Abstract

We report an experimental observation of the collision between a linear wave propagating in the anomalous dispersion region of an optical fiber and a dark soliton located in the normal dispersion region. This interaction results in the emission of a new frequency component whose wavelength can be predicted using phase-matching arguments. The measured efficiency of this process shows a strong dependency with the soliton grayness and the linear wave wavelength, and is in a good agreement with theory and numerical simulations.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dark solitons manipulation using optical event horizon

Zhixiang Deng, Jun Liu, Xianwei Huang, Chujun Zhao, and Xinlin Wang
Opt. Express 26(13) 16535-16546 (2018)

Collisions of dark solitons in optical fibers

R. N. Thurston and Andrew M. Weiner
J. Opt. Soc. Am. B 8(2) 471-477 (1991)

Grayness-dependent emission of dispersive waves from dark solitons in optical fibers

T. Marest, C. Mas Arabí, M. Conforti, A. Mussot, C. Milián, D. V. Skryabin, and A. Kudlinski
Opt. Lett. 43(7) 1511-1514 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, “Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion,” Opt. Lett. 29, 2411–2413 (2004).
    [Crossref] [PubMed]
  2. D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E 72, 016619 (2005).
    [Crossref]
  3. A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95, 213902 (2005).
    [Crossref] [PubMed]
  4. D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287 (2010).
    [Crossref]
  5. A. V. Yulin, R. Driben, B. A. Malomed, and D. V. Skryabin, “Soliton interaction mediated by cascaded four wave mixing with dispersive waves,” Opt. Express 21, 14481–14486 (2013).
    [Crossref]
  6. J. Gu, H. Guo, S. Wang, and X. Zeng, “Probe-controlled soliton frequency shift in the regime of optical event horizon,” Opt. Express 23, 22285–22290 (2015).
    [Crossref] [PubMed]
  7. S. F. Wang, A. Mussot, M. Conforti, A. Bendahmane, X. L. Zeng, and A. Kudlinski, “Optical event horizons from the collision of a soliton and its own dispersive wave,” Phys. Rev. A 92, 023837 (2015).
    [Crossref]
  8. P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Soliton at the zero-group-dispersion wavelength of a single-model fiber,” Opt. Lett. 12, 628–630 (1987).
    [Crossref] [PubMed]
  9. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
    [Crossref] [PubMed]
  10. A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express 14, 9854–9863 (2006).
    [Crossref] [PubMed]
  11. T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. Konig, and U. Leonhardt, “Fiber-Optical Analog of the Event Horizon,” Science,  319, 1367–1370 (2008).
    [Crossref] [PubMed]
  12. K. E. Webb, M. Erkintalo, Y. Xu, N. G. R. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons”, Nat. Commun. 5, 4969 (2014).
    [Crossref] [PubMed]
  13. I. Oreshnikov, R. Driben, and A. V. Yulin, “Interaction of high-order solitons with external dispersive waves,” Opt. Lett. 40, 5554–5557 (2015).
    [Crossref] [PubMed]
  14. C. Mas Arabì, F. Bessin, A. Kudlinski, A. Mussot, D. Skryabin, and M. Conforti, “Efficiency of four-wave mixing between orthogonally polarized linear waves and solitons in a birefringent fiber,” Phys. Rev. A 94, 063847 (2016).
    [Crossref]
  15. R. Driben, A. V. Yulin, A. Efimov, and B. A. Malomed, “Trapping of light in solitonic cavities and its role in the supercontinuum generation,” Opt. Express 21, 19091–19096 (2013).
    [Crossref] [PubMed]
  16. S. F. Wang, A. Mussot, M. Conforti, X. L. Zeng, and A. Kudlinski, “Bouncing of a dispersive wave in a solitonic cage,” Opt. Lett. 40, 3320–3323 (2015).
    [Crossref] [PubMed]
  17. Z. Deng, J. Liu, X. Huang, C. Zhao, and X. Wang, “Dark solitons manipulation using optical event horizon,” Opt. Express 26, 16535–16546 (2018).
    [Crossref]
  18. T. Voytova, I. Oreshnikov, A. V. Yulin, and R. Driben, “Emulation of Fabry-Perot and Bragg resonators with temporal optical solitons,” Opt. Lett. 41, 2442–2445 (2016).
    [Crossref] [PubMed]
  19. I. Oreshnikov, R. Driben, and A. V. Yulin, “Weak and strong interactions between dark solitons and dispersive waves,” Opt. Lett. 40, 4871–4874 (2015).
    [Crossref] [PubMed]
  20. Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Physics Reports 298, 81–197 (1998).
    [Crossref]
  21. V. I. Karpman, “Stationary and radiating dark solitons of the third order nonlinear Schrödinger equation,” Physics Letters A 181, 211–215 (1993).
    [Crossref]
  22. V. V. Afanasjev, Y. S. Kivshar, and C. R. Menyuk, “Effect of third-order dispersion on dark solitons,” Opt. Lett. 21, 1975–1977 (1996).
    [Crossref] [PubMed]
  23. C. Milian, D. V. Skryabin, and A. Ferrando, “Continuum generation by dark solitons,” Opt. Lett. 34, 2096–2098 (2009).
    [Crossref] [PubMed]
  24. T. Marest, C. Mas Arabi, M. Conforti, A. Mussot, C. Milián, D. V. Skryabin, and A. Kudlinski, “Emission of dispersives waves from a train of dark solitons,” Opt. Lett. 41, 2454–2457 (2016).
    [Crossref] [PubMed]
  25. T. Marest, C. Mas Arabi, M. Conforti, A. Mussot, C. Milián, D. V. Skryabin, and A. Kudlinski, “Grayness-dependent emission of dispersive waves from dark solitons in optical fibers,” Opt. Lett. 43, 1511–1514 (2018).
    [Crossref] [PubMed]
  26. A. Choudhary and F. Konig, “Efficient frequency shifting of dispersive waves at solitons,” Opt. Express 20, 5538–5546 (2012).
    [Crossref] [PubMed]
  27. M. Conforti, F. Baronio, and S. Trillo, “Resonant radiation shed by dispersive shock waves,” Phys. Rev. A 89, 013807 (2014).
    [Crossref]
  28. M. Conforti and S. Trillo, “Radiative effects driven by shock waves in cavity-less four-wave mixing combs,” Opt. Lett. 39, 5760–5763 (2014).
    [Crossref] [PubMed]
  29. M. Conforti, S. Trillo, A. Mussot, and A. Kudlinski, “Parametric excitation of multiple resonant radiations from localized wavepackets,” Sci. Rep. 5, 9433 (2015).
    [Crossref] [PubMed]
  30. X.-J. Chen and Z.-D. Chen, “Raman blueshift of optical dark solitons”, J. Opt. Soc. Am. B,  15, 2738–2741 (1998).
    [Crossref]
  31. P. Emplit, J. P. Hamaide, F. Reynaud, C. Froehly, and A. Barthelemy, “Picosecond steps and dark pulses through nonlinear single mode fibers,” Opt. Commun. 62, 374–379 (1987).
    [Crossref]
  32. D. Krokel, N. J. Halas, G. Giuliani, and D. Grischkowsky, “Dark-pulse propagation in optical fibers,” Phys. Rev. Lett. 60, 29–32 (1988).
    [Crossref] [PubMed]
  33. A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
    [Crossref] [PubMed]
  34. B. J. Hong, C. C. Yang, and L. Wang, “Generating dark solitons through cross-phase modulation in optical fibers,” J. Opt. Soc. Am. B 8, 464–470 (1991).
    [Crossref]
  35. J. E. Rothenberg and H. K. Heinrich, “Observation of the formation of dark-soliton trains in optical fibers,” Opt. Lett. 17, 261–263 (1992).
    [Crossref] [PubMed]
  36. P. Emplit, J.-P. Hamaide, and F. Reynaud, “Passive amplitude and phase picosecond pulse shaping,” Opt. Lett. 17, 1358–1360 (1992).
    [Crossref] [PubMed]
  37. P. Emplit, M. Haelterman, R. Kashyap, and M. D. Lathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett. 9, 1122–1124 (1997).
    [Crossref]
  38. Y. F. Song, J. Guo, L. M. Zhao, D. Y. Shen, and D. Y. Tang, “280 GHz dark soliton fiber laser,” Opt. Lett. 39, 3484–3487 (2014).
    [Crossref] [PubMed]
  39. C. Finot, J. M. Dudley, and G. Millot, “Generation of dark solitons by interaction between similaritons in Raman fiber amplifiers,” Optical Fiber Technology,  12(3), 217–226 (2006).
    [Crossref]
  40. W.-H. Cao, S. Li, and K.-T. Chan, “Generation of dark pulse trains from continuous-wave light using cross-phase modulation in optical fibers,” Appl. Phys. Lett. 74, 510 (1999).
    [Crossref]
  41. L. D. Landau and E. M. Lifshitz, “Quantum Mechanics (Non- relativistic Theory) (Pergamon, London, 1977)”, p. 8081.

