado-Gavalda, Y. Dixit, R. Cama-Moncunill, P. J. Cullen, and C. Sullivan, “Laser-induced breakdown spectroscopy (LIBS) for food analysis: A review,” Trends Food Sci. Technol. 65, 80–93 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic diagram of the experimental setup.
Fig. 2
Fig. 2 Normalized intensity of the analyzed element in an unknown sample as a function of that in a standard sample: (a) Mn; (b) Cr; (c) Ni; and (d) Ti.
Fig. 3
Fig. 3 Comparison of the certified concentrations (see Table 1) and predicted concentrations by OP-MLC-LIBS method: (a) Mn; (b) Cr; (c) Ni; and (d) Ti.
Fig. 4
Fig. 4 Comparison of predicted concentrations by OP-MLC-LIBS and certified concentrations for Mn, Cr, Ni, and Ti elements. The short dot line corresponds to the ideal correspondence between determined concentration and nominal concentration.

Tables (2)

Tables Icon

Table 1 Certified concentrations of the elements in low-alloy steel samples (wt.%)

Tables Icon

Table 2 Spectral lines of the elements Mn, Cr, Ni, and Ti used for multi-line calibration (nm)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I λ =F C S A ki g k U s ( T ) e E k / k B T ,
I λ 1 I λ 2 = g k 1 A k 1 i 1 g k 2 A k 2 i 2 e ( E k 1 -E k 2 )/ k B T .
I λ 1 a I λ 2 b = C s a C s b g k 1 A k 1 i 1 λ 2 g k 2 A k 2 i 2 λ 1 e ( E k 1 E k 2 )/ k B T ,
C s a C s b = I λ x a I λ x b ,

Metrics