2018 (2)

2016 (3)

2015 (6)

2014 (4)

M. Conforti, F. Baronio, and S. Trillo, “Resonant radiation shed by dispersive shock waves,” Phys. Rev. A 89, 013807 (2014).
[Crossref]

M. Conforti and S. Trillo, “Radiative effects driven by shock waves in cavity-less four-wave mixing combs,” Opt. Lett. 39, 5760–5763 (2014).
[Crossref] [PubMed]

K. E. Webb, M. Erkintalo, Y. Xu, N. G. R. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons”, Nat. Commun. 5, 4969 (2014).
[Crossref] [PubMed]

Y. F. Song, J. Guo, L. M. Zhao, D. Y. Shen, and D. Y. Tang, “280 GHz dark soliton fiber laser,” Opt. Lett. 39, 3484–3487 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (1)

2010 (1)

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287 (2010).
[Crossref]

2009 (1)

2008 (1)

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. Konig, and U. Leonhardt, “Fiber-Optical Analog of the Event Horizon,” Science,  319, 1367–1370 (2008).
[Crossref] [PubMed]

2006 (2)

A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express 14, 9854–9863 (2006).
[Crossref] [PubMed]

C. Finot, J. M. Dudley, and G. Millot, “Generation of dark solitons by interaction between similaritons in Raman fiber amplifiers,” Optical Fiber Technology,  12(3), 217–226 (2006).
[Crossref]

2005 (2)

D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E 72, 016619 (2005).
[Crossref]

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95, 213902 (2005).
[Crossref] [PubMed]

2004 (1)

1999 (1)

W.-H. Cao, S. Li, and K.-T. Chan, “Generation of dark pulse trains from continuous-wave light using cross-phase modulation in optical fibers,” Appl. Phys. Lett. 74, 510 (1999).
[Crossref]

1998 (2)

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Physics Reports 298, 81–197 (1998).
[Crossref]

X.-J. Chen and Z.-D. Chen, “Raman blueshift of optical dark solitons”, J. Opt. Soc. Am. B,  15, 2738–2741 (1998).
[Crossref]

1997 (1)

P. Emplit, M. Haelterman, R. Kashyap, and M. D. Lathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett. 9, 1122–1124 (1997).
[Crossref]

1996 (1)

1995 (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

1993 (1)

V. I. Karpman, “Stationary and radiating dark solitons of the third order nonlinear Schrödinger equation,” Physics Letters A 181, 211–215 (1993).
[Crossref]

1992 (2)

1991 (1)

1988 (2)

D. Krokel, N. J. Halas, G. Giuliani, and D. Grischkowsky, “Dark-pulse propagation in optical fibers,” Phys. Rev. Lett. 60, 29–32 (1988).
[Crossref] [PubMed]

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
[Crossref] [PubMed]

1987 (2)

P. Emplit, J. P. Hamaide, F. Reynaud, C. Froehly, and A. Barthelemy, “Picosecond steps and dark pulses through nonlinear single mode fibers,” Opt. Commun. 62, 374–379 (1987).
[Crossref]

P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Soliton at the zero-group-dispersion wavelength of a single-model fiber,” Opt. Lett. 12, 628–630 (1987).
[Crossref] [PubMed]

Afanasjev, V. V.

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

Baronio, F.

M. Conforti, F. Baronio, and S. Trillo, “Resonant radiation shed by dispersive shock waves,” Phys. Rev. A 89, 013807 (2014).
[Crossref]

Barthelemy, A.

P. Emplit, J. P. Hamaide, F. Reynaud, C. Froehly, and A. Barthelemy, “Picosecond steps and dark pulses through nonlinear single mode fibers,” Opt. Commun. 62, 374–379 (1987).
[Crossref]

Bendahmane, A.

S. F. Wang, A. Mussot, M. Conforti, A. Bendahmane, X. L. Zeng, and A. Kudlinski, “Optical event horizons from the collision of a soliton and its own dispersive wave,” Phys. Rev. A 92, 023837 (2015).
[Crossref]

Bessin, F.

C. Mas Arabì, F. Bessin, A. Kudlinski, A. Mussot, D. Skryabin, and M. Conforti, “Efficiency of four-wave mixing between orthogonally polarized linear waves and solitons in a birefringent fiber,” Phys. Rev. A 94, 063847 (2016).
[Crossref]

Broderick, N. G. R.

K. E. Webb, M. Erkintalo, Y. Xu, N. G. R. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons”, Nat. Commun. 5, 4969 (2014).
[Crossref] [PubMed]

Cao, W.-H.

W.-H. Cao, S. Li, and K.-T. Chan, “Generation of dark pulse trains from continuous-wave light using cross-phase modulation in optical fibers,” Appl. Phys. Lett. 74, 510 (1999).
[Crossref]

Chan, K.-T.

W.-H. Cao, S. Li, and K.-T. Chan, “Generation of dark pulse trains from continuous-wave light using cross-phase modulation in optical fibers,” Appl. Phys. Lett. 74, 510 (1999).
[Crossref]

Chen, H. H.

Chen, X.-J.

Chen, Z.-D.

Choudhary, A.

Conforti, M.

T. Marest, C. Mas Arabi, M. Conforti, A. Mussot, C. Milián, D. V. Skryabin, and A. Kudlinski, “Grayness-dependent emission of dispersive waves from dark solitons in optical fibers,” Opt. Lett. 43, 1511–1514 (2018).
[Crossref] [PubMed]

T. Marest, C. Mas Arabi, M. Conforti, A. Mussot, C. Milián, D. V. Skryabin, and A. Kudlinski, “Emission of dispersives waves from a train of dark solitons,” Opt. Lett. 41, 2454–2457 (2016).
[Crossref] [PubMed]

C. Mas Arabì, F. Bessin, A. Kudlinski, A. Mussot, D. Skryabin, and M. Conforti, “Efficiency of four-wave mixing between orthogonally polarized linear waves and solitons in a birefringent fiber,” Phys. Rev. A 94, 063847 (2016).
[Crossref]

S. F. Wang, A. Mussot, M. Conforti, X. L. Zeng, and A. Kudlinski, “Bouncing of a dispersive wave in a solitonic cage,” Opt. Lett. 40, 3320–3323 (2015).
[Crossref] [PubMed]

S. F. Wang, A. Mussot, M. Conforti, A. Bendahmane, X. L. Zeng, and A. Kudlinski, “Optical event horizons from the collision of a soliton and its own dispersive wave,” Phys. Rev. A 92, 023837 (2015).
[Crossref]

M. Conforti, S. Trillo, A. Mussot, and A. Kudlinski, “Parametric excitation of multiple resonant radiations from localized wavepackets,” Sci. Rep. 5, 9433 (2015).
[Crossref] [PubMed]

M. Conforti and S. Trillo, “Radiative effects driven by shock waves in cavity-less four-wave mixing combs,” Opt. Lett. 39, 5760–5763 (2014).
[Crossref] [PubMed]

M. Conforti, F. Baronio, and S. Trillo, “Resonant radiation shed by dispersive shock waves,” Phys. Rev. A 89, 013807 (2014).
[Crossref]

Deng, Z.

Driben, R.

Dudley, J. M.

K. E. Webb, M. Erkintalo, Y. Xu, N. G. R. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons”, Nat. Commun. 5, 4969 (2014).
[Crossref] [PubMed]

C. Finot, J. M. Dudley, and G. Millot, “Generation of dark solitons by interaction between similaritons in Raman fiber amplifiers,” Optical Fiber Technology,  12(3), 217–226 (2006).
[Crossref]

Efimov, A.

R. Driben, A. V. Yulin, A. Efimov, and B. A. Malomed, “Trapping of light in solitonic cavities and its role in the supercontinuum generation,” Opt. Express 21, 19091–19096 (2013).
[Crossref] [PubMed]

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95, 213902 (2005).
[Crossref] [PubMed]

Emplit, P.

P. Emplit, M. Haelterman, R. Kashyap, and M. D. Lathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett. 9, 1122–1124 (1997).
[Crossref]

P. Emplit, J.-P. Hamaide, and F. Reynaud, “Passive amplitude and phase picosecond pulse shaping,” Opt. Lett. 17, 1358–1360 (1992).
[Crossref] [PubMed]

P. Emplit, J. P. Hamaide, F. Reynaud, C. Froehly, and A. Barthelemy, “Picosecond steps and dark pulses through nonlinear single mode fibers,” Opt. Commun. 62, 374–379 (1987).
[Crossref]

Erkintalo, M.

K. E. Webb, M. Erkintalo, Y. Xu, N. G. R. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons”, Nat. Commun. 5, 4969 (2014).
[Crossref] [PubMed]

Ferrando, A.

Finot, C.

C. Finot, J. M. Dudley, and G. Millot, “Generation of dark solitons by interaction between similaritons in Raman fiber amplifiers,” Optical Fiber Technology,  12(3), 217–226 (2006).
[Crossref]

Froehly, C.

P. Emplit, J. P. Hamaide, F. Reynaud, C. Froehly, and A. Barthelemy, “Picosecond steps and dark pulses through nonlinear single mode fibers,” Opt. Commun. 62, 374–379 (1987).
[Crossref]

Genty, G.

K. E. Webb, M. Erkintalo, Y. Xu, N. G. R. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons”, Nat. Commun. 5, 4969 (2014).
[Crossref] [PubMed]

Giuliani, G.

D. Krokel, N. J. Halas, G. Giuliani, and D. Grischkowsky, “Dark-pulse propagation in optical fibers,” Phys. Rev. Lett. 60, 29–32 (1988).
[Crossref] [PubMed]

Gorbach, A. V.

Grischkowsky, D.

D. Krokel, N. J. Halas, G. Giuliani, and D. Grischkowsky, “Dark-pulse propagation in optical fibers,” Phys. Rev. Lett. 60, 29–32 (1988).
[Crossref] [PubMed]

Gu, J.

Guo, H.

Guo, J.

Haelterman, M.

P. Emplit, M. Haelterman, R. Kashyap, and M. D. Lathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett. 9, 1122–1124 (1997).
[Crossref]

Halas, N. J.

D. Krokel, N. J. Halas, G. Giuliani, and D. Grischkowsky, “Dark-pulse propagation in optical fibers,” Phys. Rev. Lett. 60, 29–32 (1988).
[Crossref] [PubMed]

Hamaide, J. P.

P. Emplit, J. P. Hamaide, F. Reynaud, C. Froehly, and A. Barthelemy, “Picosecond steps and dark pulses through nonlinear single mode fibers,” Opt. Commun. 62, 374–379 (1987).
[Crossref]

Hamaide, J.-P.

Hawkins, R. J.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
[Crossref] [PubMed]

Heinrich, H. K.

Heritage, J. P.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
[Crossref] [PubMed]

Hill, S.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. Konig, and U. Leonhardt, “Fiber-Optical Analog of the Event Horizon,” Science,  319, 1367–1370 (2008).
[Crossref] [PubMed]

Hong, B. J.

Huang, X.

Joly, N.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95, 213902 (2005).
[Crossref] [PubMed]

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

Karpman, V. I.

V. I. Karpman, “Stationary and radiating dark solitons of the third order nonlinear Schrödinger equation,” Physics Letters A 181, 211–215 (1993).
[Crossref]

Kashyap, R.

P. Emplit, M. Haelterman, R. Kashyap, and M. D. Lathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett. 9, 1122–1124 (1997).
[Crossref]

Kirschner, E. M.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
[Crossref] [PubMed]

Kivshar, Y. S.

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Physics Reports 298, 81–197 (1998).
[Crossref]

V. V. Afanasjev, Y. S. Kivshar, and C. R. Menyuk, “Effect of third-order dispersion on dark solitons,” Opt. Lett. 21, 1975–1977 (1996).
[Crossref] [PubMed]

Knight, J. C.

A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express 14, 9854–9863 (2006).
[Crossref] [PubMed]

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95, 213902 (2005).
[Crossref] [PubMed]

Konig, F.

A. Choudhary and F. Konig, “Efficient frequency shifting of dispersive waves at solitons,” Opt. Express 20, 5538–5546 (2012).
[Crossref] [PubMed]

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. Konig, and U. Leonhardt, “Fiber-Optical Analog of the Event Horizon,” Science,  319, 1367–1370 (2008).
[Crossref] [PubMed]

Krokel, D.

D. Krokel, N. J. Halas, G. Giuliani, and D. Grischkowsky, “Dark-pulse propagation in optical fibers,” Phys. Rev. Lett. 60, 29–32 (1988).
[Crossref] [PubMed]

Kudlinski, A.

T. Marest, C. Mas Arabi, M. Conforti, A. Mussot, C. Milián, D. V. Skryabin, and A. Kudlinski, “Grayness-dependent emission of dispersive waves from dark solitons in optical fibers,” Opt. Lett. 43, 1511–1514 (2018).
[Crossref] [PubMed]

T. Marest, C. Mas Arabi, M. Conforti, A. Mussot, C. Milián, D. V. Skryabin, and A. Kudlinski, “Emission of dispersives waves from a train of dark solitons,” Opt. Lett. 41, 2454–2457 (2016).
[Crossref] [PubMed]

C. Mas Arabì, F. Bessin, A. Kudlinski, A. Mussot, D. Skryabin, and M. Conforti, “Efficiency of four-wave mixing between orthogonally polarized linear waves and solitons in a birefringent fiber,” Phys. Rev. A 94, 063847 (2016).
[Crossref]

S. F. Wang, A. Mussot, M. Conforti, A. Bendahmane, X. L. Zeng, and A. Kudlinski, “Optical event horizons from the collision of a soliton and its own dispersive wave,” Phys. Rev. A 92, 023837 (2015).
[Crossref]

S. F. Wang, A. Mussot, M. Conforti, X. L. Zeng, and A. Kudlinski, “Bouncing of a dispersive wave in a solitonic cage,” Opt. Lett. 40, 3320–3323 (2015).
[Crossref] [PubMed]

M. Conforti, S. Trillo, A. Mussot, and A. Kudlinski, “Parametric excitation of multiple resonant radiations from localized wavepackets,” Sci. Rep. 5, 9433 (2015).
[Crossref] [PubMed]

Kuklewicz, C.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. Konig, and U. Leonhardt, “Fiber-Optical Analog of the Event Horizon,” Science,  319, 1367–1370 (2008).
[Crossref] [PubMed]

Landau, L. D.

L. D. Landau and E. M. Lifshitz, “Quantum Mechanics (Non- relativistic Theory) (Pergamon, London, 1977)”, p. 8081.

Lathouwer, M. D.

P. Emplit, M. Haelterman, R. Kashyap, and M. D. Lathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett. 9, 1122–1124 (1997).
[Crossref]

Leaird, D. E.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
[Crossref] [PubMed]

Lee, Y. C.

Leonhardt, U.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. Konig, and U. Leonhardt, “Fiber-Optical Analog of the Event Horizon,” Science,  319, 1367–1370 (2008).
[Crossref] [PubMed]

Li, S.

W.-H. Cao, S. Li, and K.-T. Chan, “Generation of dark pulse trains from continuous-wave light using cross-phase modulation in optical fibers,” Appl. Phys. Lett. 74, 510 (1999).
[Crossref]

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, “Quantum Mechanics (Non- relativistic Theory) (Pergamon, London, 1977)”, p. 8081.

Liu, J.

Luther-Davies, B.

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Physics Reports 298, 81–197 (1998).
[Crossref]

Malomed, B. A.

Marest, T.

Mas Arabi, C.

Mas Arabì, C.

C. Mas Arabì, F. Bessin, A. Kudlinski, A. Mussot, D. Skryabin, and M. Conforti, “Efficiency of four-wave mixing between orthogonally polarized linear waves and solitons in a birefringent fiber,” Phys. Rev. A 94, 063847 (2016).
[Crossref]

Menyuk, C. R.

Milian, C.

Milián, C.

Millot, G.

C. Finot, J. M. Dudley, and G. Millot, “Generation of dark solitons by interaction between similaritons in Raman fiber amplifiers,” Optical Fiber Technology,  12(3), 217–226 (2006).
[Crossref]

Murdoch, S. G.

K. E. Webb, M. Erkintalo, Y. Xu, N. G. R. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons”, Nat. Commun. 5, 4969 (2014).
[Crossref] [PubMed]

Mussot, A.

T. Marest, C. Mas Arabi, M. Conforti, A. Mussot, C. Milián, D. V. Skryabin, and A. Kudlinski, “Grayness-dependent emission of dispersive waves from dark solitons in optical fibers,” Opt. Lett. 43, 1511–1514 (2018).
[Crossref] [PubMed]

T. Marest, C. Mas Arabi, M. Conforti, A. Mussot, C. Milián, D. V. Skryabin, and A. Kudlinski, “Emission of dispersives waves from a train of dark solitons,” Opt. Lett. 41, 2454–2457 (2016).
[Crossref] [PubMed]

C. Mas Arabì, F. Bessin, A. Kudlinski, A. Mussot, D. Skryabin, and M. Conforti, “Efficiency of four-wave mixing between orthogonally polarized linear waves and solitons in a birefringent fiber,” Phys. Rev. A 94, 063847 (2016).
[Crossref]

S. F. Wang, A. Mussot, M. Conforti, X. L. Zeng, and A. Kudlinski, “Bouncing of a dispersive wave in a solitonic cage,” Opt. Lett. 40, 3320–3323 (2015).
[Crossref] [PubMed]

S. F. Wang, A. Mussot, M. Conforti, A. Bendahmane, X. L. Zeng, and A. Kudlinski, “Optical event horizons from the collision of a soliton and its own dispersive wave,” Phys. Rev. A 92, 023837 (2015).
[Crossref]

M. Conforti, S. Trillo, A. Mussot, and A. Kudlinski, “Parametric excitation of multiple resonant radiations from localized wavepackets,” Sci. Rep. 5, 9433 (2015).
[Crossref] [PubMed]

Omenetto, F. G.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95, 213902 (2005).
[Crossref] [PubMed]

Oreshnikov, I.

Philbin, T. G.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. Konig, and U. Leonhardt, “Fiber-Optical Analog of the Event Horizon,” Science,  319, 1367–1370 (2008).
[Crossref] [PubMed]

Reynaud, F.

P. Emplit, J.-P. Hamaide, and F. Reynaud, “Passive amplitude and phase picosecond pulse shaping,” Opt. Lett. 17, 1358–1360 (1992).
[Crossref] [PubMed]

P. Emplit, J. P. Hamaide, F. Reynaud, C. Froehly, and A. Barthelemy, “Picosecond steps and dark pulses through nonlinear single mode fibers,” Opt. Commun. 62, 374–379 (1987).
[Crossref]

Robertson, S.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. Konig, and U. Leonhardt, “Fiber-Optical Analog of the Event Horizon,” Science,  319, 1367–1370 (2008).
[Crossref] [PubMed]

Rothenberg, J. E.

Russell, P.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95, 213902 (2005).
[Crossref] [PubMed]

Russell, P. St. J.

Shen, D. Y.

Skryabin, D.

C. Mas Arabì, F. Bessin, A. Kudlinski, A. Mussot, D. Skryabin, and M. Conforti, “Efficiency of four-wave mixing between orthogonally polarized linear waves and solitons in a birefringent fiber,” Phys. Rev. A 94, 063847 (2016).
[Crossref]

Skryabin, D. V.

T. Marest, C. Mas Arabi, M. Conforti, A. Mussot, C. Milián, D. V. Skryabin, and A. Kudlinski, “Grayness-dependent emission of dispersive waves from dark solitons in optical fibers,” Opt. Lett. 43, 1511–1514 (2018).
[Crossref] [PubMed]

T. Marest, C. Mas Arabi, M. Conforti, A. Mussot, C. Milián, D. V. Skryabin, and A. Kudlinski, “Emission of dispersives waves from a train of dark solitons,” Opt. Lett. 41, 2454–2457 (2016).
[Crossref] [PubMed]

A. V. Yulin, R. Driben, B. A. Malomed, and D. V. Skryabin, “Soliton interaction mediated by cascaded four wave mixing with dispersive waves,” Opt. Express 21, 14481–14486 (2013).
[Crossref]

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287 (2010).
[Crossref]

C. Milian, D. V. Skryabin, and A. Ferrando, “Continuum generation by dark solitons,” Opt. Lett. 34, 2096–2098 (2009).
[Crossref] [PubMed]

A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express 14, 9854–9863 (2006).
[Crossref] [PubMed]

D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E 72, 016619 (2005).
[Crossref]

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95, 213902 (2005).
[Crossref] [PubMed]

A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, “Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion,” Opt. Lett. 29, 2411–2413 (2004).
[Crossref] [PubMed]

Song, Y. F.

Stone, J. M.

Tang, D. Y.

Taylor, A. J.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95, 213902 (2005).
[Crossref] [PubMed]

Thurston, R. N.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
[Crossref] [PubMed]

Tomlinson, W. J.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
[Crossref] [PubMed]

Trillo, S.

M. Conforti, S. Trillo, A. Mussot, and A. Kudlinski, “Parametric excitation of multiple resonant radiations from localized wavepackets,” Sci. Rep. 5, 9433 (2015).
[Crossref] [PubMed]

M. Conforti and S. Trillo, “Radiative effects driven by shock waves in cavity-less four-wave mixing combs,” Opt. Lett. 39, 5760–5763 (2014).
[Crossref] [PubMed]

M. Conforti, F. Baronio, and S. Trillo, “Resonant radiation shed by dispersive shock waves,” Phys. Rev. A 89, 013807 (2014).
[Crossref]

Voytova, T.

Wai, P. K. A.

Wang, L.

Wang, S.

Wang, S. F.

S. F. Wang, A. Mussot, M. Conforti, A. Bendahmane, X. L. Zeng, and A. Kudlinski, “Optical event horizons from the collision of a soliton and its own dispersive wave,” Phys. Rev. A 92, 023837 (2015).
[Crossref]

S. F. Wang, A. Mussot, M. Conforti, X. L. Zeng, and A. Kudlinski, “Bouncing of a dispersive wave in a solitonic cage,” Opt. Lett. 40, 3320–3323 (2015).
[Crossref] [PubMed]

Wang, X.

Webb, K. E.

K. E. Webb, M. Erkintalo, Y. Xu, N. G. R. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons”, Nat. Commun. 5, 4969 (2014).
[Crossref] [PubMed]

Weiner, A. M.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
[Crossref] [PubMed]

Xu, Y.

K. E. Webb, M. Erkintalo, Y. Xu, N. G. R. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons”, Nat. Commun. 5, 4969 (2014).
[Crossref] [PubMed]

Yang, C. C.

Yulin, A. V.

T. Voytova, I. Oreshnikov, A. V. Yulin, and R. Driben, “Emulation of Fabry-Perot and Bragg resonators with temporal optical solitons,” Opt. Lett. 41, 2442–2445 (2016).
[Crossref] [PubMed]

I. Oreshnikov, R. Driben, and A. V. Yulin, “Weak and strong interactions between dark solitons and dispersive waves,” Opt. Lett. 40, 4871–4874 (2015).
[Crossref] [PubMed]

I. Oreshnikov, R. Driben, and A. V. Yulin, “Interaction of high-order solitons with external dispersive waves,” Opt. Lett. 40, 5554–5557 (2015).
[Crossref] [PubMed]

R. Driben, A. V. Yulin, A. Efimov, and B. A. Malomed, “Trapping of light in solitonic cavities and its role in the supercontinuum generation,” Opt. Express 21, 19091–19096 (2013).
[Crossref] [PubMed]

A. V. Yulin, R. Driben, B. A. Malomed, and D. V. Skryabin, “Soliton interaction mediated by cascaded four wave mixing with dispersive waves,” Opt. Express 21, 14481–14486 (2013).
[Crossref]

D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E 72, 016619 (2005).
[Crossref]

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95, 213902 (2005).
[Crossref] [PubMed]

A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, “Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion,” Opt. Lett. 29, 2411–2413 (2004).
[Crossref] [PubMed]

Zeng, X.

Zeng, X. L.

S. F. Wang, A. Mussot, M. Conforti, A. Bendahmane, X. L. Zeng, and A. Kudlinski, “Optical event horizons from the collision of a soliton and its own dispersive wave,” Phys. Rev. A 92, 023837 (2015).
[Crossref]

S. F. Wang, A. Mussot, M. Conforti, X. L. Zeng, and A. Kudlinski, “Bouncing of a dispersive wave in a solitonic cage,” Opt. Lett. 40, 3320–3323 (2015).
[Crossref] [PubMed]

Zhao, C.

Zhao, L. M.

Appl. Phys. Lett. (1)

W.-H. Cao, S. Li, and K.-T. Chan, “Generation of dark pulse trains from continuous-wave light using cross-phase modulation in optical fibers,” Appl. Phys. Lett. 74, 510 (1999).
[Crossref]

IEEE Photon. Technol. Lett. (1)

P. Emplit, M. Haelterman, R. Kashyap, and M. D. Lathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett. 9, 1122–1124 (1997).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Commun. (1)

K. E. Webb, M. Erkintalo, Y. Xu, N. G. R. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons”, Nat. Commun. 5, 4969 (2014).
[Crossref] [PubMed]

Opt. Commun. (1)

P. Emplit, J. P. Hamaide, F. Reynaud, C. Froehly, and A. Barthelemy, “Picosecond steps and dark pulses through nonlinear single mode fibers,” Opt. Commun. 62, 374–379 (1987).
[Crossref]

Opt. Express (6)

Opt. Lett. (14)

V. V. Afanasjev, Y. S. Kivshar, and C. R. Menyuk, “Effect of third-order dispersion on dark solitons,” Opt. Lett. 21, 1975–1977 (1996).
[Crossref] [PubMed]

M. Conforti and S. Trillo, “Radiative effects driven by shock waves in cavity-less four-wave mixing combs,” Opt. Lett. 39, 5760–5763 (2014).
[Crossref] [PubMed]

T. Marest, C. Mas Arabi, M. Conforti, A. Mussot, C. Milián, D. V. Skryabin, and A. Kudlinski, “Emission of dispersives waves from a train of dark solitons,” Opt. Lett. 41, 2454–2457 (2016).
[Crossref] [PubMed]

C. Milian, D. V. Skryabin, and A. Ferrando, “Continuum generation by dark solitons,” Opt. Lett. 34, 2096–2098 (2009).
[Crossref] [PubMed]

I. Oreshnikov, R. Driben, and A. V. Yulin, “Weak and strong interactions between dark solitons and dispersive waves,” Opt. Lett. 40, 4871–4874 (2015).
[Crossref] [PubMed]

A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, “Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion,” Opt. Lett. 29, 2411–2413 (2004).
[Crossref] [PubMed]

Y. F. Song, J. Guo, L. M. Zhao, D. Y. Shen, and D. Y. Tang, “280 GHz dark soliton fiber laser,” Opt. Lett. 39, 3484–3487 (2014).
[Crossref] [PubMed]

T. Voytova, I. Oreshnikov, A. V. Yulin, and R. Driben, “Emulation of Fabry-Perot and Bragg resonators with temporal optical solitons,” Opt. Lett. 41, 2442–2445 (2016).
[Crossref] [PubMed]

P. Emplit, J.-P. Hamaide, and F. Reynaud, “Passive amplitude and phase picosecond pulse shaping,” Opt. Lett. 17, 1358–1360 (1992).
[Crossref] [PubMed]

P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Soliton at the zero-group-dispersion wavelength of a single-model fiber,” Opt. Lett. 12, 628–630 (1987).
[Crossref] [PubMed]

I. Oreshnikov, R. Driben, and A. V. Yulin, “Interaction of high-order solitons with external dispersive waves,” Opt. Lett. 40, 5554–5557 (2015).
[Crossref] [PubMed]

J. E. Rothenberg and H. K. Heinrich, “Observation of the formation of dark-soliton trains in optical fibers,” Opt. Lett. 17, 261–263 (1992).
[Crossref] [PubMed]

S. F. Wang, A. Mussot, M. Conforti, X. L. Zeng, and A. Kudlinski, “Bouncing of a dispersive wave in a solitonic cage,” Opt. Lett. 40, 3320–3323 (2015).
[Crossref] [PubMed]

T. Marest, C. Mas Arabi, M. Conforti, A. Mussot, C. Milián, D. V. Skryabin, and A. Kudlinski, “Grayness-dependent emission of dispersive waves from dark solitons in optical fibers,” Opt. Lett. 43, 1511–1514 (2018).
[Crossref] [PubMed]

Optical Fiber Technology (1)

C. Finot, J. M. Dudley, and G. Millot, “Generation of dark solitons by interaction between similaritons in Raman fiber amplifiers,” Optical Fiber Technology,  12(3), 217–226 (2006).
[Crossref]

Phys. Rev. A (4)

C. Mas Arabì, F. Bessin, A. Kudlinski, A. Mussot, D. Skryabin, and M. Conforti, “Efficiency of four-wave mixing between orthogonally polarized linear waves and solitons in a birefringent fiber,” Phys. Rev. A 94, 063847 (2016).
[Crossref]

M. Conforti, F. Baronio, and S. Trillo, “Resonant radiation shed by dispersive shock waves,” Phys. Rev. A 89, 013807 (2014).
[Crossref]

S. F. Wang, A. Mussot, M. Conforti, A. Bendahmane, X. L. Zeng, and A. Kudlinski, “Optical event horizons from the collision of a soliton and its own dispersive wave,” Phys. Rev. A 92, 023837 (2015).
[Crossref]

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

Phys. Rev. E (1)

D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E 72, 016619 (2005).
[Crossref]

Phys. Rev. Lett. (3)

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95, 213902 (2005).
[Crossref] [PubMed]

D. Krokel, N. J. Halas, G. Giuliani, and D. Grischkowsky, “Dark-pulse propagation in optical fibers,” Phys. Rev. Lett. 60, 29–32 (1988).
[Crossref] [PubMed]

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
[Crossref] [PubMed]

Physics Letters A (1)

V. I. Karpman, “Stationary and radiating dark solitons of the third order nonlinear Schrödinger equation,” Physics Letters A 181, 211–215 (1993).
[Crossref]

Physics Reports (1)

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Physics Reports 298, 81–197 (1998).
[Crossref]

Rev. Mod. Phys. (1)

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287 (2010).
[Crossref]

Sci. Rep. (1)

M. Conforti, S. Trillo, A. Mussot, and A. Kudlinski, “Parametric excitation of multiple resonant radiations from localized wavepackets,” Sci. Rep. 5, 9433 (2015).
[Crossref] [PubMed]

Science (1)

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. Konig, and U. Leonhardt, “Fiber-Optical Analog of the Event Horizon,” Science,  319, 1367–1370 (2008).
[Crossref] [PubMed]

Other (1)

L. D. Landau and E. M. Lifshitz, “Quantum Mechanics (Non- relativistic Theory) (Pergamon, London, 1977)”, p. 8081.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Numerical simulation of the collision between a gray soliton and a weak probe wave. (a) temporal evolution during the propagation in the DSF. The field shown is ||A(z, t)|2P0|. (b) spectral evolution versus fiber length. The black vertical line represents the ZDW of the fiber and the dashed red line represents the theoretical wavelength of the wave produced by the collision [solution of Eq. (4)].
Fig. 2
Fig. 2 (a) Experimental setup. P: Polarizer; WS: waveshaper; λ/2: half-wave plate; EDFA: erbium-doped fiber amplifier; OSA: optical spectrum analyzer. (b) Schematic spectrum and (c) time profile of the total field launched into the fiber.
Fig. 3
Fig. 3 (a) Simulated and (b) experimental fiber output spectrum against the grayness of the dark soliton. The black vertical line represents the ZDW of the fiber. The dashed black lines stand for the theoretical wavelength of the generated wave produced by the collision [obtained from Eq. (4)].
Fig. 4
Fig. 4 Energy of the generated wave versus the soliton grayness. The red and green curves correspond respectively to the theoretical prediction [Eq. (5)] and numerical results. Black circles are experimental measurements. The black line is a guide for the eye.
Fig. 5
Fig. 5 (a) Simulated and (b) experimental fiber output spectrum versus the probe wave wavelength. The black vertical line represents the ZDW of the fiber. The dashed black lines represent the theoretical wavelength of the wave produced by the collision between a black soliton (φ = 0) and the probe wave [obtained from Eq. (4)]. The red lines correspond to the FWM interaction between the probe and the soliton background (see text).
Fig. 6
Fig. 6 Energy of the generated wave versus the probe wavelength. The red and green curves correspond respectively to the theoretical prediction [Eq. (5)] and numerical results. Black circles are experimental measurements. the black line is a guide for the eye.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

i z A + D ( i t ) A + γ | A | 2 A = 0
A D S ( z , t ) = P 0 ( cos φ tanh ( t γ β 2 P 0 sin ( φ ) z T 0 cos φ ) i sin φ ) e i γ P 0 z
k ( Ω ) = β 1 s o l Ω + β 2 2 Ω 2 + β 3 2 Ω 3 + k N L
β 1 s o l Ω + β 2 2 Ω 2 + β 3 2 Ω 3 + k N L = k ( Ω p )
E g R | v s p 1 | = R | β 2 Ω p + β 3 2 Ω p 2 γ β 2 P 0 sin ( φ ) |
A P ( t ) = P p exp [ ( t τ 2 T P ) 2 ] e i ( ω P ω 0 ) t
A B G ( t ) = exp [ ( t T B G ) n ]
i z A + D ( i t ) A + γ | A | 2 A = 0
A ( z , t ) = ( u D S ( t , z ) + g ( z , t ) ) e i γ P 0 z .
i z g + D ( i t ) g + γ ( 2 | u D S ( z , t ) | 2 P 0 ) g + u D S ( z , t ) 2 g * ) = 0
i z g + D ¯ ( i τ ) g + γ ( ( 2 | u D S ( τ ) | 2 P 0 ) g + u D S ( τ ) 2 g * ) = 0 , D ¯ ( i τ ) = i γ β 2 P 0 sin ( φ ) τ + D ( i τ )
g ( z , t ) = w e i ( k ( Ω p ) z Ω p τ ) + ψ ( z ) e i ( k ( Ω ) z Ω τ )
k ( Ω ) = ± k ( Ω p )
k ( Ω ) = γ β 2 P 0 sin ( φ ) Ω + β 3 6 Ω 3 + Ω 2 β 2 ( β 2 Ω 2 + 4 γ P 0 )
k ( Ω ) = γ β 2 P 0 sin ( φ ) Ω + β 2 2 Ω 2 + β 3 2 Ω 3 + γ P 0
D ¯ ( i τ ) Ψ ( 2 q cos 2 ( φ ) sech 2 ( τ cos ( φ ) / t 0 ) g + D ¯ ( Ω ) ) Ψ = 0
( | β 2 ( Ω G V M ) | 2 d 2 d τ 2 + ( 2 q cos 2 ( φ ) sech 2 ( τ cos ( φ ) / t 0 ) Δ D ) Ψ = 0 ,
Ω G V M = β 2 β 2 2 + 2 sin ( φ ) β 3 γ β 2 P 0 β 3 .
R = cosh 2 ( π 2 16 | β 2 ( Ω G ) | β 2 1 ) cosh 2 ( π 2 16 | β 2 ( Ω G ) | β 2 1 ) + sinh 2 ( π t 0 Δ Ω cos ( φ ) )

Metrics